1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.linear;
|
---|
19 |
|
---|
20 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
21 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
22 | import agents.org.apache.commons.math.util.FastMath;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * Calculates the LUP-decomposition of a square matrix.
|
---|
26 | * <p>The LUP-decomposition of a matrix A consists of three matrices
|
---|
27 | * L, U and P that satisfy: PA = LU, L is lower triangular, and U is
|
---|
28 | * upper triangular and P is a permutation matrix. All matrices are
|
---|
29 | * m×m.</p>
|
---|
30 | * <p>As shown by the presence of the P matrix, this decomposition is
|
---|
31 | * implemented using partial pivoting.</p>
|
---|
32 | *
|
---|
33 | * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
|
---|
34 | * @since 2.0
|
---|
35 | */
|
---|
36 | public class LUDecompositionImpl implements LUDecomposition {
|
---|
37 |
|
---|
38 | /** Default bound to determine effective singularity in LU decomposition */
|
---|
39 | private static final double DEFAULT_TOO_SMALL = 10E-12;
|
---|
40 |
|
---|
41 | /** Entries of LU decomposition. */
|
---|
42 | private double lu[][];
|
---|
43 |
|
---|
44 | /** Pivot permutation associated with LU decomposition */
|
---|
45 | private int[] pivot;
|
---|
46 |
|
---|
47 | /** Parity of the permutation associated with the LU decomposition */
|
---|
48 | private boolean even;
|
---|
49 |
|
---|
50 | /** Singularity indicator. */
|
---|
51 | private boolean singular;
|
---|
52 |
|
---|
53 | /** Cached value of L. */
|
---|
54 | private RealMatrix cachedL;
|
---|
55 |
|
---|
56 | /** Cached value of U. */
|
---|
57 | private RealMatrix cachedU;
|
---|
58 |
|
---|
59 | /** Cached value of P. */
|
---|
60 | private RealMatrix cachedP;
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * Calculates the LU-decomposition of the given matrix.
|
---|
64 | * @param matrix The matrix to decompose.
|
---|
65 | * @exception InvalidMatrixException if matrix is not square
|
---|
66 | */
|
---|
67 | public LUDecompositionImpl(RealMatrix matrix)
|
---|
68 | throws InvalidMatrixException {
|
---|
69 | this(matrix, DEFAULT_TOO_SMALL);
|
---|
70 | }
|
---|
71 |
|
---|
72 | /**
|
---|
73 | * Calculates the LU-decomposition of the given matrix.
|
---|
74 | * @param matrix The matrix to decompose.
|
---|
75 | * @param singularityThreshold threshold (based on partial row norm)
|
---|
76 | * under which a matrix is considered singular
|
---|
77 | * @exception NonSquareMatrixException if matrix is not square
|
---|
78 | */
|
---|
79 | public LUDecompositionImpl(RealMatrix matrix, double singularityThreshold)
|
---|
80 | throws NonSquareMatrixException {
|
---|
81 |
|
---|
82 | if (!matrix.isSquare()) {
|
---|
83 | throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension());
|
---|
84 | }
|
---|
85 |
|
---|
86 | final int m = matrix.getColumnDimension();
|
---|
87 | lu = matrix.getData();
|
---|
88 | pivot = new int[m];
|
---|
89 | cachedL = null;
|
---|
90 | cachedU = null;
|
---|
91 | cachedP = null;
|
---|
92 |
|
---|
93 | // Initialize permutation array and parity
|
---|
94 | for (int row = 0; row < m; row++) {
|
---|
95 | pivot[row] = row;
|
---|
96 | }
|
---|
97 | even = true;
|
---|
98 | singular = false;
|
---|
99 |
|
---|
100 | // Loop over columns
|
---|
101 | for (int col = 0; col < m; col++) {
|
---|
102 |
|
---|
103 | double sum = 0;
|
---|
104 |
|
---|
105 | // upper
|
---|
106 | for (int row = 0; row < col; row++) {
|
---|
107 | final double[] luRow = lu[row];
|
---|
108 | sum = luRow[col];
|
---|
109 | for (int i = 0; i < row; i++) {
|
---|
110 | sum -= luRow[i] * lu[i][col];
|
---|
111 | }
|
---|
112 | luRow[col] = sum;
|
---|
113 | }
|
---|
114 |
|
---|
115 | // lower
|
---|
116 | int max = col; // permutation row
|
---|
117 | double largest = Double.NEGATIVE_INFINITY;
|
---|
118 | for (int row = col; row < m; row++) {
|
---|
119 | final double[] luRow = lu[row];
|
---|
120 | sum = luRow[col];
|
---|
121 | for (int i = 0; i < col; i++) {
|
---|
122 | sum -= luRow[i] * lu[i][col];
|
---|
123 | }
|
---|
124 | luRow[col] = sum;
|
---|
125 |
|
---|
126 | // maintain best permutation choice
|
---|
127 | if (FastMath.abs(sum) > largest) {
|
---|
128 | largest = FastMath.abs(sum);
|
---|
129 | max = row;
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | // Singularity check
|
---|
134 | if (FastMath.abs(lu[max][col]) < singularityThreshold) {
|
---|
135 | singular = true;
|
---|
136 | return;
|
---|
137 | }
|
---|
138 |
|
---|
139 | // Pivot if necessary
|
---|
140 | if (max != col) {
|
---|
141 | double tmp = 0;
|
---|
142 | final double[] luMax = lu[max];
|
---|
143 | final double[] luCol = lu[col];
|
---|
144 | for (int i = 0; i < m; i++) {
|
---|
145 | tmp = luMax[i];
|
---|
146 | luMax[i] = luCol[i];
|
---|
147 | luCol[i] = tmp;
|
---|
148 | }
|
---|
149 | int temp = pivot[max];
|
---|
150 | pivot[max] = pivot[col];
|
---|
151 | pivot[col] = temp;
|
---|
152 | even = !even;
|
---|
153 | }
|
---|
154 |
|
---|
155 | // Divide the lower elements by the "winning" diagonal elt.
|
---|
156 | final double luDiag = lu[col][col];
|
---|
157 | for (int row = col + 1; row < m; row++) {
|
---|
158 | lu[row][col] /= luDiag;
|
---|
159 | }
|
---|
160 | }
|
---|
161 |
|
---|
162 | }
|
---|
163 |
|
---|
164 | /** {@inheritDoc} */
|
---|
165 | public RealMatrix getL() {
|
---|
166 | if ((cachedL == null) && !singular) {
|
---|
167 | final int m = pivot.length;
|
---|
168 | cachedL = MatrixUtils.createRealMatrix(m, m);
|
---|
169 | for (int i = 0; i < m; ++i) {
|
---|
170 | final double[] luI = lu[i];
|
---|
171 | for (int j = 0; j < i; ++j) {
|
---|
172 | cachedL.setEntry(i, j, luI[j]);
|
---|
173 | }
|
---|
174 | cachedL.setEntry(i, i, 1.0);
|
---|
175 | }
|
---|
176 | }
|
---|
177 | return cachedL;
|
---|
178 | }
|
---|
179 |
|
---|
180 | /** {@inheritDoc} */
|
---|
181 | public RealMatrix getU() {
|
---|
182 | if ((cachedU == null) && !singular) {
|
---|
183 | final int m = pivot.length;
|
---|
184 | cachedU = MatrixUtils.createRealMatrix(m, m);
|
---|
185 | for (int i = 0; i < m; ++i) {
|
---|
186 | final double[] luI = lu[i];
|
---|
187 | for (int j = i; j < m; ++j) {
|
---|
188 | cachedU.setEntry(i, j, luI[j]);
|
---|
189 | }
|
---|
190 | }
|
---|
191 | }
|
---|
192 | return cachedU;
|
---|
193 | }
|
---|
194 |
|
---|
195 | /** {@inheritDoc} */
|
---|
196 | public RealMatrix getP() {
|
---|
197 | if ((cachedP == null) && !singular) {
|
---|
198 | final int m = pivot.length;
|
---|
199 | cachedP = MatrixUtils.createRealMatrix(m, m);
|
---|
200 | for (int i = 0; i < m; ++i) {
|
---|
201 | cachedP.setEntry(i, pivot[i], 1.0);
|
---|
202 | }
|
---|
203 | }
|
---|
204 | return cachedP;
|
---|
205 | }
|
---|
206 |
|
---|
207 | /** {@inheritDoc} */
|
---|
208 | public int[] getPivot() {
|
---|
209 | return pivot.clone();
|
---|
210 | }
|
---|
211 |
|
---|
212 | /** {@inheritDoc} */
|
---|
213 | public double getDeterminant() {
|
---|
214 | if (singular) {
|
---|
215 | return 0;
|
---|
216 | } else {
|
---|
217 | final int m = pivot.length;
|
---|
218 | double determinant = even ? 1 : -1;
|
---|
219 | for (int i = 0; i < m; i++) {
|
---|
220 | determinant *= lu[i][i];
|
---|
221 | }
|
---|
222 | return determinant;
|
---|
223 | }
|
---|
224 | }
|
---|
225 |
|
---|
226 | /** {@inheritDoc} */
|
---|
227 | public DecompositionSolver getSolver() {
|
---|
228 | return new Solver(lu, pivot, singular);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /** Specialized solver. */
|
---|
232 | private static class Solver implements DecompositionSolver {
|
---|
233 |
|
---|
234 | /** Entries of LU decomposition. */
|
---|
235 | private final double lu[][];
|
---|
236 |
|
---|
237 | /** Pivot permutation associated with LU decomposition. */
|
---|
238 | private final int[] pivot;
|
---|
239 |
|
---|
240 | /** Singularity indicator. */
|
---|
241 | private final boolean singular;
|
---|
242 |
|
---|
243 | /**
|
---|
244 | * Build a solver from decomposed matrix.
|
---|
245 | * @param lu entries of LU decomposition
|
---|
246 | * @param pivot pivot permutation associated with LU decomposition
|
---|
247 | * @param singular singularity indicator
|
---|
248 | */
|
---|
249 | private Solver(final double[][] lu, final int[] pivot, final boolean singular) {
|
---|
250 | this.lu = lu;
|
---|
251 | this.pivot = pivot;
|
---|
252 | this.singular = singular;
|
---|
253 | }
|
---|
254 |
|
---|
255 | /** {@inheritDoc} */
|
---|
256 | public boolean isNonSingular() {
|
---|
257 | return !singular;
|
---|
258 | }
|
---|
259 |
|
---|
260 | /** {@inheritDoc} */
|
---|
261 | public double[] solve(double[] b)
|
---|
262 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
263 |
|
---|
264 | final int m = pivot.length;
|
---|
265 | if (b.length != m) {
|
---|
266 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
267 | LocalizedFormats.VECTOR_LENGTH_MISMATCH, b.length, m);
|
---|
268 | }
|
---|
269 | if (singular) {
|
---|
270 | throw new SingularMatrixException();
|
---|
271 | }
|
---|
272 |
|
---|
273 | final double[] bp = new double[m];
|
---|
274 |
|
---|
275 | // Apply permutations to b
|
---|
276 | for (int row = 0; row < m; row++) {
|
---|
277 | bp[row] = b[pivot[row]];
|
---|
278 | }
|
---|
279 |
|
---|
280 | // Solve LY = b
|
---|
281 | for (int col = 0; col < m; col++) {
|
---|
282 | final double bpCol = bp[col];
|
---|
283 | for (int i = col + 1; i < m; i++) {
|
---|
284 | bp[i] -= bpCol * lu[i][col];
|
---|
285 | }
|
---|
286 | }
|
---|
287 |
|
---|
288 | // Solve UX = Y
|
---|
289 | for (int col = m - 1; col >= 0; col--) {
|
---|
290 | bp[col] /= lu[col][col];
|
---|
291 | final double bpCol = bp[col];
|
---|
292 | for (int i = 0; i < col; i++) {
|
---|
293 | bp[i] -= bpCol * lu[i][col];
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | return bp;
|
---|
298 |
|
---|
299 | }
|
---|
300 |
|
---|
301 | /** {@inheritDoc} */
|
---|
302 | public RealVector solve(RealVector b)
|
---|
303 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
304 | try {
|
---|
305 | return solve((ArrayRealVector) b);
|
---|
306 | } catch (ClassCastException cce) {
|
---|
307 |
|
---|
308 | final int m = pivot.length;
|
---|
309 | if (b.getDimension() != m) {
|
---|
310 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
311 | LocalizedFormats.VECTOR_LENGTH_MISMATCH, b.getDimension(), m);
|
---|
312 | }
|
---|
313 | if (singular) {
|
---|
314 | throw new SingularMatrixException();
|
---|
315 | }
|
---|
316 |
|
---|
317 | final double[] bp = new double[m];
|
---|
318 |
|
---|
319 | // Apply permutations to b
|
---|
320 | for (int row = 0; row < m; row++) {
|
---|
321 | bp[row] = b.getEntry(pivot[row]);
|
---|
322 | }
|
---|
323 |
|
---|
324 | // Solve LY = b
|
---|
325 | for (int col = 0; col < m; col++) {
|
---|
326 | final double bpCol = bp[col];
|
---|
327 | for (int i = col + 1; i < m; i++) {
|
---|
328 | bp[i] -= bpCol * lu[i][col];
|
---|
329 | }
|
---|
330 | }
|
---|
331 |
|
---|
332 | // Solve UX = Y
|
---|
333 | for (int col = m - 1; col >= 0; col--) {
|
---|
334 | bp[col] /= lu[col][col];
|
---|
335 | final double bpCol = bp[col];
|
---|
336 | for (int i = 0; i < col; i++) {
|
---|
337 | bp[i] -= bpCol * lu[i][col];
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 | return new ArrayRealVector(bp, false);
|
---|
342 |
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | /** Solve the linear equation A × X = B.
|
---|
347 | * <p>The A matrix is implicit here. It is </p>
|
---|
348 | * @param b right-hand side of the equation A × X = B
|
---|
349 | * @return a vector X such that A × X = B
|
---|
350 | * @exception IllegalArgumentException if matrices dimensions don't match
|
---|
351 | * @exception InvalidMatrixException if decomposed matrix is singular
|
---|
352 | */
|
---|
353 | public ArrayRealVector solve(ArrayRealVector b)
|
---|
354 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
355 | return new ArrayRealVector(solve(b.getDataRef()), false);
|
---|
356 | }
|
---|
357 |
|
---|
358 | /** {@inheritDoc} */
|
---|
359 | public RealMatrix solve(RealMatrix b)
|
---|
360 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
361 |
|
---|
362 | final int m = pivot.length;
|
---|
363 | if (b.getRowDimension() != m) {
|
---|
364 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
365 | LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
|
---|
366 | b.getRowDimension(), b.getColumnDimension(), m, "n");
|
---|
367 | }
|
---|
368 | if (singular) {
|
---|
369 | throw new SingularMatrixException();
|
---|
370 | }
|
---|
371 |
|
---|
372 | final int nColB = b.getColumnDimension();
|
---|
373 |
|
---|
374 | // Apply permutations to b
|
---|
375 | final double[][] bp = new double[m][nColB];
|
---|
376 | for (int row = 0; row < m; row++) {
|
---|
377 | final double[] bpRow = bp[row];
|
---|
378 | final int pRow = pivot[row];
|
---|
379 | for (int col = 0; col < nColB; col++) {
|
---|
380 | bpRow[col] = b.getEntry(pRow, col);
|
---|
381 | }
|
---|
382 | }
|
---|
383 |
|
---|
384 | // Solve LY = b
|
---|
385 | for (int col = 0; col < m; col++) {
|
---|
386 | final double[] bpCol = bp[col];
|
---|
387 | for (int i = col + 1; i < m; i++) {
|
---|
388 | final double[] bpI = bp[i];
|
---|
389 | final double luICol = lu[i][col];
|
---|
390 | for (int j = 0; j < nColB; j++) {
|
---|
391 | bpI[j] -= bpCol[j] * luICol;
|
---|
392 | }
|
---|
393 | }
|
---|
394 | }
|
---|
395 |
|
---|
396 | // Solve UX = Y
|
---|
397 | for (int col = m - 1; col >= 0; col--) {
|
---|
398 | final double[] bpCol = bp[col];
|
---|
399 | final double luDiag = lu[col][col];
|
---|
400 | for (int j = 0; j < nColB; j++) {
|
---|
401 | bpCol[j] /= luDiag;
|
---|
402 | }
|
---|
403 | for (int i = 0; i < col; i++) {
|
---|
404 | final double[] bpI = bp[i];
|
---|
405 | final double luICol = lu[i][col];
|
---|
406 | for (int j = 0; j < nColB; j++) {
|
---|
407 | bpI[j] -= bpCol[j] * luICol;
|
---|
408 | }
|
---|
409 | }
|
---|
410 | }
|
---|
411 |
|
---|
412 | return new Array2DRowRealMatrix(bp, false);
|
---|
413 |
|
---|
414 | }
|
---|
415 |
|
---|
416 | /** {@inheritDoc} */
|
---|
417 | public RealMatrix getInverse() throws InvalidMatrixException {
|
---|
418 | return solve(MatrixUtils.createRealIdentityMatrix(pivot.length));
|
---|
419 | }
|
---|
420 |
|
---|
421 | }
|
---|
422 |
|
---|
423 | }
|
---|