1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.linear;
|
---|
19 |
|
---|
20 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
21 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
22 | import agents.org.apache.commons.math.util.FastMath;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * Calculates the compact Singular Value Decomposition of a matrix.
|
---|
26 | * <p>
|
---|
27 | * The Singular Value Decomposition of matrix A is a set of three matrices: U,
|
---|
28 | * Σ and V such that A = U × Σ × V<sup>T</sup>. Let A be
|
---|
29 | * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a
|
---|
30 | * p × p diagonal matrix with positive or null elements, V is a p ×
|
---|
31 | * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where
|
---|
32 | * p=min(m,n).
|
---|
33 | * </p>
|
---|
34 | * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
|
---|
35 | * @since 2.0
|
---|
36 | */
|
---|
37 | public class SingularValueDecompositionImpl implements
|
---|
38 | SingularValueDecomposition {
|
---|
39 |
|
---|
40 | /** Number of rows of the initial matrix. */
|
---|
41 | private int m;
|
---|
42 |
|
---|
43 | /** Number of columns of the initial matrix. */
|
---|
44 | private int n;
|
---|
45 |
|
---|
46 | /** Eigen decomposition of the tridiagonal matrix. */
|
---|
47 | private EigenDecomposition eigenDecomposition;
|
---|
48 |
|
---|
49 | /** Singular values. */
|
---|
50 | private double[] singularValues;
|
---|
51 |
|
---|
52 | /** Cached value of U. */
|
---|
53 | private RealMatrix cachedU;
|
---|
54 |
|
---|
55 | /** Cached value of U<sup>T</sup>. */
|
---|
56 | private RealMatrix cachedUt;
|
---|
57 |
|
---|
58 | /** Cached value of S. */
|
---|
59 | private RealMatrix cachedS;
|
---|
60 |
|
---|
61 | /** Cached value of V. */
|
---|
62 | private RealMatrix cachedV;
|
---|
63 |
|
---|
64 | /** Cached value of V<sup>T</sup>. */
|
---|
65 | private RealMatrix cachedVt;
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Calculates the compact Singular Value Decomposition of the given matrix.
|
---|
69 | * @param matrix
|
---|
70 | * The matrix to decompose.
|
---|
71 | * @exception InvalidMatrixException
|
---|
72 | * (wrapping a
|
---|
73 | * {@link agents.org.apache.commons.math.ConvergenceException} if
|
---|
74 | * algorithm fails to converge
|
---|
75 | */
|
---|
76 | public SingularValueDecompositionImpl(final RealMatrix matrix)
|
---|
77 | throws InvalidMatrixException {
|
---|
78 |
|
---|
79 | m = matrix.getRowDimension();
|
---|
80 | n = matrix.getColumnDimension();
|
---|
81 |
|
---|
82 | cachedU = null;
|
---|
83 | cachedS = null;
|
---|
84 | cachedV = null;
|
---|
85 | cachedVt = null;
|
---|
86 |
|
---|
87 | double[][] localcopy = matrix.getData();
|
---|
88 | double[][] matATA = new double[n][n];
|
---|
89 | //
|
---|
90 | // create A^T*A
|
---|
91 | //
|
---|
92 | for (int i = 0; i < n; i++) {
|
---|
93 | for (int j = i; j < n; j++) {
|
---|
94 | matATA[i][j] = 0.0;
|
---|
95 | for (int k = 0; k < m; k++) {
|
---|
96 | matATA[i][j] += localcopy[k][i] * localcopy[k][j];
|
---|
97 | }
|
---|
98 | matATA[j][i]=matATA[i][j];
|
---|
99 | }
|
---|
100 | }
|
---|
101 |
|
---|
102 | double[][] matAAT = new double[m][m];
|
---|
103 | //
|
---|
104 | // create A*A^T
|
---|
105 | //
|
---|
106 | for (int i = 0; i < m; i++) {
|
---|
107 | for (int j = i; j < m; j++) {
|
---|
108 | matAAT[i][j] = 0.0;
|
---|
109 | for (int k = 0; k < n; k++) {
|
---|
110 | matAAT[i][j] += localcopy[i][k] * localcopy[j][k];
|
---|
111 | }
|
---|
112 | matAAT[j][i]=matAAT[i][j];
|
---|
113 | }
|
---|
114 | }
|
---|
115 | int p;
|
---|
116 | if (m>=n) {
|
---|
117 | p=n;
|
---|
118 | // compute eigen decomposition of A^T*A
|
---|
119 | eigenDecomposition = new EigenDecompositionImpl(
|
---|
120 | new Array2DRowRealMatrix(matATA),1.0);
|
---|
121 | singularValues = eigenDecomposition.getRealEigenvalues();
|
---|
122 | cachedV = eigenDecomposition.getV();
|
---|
123 | // compute eigen decomposition of A*A^T
|
---|
124 | eigenDecomposition = new EigenDecompositionImpl(
|
---|
125 | new Array2DRowRealMatrix(matAAT),1.0);
|
---|
126 | cachedU = eigenDecomposition.getV().getSubMatrix(0, m - 1, 0, p - 1);
|
---|
127 | } else {
|
---|
128 | p=m;
|
---|
129 | // compute eigen decomposition of A*A^T
|
---|
130 | eigenDecomposition = new EigenDecompositionImpl(
|
---|
131 | new Array2DRowRealMatrix(matAAT),1.0);
|
---|
132 | singularValues = eigenDecomposition.getRealEigenvalues();
|
---|
133 | cachedU = eigenDecomposition.getV();
|
---|
134 |
|
---|
135 | // compute eigen decomposition of A^T*A
|
---|
136 | eigenDecomposition = new EigenDecompositionImpl(
|
---|
137 | new Array2DRowRealMatrix(matATA),1.0);
|
---|
138 | cachedV = eigenDecomposition.getV().getSubMatrix(0,n-1,0,p-1);
|
---|
139 | }
|
---|
140 | for (int i = 0; i < p; i++) {
|
---|
141 | singularValues[i] = FastMath.sqrt(FastMath.abs(singularValues[i]));
|
---|
142 | }
|
---|
143 | // Up to this point, U and V are computed independently of each other.
|
---|
144 | // There still a sign indetermination of each column of, say, U.
|
---|
145 | // The sign is set such that A.V_i=sigma_i.U_i (i<=p)
|
---|
146 | // The right sign corresponds to a positive dot product of A.V_i and U_i
|
---|
147 | for (int i = 0; i < p; i++) {
|
---|
148 | RealVector tmp = cachedU.getColumnVector(i);
|
---|
149 | double product=matrix.operate(cachedV.getColumnVector(i)).dotProduct(tmp);
|
---|
150 | if (product<0) {
|
---|
151 | cachedU.setColumnVector(i, tmp.mapMultiply(-1.0));
|
---|
152 | }
|
---|
153 | }
|
---|
154 | }
|
---|
155 |
|
---|
156 | /** {@inheritDoc} */
|
---|
157 | public RealMatrix getU() throws InvalidMatrixException {
|
---|
158 | // return the cached matrix
|
---|
159 | return cachedU;
|
---|
160 |
|
---|
161 | }
|
---|
162 |
|
---|
163 | /** {@inheritDoc} */
|
---|
164 | public RealMatrix getUT() throws InvalidMatrixException {
|
---|
165 |
|
---|
166 | if (cachedUt == null) {
|
---|
167 | cachedUt = getU().transpose();
|
---|
168 | }
|
---|
169 |
|
---|
170 | // return the cached matrix
|
---|
171 | return cachedUt;
|
---|
172 |
|
---|
173 | }
|
---|
174 |
|
---|
175 | /** {@inheritDoc} */
|
---|
176 | public RealMatrix getS() throws InvalidMatrixException {
|
---|
177 |
|
---|
178 | if (cachedS == null) {
|
---|
179 |
|
---|
180 | // cache the matrix for subsequent calls
|
---|
181 | cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues);
|
---|
182 |
|
---|
183 | }
|
---|
184 | return cachedS;
|
---|
185 | }
|
---|
186 |
|
---|
187 | /** {@inheritDoc} */
|
---|
188 | public double[] getSingularValues() throws InvalidMatrixException {
|
---|
189 | return singularValues.clone();
|
---|
190 | }
|
---|
191 |
|
---|
192 | /** {@inheritDoc} */
|
---|
193 | public RealMatrix getV() throws InvalidMatrixException {
|
---|
194 | // return the cached matrix
|
---|
195 | return cachedV;
|
---|
196 |
|
---|
197 | }
|
---|
198 |
|
---|
199 | /** {@inheritDoc} */
|
---|
200 | public RealMatrix getVT() throws InvalidMatrixException {
|
---|
201 |
|
---|
202 | if (cachedVt == null) {
|
---|
203 | cachedVt = getV().transpose();
|
---|
204 | }
|
---|
205 |
|
---|
206 | // return the cached matrix
|
---|
207 | return cachedVt;
|
---|
208 |
|
---|
209 | }
|
---|
210 |
|
---|
211 | /** {@inheritDoc} */
|
---|
212 | public RealMatrix getCovariance(final double minSingularValue) {
|
---|
213 |
|
---|
214 | // get the number of singular values to consider
|
---|
215 | final int p = singularValues.length;
|
---|
216 | int dimension = 0;
|
---|
217 | while ((dimension < p) && (singularValues[dimension] >= minSingularValue)) {
|
---|
218 | ++dimension;
|
---|
219 | }
|
---|
220 |
|
---|
221 | if (dimension == 0) {
|
---|
222 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
223 | LocalizedFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE,
|
---|
224 | minSingularValue, singularValues[0]);
|
---|
225 | }
|
---|
226 |
|
---|
227 | final double[][] data = new double[dimension][p];
|
---|
228 | getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() {
|
---|
229 | /** {@inheritDoc} */
|
---|
230 | @Override
|
---|
231 | public void visit(final int row, final int column,
|
---|
232 | final double value) {
|
---|
233 | data[row][column] = value / singularValues[row];
|
---|
234 | }
|
---|
235 | }, 0, dimension - 1, 0, p - 1);
|
---|
236 |
|
---|
237 | RealMatrix jv = new Array2DRowRealMatrix(data, false);
|
---|
238 | return jv.transpose().multiply(jv);
|
---|
239 |
|
---|
240 | }
|
---|
241 |
|
---|
242 | /** {@inheritDoc} */
|
---|
243 | public double getNorm() throws InvalidMatrixException {
|
---|
244 | return singularValues[0];
|
---|
245 | }
|
---|
246 |
|
---|
247 | /** {@inheritDoc} */
|
---|
248 | public double getConditionNumber() throws InvalidMatrixException {
|
---|
249 | return singularValues[0] / singularValues[singularValues.length - 1];
|
---|
250 | }
|
---|
251 |
|
---|
252 | /** {@inheritDoc} */
|
---|
253 | public int getRank() throws IllegalStateException {
|
---|
254 |
|
---|
255 | final double threshold = FastMath.max(m, n) * FastMath.ulp(singularValues[0]);
|
---|
256 |
|
---|
257 | for (int i = singularValues.length - 1; i >= 0; --i) {
|
---|
258 | if (singularValues[i] > threshold) {
|
---|
259 | return i + 1;
|
---|
260 | }
|
---|
261 | }
|
---|
262 | return 0;
|
---|
263 |
|
---|
264 | }
|
---|
265 |
|
---|
266 | /** {@inheritDoc} */
|
---|
267 | public DecompositionSolver getSolver() {
|
---|
268 | return new Solver(singularValues, getUT(), getV(), getRank() == Math
|
---|
269 | .max(m, n));
|
---|
270 | }
|
---|
271 |
|
---|
272 | /** Specialized solver. */
|
---|
273 | private static class Solver implements DecompositionSolver {
|
---|
274 |
|
---|
275 | /** Pseudo-inverse of the initial matrix. */
|
---|
276 | private final RealMatrix pseudoInverse;
|
---|
277 |
|
---|
278 | /** Singularity indicator. */
|
---|
279 | private boolean nonSingular;
|
---|
280 |
|
---|
281 | /**
|
---|
282 | * Build a solver from decomposed matrix.
|
---|
283 | * @param singularValues
|
---|
284 | * singularValues
|
---|
285 | * @param uT
|
---|
286 | * U<sup>T</sup> matrix of the decomposition
|
---|
287 | * @param v
|
---|
288 | * V matrix of the decomposition
|
---|
289 | * @param nonSingular
|
---|
290 | * singularity indicator
|
---|
291 | */
|
---|
292 | private Solver(final double[] singularValues, final RealMatrix uT,
|
---|
293 | final RealMatrix v, final boolean nonSingular) {
|
---|
294 | double[][] suT = uT.getData();
|
---|
295 | for (int i = 0; i < singularValues.length; ++i) {
|
---|
296 | final double a;
|
---|
297 | if (singularValues[i]>0) {
|
---|
298 | a=1.0 / singularValues[i];
|
---|
299 | } else {
|
---|
300 | a=0.0;
|
---|
301 | }
|
---|
302 | final double[] suTi = suT[i];
|
---|
303 | for (int j = 0; j < suTi.length; ++j) {
|
---|
304 | suTi[j] *= a;
|
---|
305 | }
|
---|
306 | }
|
---|
307 | pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false));
|
---|
308 | this.nonSingular = nonSingular;
|
---|
309 | }
|
---|
310 |
|
---|
311 | /**
|
---|
312 | * Solve the linear equation A × X = B in least square sense.
|
---|
313 | * <p>
|
---|
314 | * The m×n matrix A may not be square, the solution X is such that
|
---|
315 | * ||A × X - B|| is minimal.
|
---|
316 | * </p>
|
---|
317 | * @param b
|
---|
318 | * right-hand side of the equation A × X = B
|
---|
319 | * @return a vector X that minimizes the two norm of A × X - B
|
---|
320 | * @exception IllegalArgumentException
|
---|
321 | * if matrices dimensions don't match
|
---|
322 | */
|
---|
323 | public double[] solve(final double[] b) throws IllegalArgumentException {
|
---|
324 | return pseudoInverse.operate(b);
|
---|
325 | }
|
---|
326 |
|
---|
327 | /**
|
---|
328 | * Solve the linear equation A × X = B in least square sense.
|
---|
329 | * <p>
|
---|
330 | * The m×n matrix A may not be square, the solution X is such that
|
---|
331 | * ||A × X - B|| is minimal.
|
---|
332 | * </p>
|
---|
333 | * @param b
|
---|
334 | * right-hand side of the equation A × X = B
|
---|
335 | * @return a vector X that minimizes the two norm of A × X - B
|
---|
336 | * @exception IllegalArgumentException
|
---|
337 | * if matrices dimensions don't match
|
---|
338 | */
|
---|
339 | public RealVector solve(final RealVector b)
|
---|
340 | throws IllegalArgumentException {
|
---|
341 | return pseudoInverse.operate(b);
|
---|
342 | }
|
---|
343 |
|
---|
344 | /**
|
---|
345 | * Solve the linear equation A × X = B in least square sense.
|
---|
346 | * <p>
|
---|
347 | * The m×n matrix A may not be square, the solution X is such that
|
---|
348 | * ||A × X - B|| is minimal.
|
---|
349 | * </p>
|
---|
350 | * @param b
|
---|
351 | * right-hand side of the equation A × X = B
|
---|
352 | * @return a matrix X that minimizes the two norm of A × X - B
|
---|
353 | * @exception IllegalArgumentException
|
---|
354 | * if matrices dimensions don't match
|
---|
355 | */
|
---|
356 | public RealMatrix solve(final RealMatrix b)
|
---|
357 | throws IllegalArgumentException {
|
---|
358 | return pseudoInverse.multiply(b);
|
---|
359 | }
|
---|
360 |
|
---|
361 | /**
|
---|
362 | * Check if the decomposed matrix is non-singular.
|
---|
363 | * @return true if the decomposed matrix is non-singular
|
---|
364 | */
|
---|
365 | public boolean isNonSingular() {
|
---|
366 | return nonSingular;
|
---|
367 | }
|
---|
368 |
|
---|
369 | /**
|
---|
370 | * Get the pseudo-inverse of the decomposed matrix.
|
---|
371 | * @return inverse matrix
|
---|
372 | */
|
---|
373 | public RealMatrix getInverse() {
|
---|
374 | return pseudoInverse;
|
---|
375 | }
|
---|
376 |
|
---|
377 | }
|
---|
378 |
|
---|
379 | }
|
---|