source: src/main/java/agents/org/apache/commons/math/linear/QRDecompositionImpl.java

Last change on this file was 1, checked in by Wouter Pasman, 7 years ago

Initial import : Genius 9.0.0

File size: 16.2 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package agents.org.apache.commons.math.linear;
19
20import java.util.Arrays;
21
22import agents.org.apache.commons.math.MathRuntimeException;
23import agents.org.apache.commons.math.exception.util.LocalizedFormats;
24import agents.org.apache.commons.math.util.FastMath;
25
26
27/**
28 * Calculates the QR-decomposition of a matrix.
29 * <p>The QR-decomposition of a matrix A consists of two matrices Q and R
30 * that satisfy: A = QR, Q is orthogonal (Q<sup>T</sup>Q = I), and R is
31 * upper triangular. If A is m&times;n, Q is m&times;m and R m&times;n.</p>
32 * <p>This class compute the decomposition using Householder reflectors.</p>
33 * <p>For efficiency purposes, the decomposition in packed form is transposed.
34 * This allows inner loop to iterate inside rows, which is much more cache-efficient
35 * in Java.</p>
36 *
37 * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
38 * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
39 *
40 * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
41 * @since 1.2
42 */
43public class QRDecompositionImpl implements QRDecomposition {
44
45 /**
46 * A packed TRANSPOSED representation of the QR decomposition.
47 * <p>The elements BELOW the diagonal are the elements of the UPPER triangular
48 * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
49 * from which an explicit form of Q can be recomputed if desired.</p>
50 */
51 private double[][] qrt;
52
53 /** The diagonal elements of R. */
54 private double[] rDiag;
55
56 /** Cached value of Q. */
57 private RealMatrix cachedQ;
58
59 /** Cached value of QT. */
60 private RealMatrix cachedQT;
61
62 /** Cached value of R. */
63 private RealMatrix cachedR;
64
65 /** Cached value of H. */
66 private RealMatrix cachedH;
67
68 /**
69 * Calculates the QR-decomposition of the given matrix.
70 * @param matrix The matrix to decompose.
71 */
72 public QRDecompositionImpl(RealMatrix matrix) {
73
74 final int m = matrix.getRowDimension();
75 final int n = matrix.getColumnDimension();
76 qrt = matrix.transpose().getData();
77 rDiag = new double[FastMath.min(m, n)];
78 cachedQ = null;
79 cachedQT = null;
80 cachedR = null;
81 cachedH = null;
82
83 /*
84 * The QR decomposition of a matrix A is calculated using Householder
85 * reflectors by repeating the following operations to each minor
86 * A(minor,minor) of A:
87 */
88 for (int minor = 0; minor < FastMath.min(m, n); minor++) {
89
90 final double[] qrtMinor = qrt[minor];
91
92 /*
93 * Let x be the first column of the minor, and a^2 = |x|^2.
94 * x will be in the positions qr[minor][minor] through qr[m][minor].
95 * The first column of the transformed minor will be (a,0,0,..)'
96 * The sign of a is chosen to be opposite to the sign of the first
97 * component of x. Let's find a:
98 */
99 double xNormSqr = 0;
100 for (int row = minor; row < m; row++) {
101 final double c = qrtMinor[row];
102 xNormSqr += c * c;
103 }
104 final double a = (qrtMinor[minor] > 0) ? -FastMath.sqrt(xNormSqr) : FastMath.sqrt(xNormSqr);
105 rDiag[minor] = a;
106
107 if (a != 0.0) {
108
109 /*
110 * Calculate the normalized reflection vector v and transform
111 * the first column. We know the norm of v beforehand: v = x-ae
112 * so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> =
113 * a^2+a^2-2a<x,e> = 2a*(a - <x,e>).
114 * Here <x, e> is now qr[minor][minor].
115 * v = x-ae is stored in the column at qr:
116 */
117 qrtMinor[minor] -= a; // now |v|^2 = -2a*(qr[minor][minor])
118
119 /*
120 * Transform the rest of the columns of the minor:
121 * They will be transformed by the matrix H = I-2vv'/|v|^2.
122 * If x is a column vector of the minor, then
123 * Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v.
124 * Therefore the transformation is easily calculated by
125 * subtracting the column vector (2<x,v>/|v|^2)v from x.
126 *
127 * Let 2<x,v>/|v|^2 = alpha. From above we have
128 * |v|^2 = -2a*(qr[minor][minor]), so
129 * alpha = -<x,v>/(a*qr[minor][minor])
130 */
131 for (int col = minor+1; col < n; col++) {
132 final double[] qrtCol = qrt[col];
133 double alpha = 0;
134 for (int row = minor; row < m; row++) {
135 alpha -= qrtCol[row] * qrtMinor[row];
136 }
137 alpha /= a * qrtMinor[minor];
138
139 // Subtract the column vector alpha*v from x.
140 for (int row = minor; row < m; row++) {
141 qrtCol[row] -= alpha * qrtMinor[row];
142 }
143 }
144 }
145 }
146 }
147
148 /** {@inheritDoc} */
149 public RealMatrix getR() {
150
151 if (cachedR == null) {
152
153 // R is supposed to be m x n
154 final int n = qrt.length;
155 final int m = qrt[0].length;
156 cachedR = MatrixUtils.createRealMatrix(m, n);
157
158 // copy the diagonal from rDiag and the upper triangle of qr
159 for (int row = FastMath.min(m, n) - 1; row >= 0; row--) {
160 cachedR.setEntry(row, row, rDiag[row]);
161 for (int col = row + 1; col < n; col++) {
162 cachedR.setEntry(row, col, qrt[col][row]);
163 }
164 }
165
166 }
167
168 // return the cached matrix
169 return cachedR;
170
171 }
172
173 /** {@inheritDoc} */
174 public RealMatrix getQ() {
175 if (cachedQ == null) {
176 cachedQ = getQT().transpose();
177 }
178 return cachedQ;
179 }
180
181 /** {@inheritDoc} */
182 public RealMatrix getQT() {
183
184 if (cachedQT == null) {
185
186 // QT is supposed to be m x m
187 final int n = qrt.length;
188 final int m = qrt[0].length;
189 cachedQT = MatrixUtils.createRealMatrix(m, m);
190
191 /*
192 * Q = Q1 Q2 ... Q_m, so Q is formed by first constructing Q_m and then
193 * applying the Householder transformations Q_(m-1),Q_(m-2),...,Q1 in
194 * succession to the result
195 */
196 for (int minor = m - 1; minor >= FastMath.min(m, n); minor--) {
197 cachedQT.setEntry(minor, minor, 1.0);
198 }
199
200 for (int minor = FastMath.min(m, n)-1; minor >= 0; minor--){
201 final double[] qrtMinor = qrt[minor];
202 cachedQT.setEntry(minor, minor, 1.0);
203 if (qrtMinor[minor] != 0.0) {
204 for (int col = minor; col < m; col++) {
205 double alpha = 0;
206 for (int row = minor; row < m; row++) {
207 alpha -= cachedQT.getEntry(col, row) * qrtMinor[row];
208 }
209 alpha /= rDiag[minor] * qrtMinor[minor];
210
211 for (int row = minor; row < m; row++) {
212 cachedQT.addToEntry(col, row, -alpha * qrtMinor[row]);
213 }
214 }
215 }
216 }
217
218 }
219
220 // return the cached matrix
221 return cachedQT;
222
223 }
224
225 /** {@inheritDoc} */
226 public RealMatrix getH() {
227
228 if (cachedH == null) {
229
230 final int n = qrt.length;
231 final int m = qrt[0].length;
232 cachedH = MatrixUtils.createRealMatrix(m, n);
233 for (int i = 0; i < m; ++i) {
234 for (int j = 0; j < FastMath.min(i + 1, n); ++j) {
235 cachedH.setEntry(i, j, qrt[j][i] / -rDiag[j]);
236 }
237 }
238
239 }
240
241 // return the cached matrix
242 return cachedH;
243
244 }
245
246 /** {@inheritDoc} */
247 public DecompositionSolver getSolver() {
248 return new Solver(qrt, rDiag);
249 }
250
251 /** Specialized solver. */
252 private static class Solver implements DecompositionSolver {
253
254 /**
255 * A packed TRANSPOSED representation of the QR decomposition.
256 * <p>The elements BELOW the diagonal are the elements of the UPPER triangular
257 * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
258 * from which an explicit form of Q can be recomputed if desired.</p>
259 */
260 private final double[][] qrt;
261
262 /** The diagonal elements of R. */
263 private final double[] rDiag;
264
265 /**
266 * Build a solver from decomposed matrix.
267 * @param qrt packed TRANSPOSED representation of the QR decomposition
268 * @param rDiag diagonal elements of R
269 */
270 private Solver(final double[][] qrt, final double[] rDiag) {
271 this.qrt = qrt;
272 this.rDiag = rDiag;
273 }
274
275 /** {@inheritDoc} */
276 public boolean isNonSingular() {
277
278 for (double diag : rDiag) {
279 if (diag == 0) {
280 return false;
281 }
282 }
283 return true;
284
285 }
286
287 /** {@inheritDoc} */
288 public double[] solve(double[] b)
289 throws IllegalArgumentException, InvalidMatrixException {
290
291 final int n = qrt.length;
292 final int m = qrt[0].length;
293 if (b.length != m) {
294 throw MathRuntimeException.createIllegalArgumentException(
295 LocalizedFormats.VECTOR_LENGTH_MISMATCH,
296 b.length, m);
297 }
298 if (!isNonSingular()) {
299 throw new SingularMatrixException();
300 }
301
302 final double[] x = new double[n];
303 final double[] y = b.clone();
304
305 // apply Householder transforms to solve Q.y = b
306 for (int minor = 0; minor < FastMath.min(m, n); minor++) {
307
308 final double[] qrtMinor = qrt[minor];
309 double dotProduct = 0;
310 for (int row = minor; row < m; row++) {
311 dotProduct += y[row] * qrtMinor[row];
312 }
313 dotProduct /= rDiag[minor] * qrtMinor[minor];
314
315 for (int row = minor; row < m; row++) {
316 y[row] += dotProduct * qrtMinor[row];
317 }
318
319 }
320
321 // solve triangular system R.x = y
322 for (int row = rDiag.length - 1; row >= 0; --row) {
323 y[row] /= rDiag[row];
324 final double yRow = y[row];
325 final double[] qrtRow = qrt[row];
326 x[row] = yRow;
327 for (int i = 0; i < row; i++) {
328 y[i] -= yRow * qrtRow[i];
329 }
330 }
331
332 return x;
333
334 }
335
336 /** {@inheritDoc} */
337 public RealVector solve(RealVector b)
338 throws IllegalArgumentException, InvalidMatrixException {
339 try {
340 return solve((ArrayRealVector) b);
341 } catch (ClassCastException cce) {
342 return new ArrayRealVector(solve(b.getData()), false);
343 }
344 }
345
346 /** Solve the linear equation A &times; X = B.
347 * <p>The A matrix is implicit here. It is </p>
348 * @param b right-hand side of the equation A &times; X = B
349 * @return a vector X that minimizes the two norm of A &times; X - B
350 * @throws IllegalArgumentException if matrices dimensions don't match
351 * @throws InvalidMatrixException if decomposed matrix is singular
352 */
353 public ArrayRealVector solve(ArrayRealVector b)
354 throws IllegalArgumentException, InvalidMatrixException {
355 return new ArrayRealVector(solve(b.getDataRef()), false);
356 }
357
358 /** {@inheritDoc} */
359 public RealMatrix solve(RealMatrix b)
360 throws IllegalArgumentException, InvalidMatrixException {
361
362 final int n = qrt.length;
363 final int m = qrt[0].length;
364 if (b.getRowDimension() != m) {
365 throw MathRuntimeException.createIllegalArgumentException(
366 LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
367 b.getRowDimension(), b.getColumnDimension(), m, "n");
368 }
369 if (!isNonSingular()) {
370 throw new SingularMatrixException();
371 }
372
373 final int columns = b.getColumnDimension();
374 final int blockSize = BlockRealMatrix.BLOCK_SIZE;
375 final int cBlocks = (columns + blockSize - 1) / blockSize;
376 final double[][] xBlocks = BlockRealMatrix.createBlocksLayout(n, columns);
377 final double[][] y = new double[b.getRowDimension()][blockSize];
378 final double[] alpha = new double[blockSize];
379
380 for (int kBlock = 0; kBlock < cBlocks; ++kBlock) {
381 final int kStart = kBlock * blockSize;
382 final int kEnd = FastMath.min(kStart + blockSize, columns);
383 final int kWidth = kEnd - kStart;
384
385 // get the right hand side vector
386 b.copySubMatrix(0, m - 1, kStart, kEnd - 1, y);
387
388 // apply Householder transforms to solve Q.y = b
389 for (int minor = 0; minor < FastMath.min(m, n); minor++) {
390 final double[] qrtMinor = qrt[minor];
391 final double factor = 1.0 / (rDiag[minor] * qrtMinor[minor]);
392
393 Arrays.fill(alpha, 0, kWidth, 0.0);
394 for (int row = minor; row < m; ++row) {
395 final double d = qrtMinor[row];
396 final double[] yRow = y[row];
397 for (int k = 0; k < kWidth; ++k) {
398 alpha[k] += d * yRow[k];
399 }
400 }
401 for (int k = 0; k < kWidth; ++k) {
402 alpha[k] *= factor;
403 }
404
405 for (int row = minor; row < m; ++row) {
406 final double d = qrtMinor[row];
407 final double[] yRow = y[row];
408 for (int k = 0; k < kWidth; ++k) {
409 yRow[k] += alpha[k] * d;
410 }
411 }
412
413 }
414
415 // solve triangular system R.x = y
416 for (int j = rDiag.length - 1; j >= 0; --j) {
417 final int jBlock = j / blockSize;
418 final int jStart = jBlock * blockSize;
419 final double factor = 1.0 / rDiag[j];
420 final double[] yJ = y[j];
421 final double[] xBlock = xBlocks[jBlock * cBlocks + kBlock];
422 int index = (j - jStart) * kWidth;
423 for (int k = 0; k < kWidth; ++k) {
424 yJ[k] *= factor;
425 xBlock[index++] = yJ[k];
426 }
427
428 final double[] qrtJ = qrt[j];
429 for (int i = 0; i < j; ++i) {
430 final double rIJ = qrtJ[i];
431 final double[] yI = y[i];
432 for (int k = 0; k < kWidth; ++k) {
433 yI[k] -= yJ[k] * rIJ;
434 }
435 }
436
437 }
438
439 }
440
441 return new BlockRealMatrix(n, columns, xBlocks, false);
442
443 }
444
445 /** {@inheritDoc} */
446 public RealMatrix getInverse()
447 throws InvalidMatrixException {
448 return solve(MatrixUtils.createRealIdentityMatrix(rDiag.length));
449 }
450
451 }
452
453}
Note: See TracBrowser for help on using the repository browser.