1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.linear;
|
---|
19 |
|
---|
20 |
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * An interface to classes that implement an algorithm to calculate the
|
---|
24 | * Singular Value Decomposition of a real matrix.
|
---|
25 | * <p>
|
---|
26 | * The Singular Value Decomposition of matrix A is a set of three matrices: U,
|
---|
27 | * Σ and V such that A = U × Σ × V<sup>T</sup>. Let A be
|
---|
28 | * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a
|
---|
29 | * p × p diagonal matrix with positive or null elements, V is a p ×
|
---|
30 | * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where
|
---|
31 | * p=min(m,n).
|
---|
32 | * </p>
|
---|
33 | * <p>This interface is similar to the class with similar name from the
|
---|
34 | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
|
---|
35 | * following changes:</p>
|
---|
36 | * <ul>
|
---|
37 | * <li>the <code>norm2</code> method which has been renamed as {@link #getNorm()
|
---|
38 | * getNorm},</li>
|
---|
39 | * <li>the <code>cond</code> method which has been renamed as {@link
|
---|
40 | * #getConditionNumber() getConditionNumber},</li>
|
---|
41 | * <li>the <code>rank</code> method which has been renamed as {@link #getRank()
|
---|
42 | * getRank},</li>
|
---|
43 | * <li>a {@link #getUT() getUT} method has been added,</li>
|
---|
44 | * <li>a {@link #getVT() getVT} method has been added,</li>
|
---|
45 | * <li>a {@link #getSolver() getSolver} method has been added,</li>
|
---|
46 | * <li>a {@link #getCovariance(double) getCovariance} method has been added.</li>
|
---|
47 | * </ul>
|
---|
48 | * @see <a href="http://mathworld.wolfram.com/SingularValueDecomposition.html">MathWorld</a>
|
---|
49 | * @see <a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Wikipedia</a>
|
---|
50 | * @version $Revision: 928081 $ $Date: 2010-03-26 23:36:38 +0100 (ven. 26 mars 2010) $
|
---|
51 | * @since 2.0
|
---|
52 | */
|
---|
53 | public interface SingularValueDecomposition {
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * Returns the matrix U of the decomposition.
|
---|
57 | * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
|
---|
58 | * @return the U matrix
|
---|
59 | * @see #getUT()
|
---|
60 | */
|
---|
61 | RealMatrix getU();
|
---|
62 |
|
---|
63 | /**
|
---|
64 | * Returns the transpose of the matrix U of the decomposition.
|
---|
65 | * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
|
---|
66 | * @return the U matrix (or null if decomposed matrix is singular)
|
---|
67 | * @see #getU()
|
---|
68 | */
|
---|
69 | RealMatrix getUT();
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Returns the diagonal matrix Σ of the decomposition.
|
---|
73 | * <p>Σ is a diagonal matrix. The singular values are provided in
|
---|
74 | * non-increasing order, for compatibility with Jama.</p>
|
---|
75 | * @return the Σ matrix
|
---|
76 | */
|
---|
77 | RealMatrix getS();
|
---|
78 |
|
---|
79 | /**
|
---|
80 | * Returns the diagonal elements of the matrix Σ of the decomposition.
|
---|
81 | * <p>The singular values are provided in non-increasing order, for
|
---|
82 | * compatibility with Jama.</p>
|
---|
83 | * @return the diagonal elements of the Σ matrix
|
---|
84 | */
|
---|
85 | double[] getSingularValues();
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * Returns the matrix V of the decomposition.
|
---|
89 | * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
|
---|
90 | * @return the V matrix (or null if decomposed matrix is singular)
|
---|
91 | * @see #getVT()
|
---|
92 | */
|
---|
93 | RealMatrix getV();
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * Returns the transpose of the matrix V of the decomposition.
|
---|
97 | * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
|
---|
98 | * @return the V matrix (or null if decomposed matrix is singular)
|
---|
99 | * @see #getV()
|
---|
100 | */
|
---|
101 | RealMatrix getVT();
|
---|
102 |
|
---|
103 | /**
|
---|
104 | * Returns the n × n covariance matrix.
|
---|
105 | * <p>The covariance matrix is V × J × V<sup>T</sup>
|
---|
106 | * where J is the diagonal matrix of the inverse of the squares of
|
---|
107 | * the singular values.</p>
|
---|
108 | * @param minSingularValue value below which singular values are ignored
|
---|
109 | * (a 0 or negative value implies all singular value will be used)
|
---|
110 | * @return covariance matrix
|
---|
111 | * @exception IllegalArgumentException if minSingularValue is larger than
|
---|
112 | * the largest singular value, meaning all singular values are ignored
|
---|
113 | */
|
---|
114 | RealMatrix getCovariance(double minSingularValue) throws IllegalArgumentException;
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * Returns the L<sub>2</sub> norm of the matrix.
|
---|
118 | * <p>The L<sub>2</sub> norm is max(|A × u|<sub>2</sub> /
|
---|
119 | * |u|<sub>2</sub>), where |.|<sub>2</sub> denotes the vectorial 2-norm
|
---|
120 | * (i.e. the traditional euclidian norm).</p>
|
---|
121 | * @return norm
|
---|
122 | */
|
---|
123 | double getNorm();
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Return the condition number of the matrix.
|
---|
127 | * @return condition number of the matrix
|
---|
128 | */
|
---|
129 | double getConditionNumber();
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * Return the effective numerical matrix rank.
|
---|
133 | * <p>The effective numerical rank is the number of non-negligible
|
---|
134 | * singular values. The threshold used to identify non-negligible
|
---|
135 | * terms is max(m,n) × ulp(s<sub>1</sub>) where ulp(s<sub>1</sub>)
|
---|
136 | * is the least significant bit of the largest singular value.</p>
|
---|
137 | * @return effective numerical matrix rank
|
---|
138 | */
|
---|
139 | int getRank();
|
---|
140 |
|
---|
141 | /**
|
---|
142 | * Get a solver for finding the A × X = B solution in least square sense.
|
---|
143 | * @return a solver
|
---|
144 | */
|
---|
145 | DecompositionSolver getSolver();
|
---|
146 |
|
---|
147 | }
|
---|