1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.linear;
|
---|
19 |
|
---|
20 | import java.lang.reflect.Array;
|
---|
21 |
|
---|
22 | import agents.org.apache.commons.math.Field;
|
---|
23 | import agents.org.apache.commons.math.FieldElement;
|
---|
24 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
25 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * Calculates the LUP-decomposition of a square matrix.
|
---|
29 | * <p>The LUP-decomposition of a matrix A consists of three matrices
|
---|
30 | * L, U and P that satisfy: PA = LU, L is lower triangular, and U is
|
---|
31 | * upper triangular and P is a permutation matrix. All matrices are
|
---|
32 | * m×m.</p>
|
---|
33 | * <p>Since {@link FieldElement field elements} do not provide an ordering
|
---|
34 | * operator, the permutation matrix is computed here only in order to avoid
|
---|
35 | * a zero pivot element, no attempt is done to get the largest pivot element.</p>
|
---|
36 | *
|
---|
37 | * @param <T> the type of the field elements
|
---|
38 | * @version $Revision: 983921 $ $Date: 2010-08-10 12:46:06 +0200 (mar. 10 août 2010) $
|
---|
39 | * @since 2.0
|
---|
40 | */
|
---|
41 | public class FieldLUDecompositionImpl<T extends FieldElement<T>> implements FieldLUDecomposition<T> {
|
---|
42 |
|
---|
43 | /** Field to which the elements belong. */
|
---|
44 | private final Field<T> field;
|
---|
45 |
|
---|
46 | /** Entries of LU decomposition. */
|
---|
47 | private T lu[][];
|
---|
48 |
|
---|
49 | /** Pivot permutation associated with LU decomposition */
|
---|
50 | private int[] pivot;
|
---|
51 |
|
---|
52 | /** Parity of the permutation associated with the LU decomposition */
|
---|
53 | private boolean even;
|
---|
54 |
|
---|
55 | /** Singularity indicator. */
|
---|
56 | private boolean singular;
|
---|
57 |
|
---|
58 | /** Cached value of L. */
|
---|
59 | private FieldMatrix<T> cachedL;
|
---|
60 |
|
---|
61 | /** Cached value of U. */
|
---|
62 | private FieldMatrix<T> cachedU;
|
---|
63 |
|
---|
64 | /** Cached value of P. */
|
---|
65 | private FieldMatrix<T> cachedP;
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Calculates the LU-decomposition of the given matrix.
|
---|
69 | * @param matrix The matrix to decompose.
|
---|
70 | * @exception NonSquareMatrixException if matrix is not square
|
---|
71 | */
|
---|
72 | public FieldLUDecompositionImpl(FieldMatrix<T> matrix)
|
---|
73 | throws NonSquareMatrixException {
|
---|
74 |
|
---|
75 | if (!matrix.isSquare()) {
|
---|
76 | throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension());
|
---|
77 | }
|
---|
78 |
|
---|
79 | final int m = matrix.getColumnDimension();
|
---|
80 | field = matrix.getField();
|
---|
81 | lu = matrix.getData();
|
---|
82 | pivot = new int[m];
|
---|
83 | cachedL = null;
|
---|
84 | cachedU = null;
|
---|
85 | cachedP = null;
|
---|
86 |
|
---|
87 | // Initialize permutation array and parity
|
---|
88 | for (int row = 0; row < m; row++) {
|
---|
89 | pivot[row] = row;
|
---|
90 | }
|
---|
91 | even = true;
|
---|
92 | singular = false;
|
---|
93 |
|
---|
94 | // Loop over columns
|
---|
95 | for (int col = 0; col < m; col++) {
|
---|
96 |
|
---|
97 | T sum = field.getZero();
|
---|
98 |
|
---|
99 | // upper
|
---|
100 | for (int row = 0; row < col; row++) {
|
---|
101 | final T[] luRow = lu[row];
|
---|
102 | sum = luRow[col];
|
---|
103 | for (int i = 0; i < row; i++) {
|
---|
104 | sum = sum.subtract(luRow[i].multiply(lu[i][col]));
|
---|
105 | }
|
---|
106 | luRow[col] = sum;
|
---|
107 | }
|
---|
108 |
|
---|
109 | // lower
|
---|
110 | int nonZero = col; // permutation row
|
---|
111 | for (int row = col; row < m; row++) {
|
---|
112 | final T[] luRow = lu[row];
|
---|
113 | sum = luRow[col];
|
---|
114 | for (int i = 0; i < col; i++) {
|
---|
115 | sum = sum.subtract(luRow[i].multiply(lu[i][col]));
|
---|
116 | }
|
---|
117 | luRow[col] = sum;
|
---|
118 |
|
---|
119 | if (lu[nonZero][col].equals(field.getZero())) {
|
---|
120 | // try to select a better permutation choice
|
---|
121 | ++nonZero;
|
---|
122 | }
|
---|
123 | }
|
---|
124 |
|
---|
125 | // Singularity check
|
---|
126 | if (nonZero >= m) {
|
---|
127 | singular = true;
|
---|
128 | return;
|
---|
129 | }
|
---|
130 |
|
---|
131 | // Pivot if necessary
|
---|
132 | if (nonZero != col) {
|
---|
133 | T tmp = field.getZero();
|
---|
134 | for (int i = 0; i < m; i++) {
|
---|
135 | tmp = lu[nonZero][i];
|
---|
136 | lu[nonZero][i] = lu[col][i];
|
---|
137 | lu[col][i] = tmp;
|
---|
138 | }
|
---|
139 | int temp = pivot[nonZero];
|
---|
140 | pivot[nonZero] = pivot[col];
|
---|
141 | pivot[col] = temp;
|
---|
142 | even = !even;
|
---|
143 | }
|
---|
144 |
|
---|
145 | // Divide the lower elements by the "winning" diagonal elt.
|
---|
146 | final T luDiag = lu[col][col];
|
---|
147 | for (int row = col + 1; row < m; row++) {
|
---|
148 | final T[] luRow = lu[row];
|
---|
149 | luRow[col] = luRow[col].divide(luDiag);
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | }
|
---|
154 |
|
---|
155 | /** {@inheritDoc} */
|
---|
156 | public FieldMatrix<T> getL() {
|
---|
157 | if ((cachedL == null) && !singular) {
|
---|
158 | final int m = pivot.length;
|
---|
159 | cachedL = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
160 | for (int i = 0; i < m; ++i) {
|
---|
161 | final T[] luI = lu[i];
|
---|
162 | for (int j = 0; j < i; ++j) {
|
---|
163 | cachedL.setEntry(i, j, luI[j]);
|
---|
164 | }
|
---|
165 | cachedL.setEntry(i, i, field.getOne());
|
---|
166 | }
|
---|
167 | }
|
---|
168 | return cachedL;
|
---|
169 | }
|
---|
170 |
|
---|
171 | /** {@inheritDoc} */
|
---|
172 | public FieldMatrix<T> getU() {
|
---|
173 | if ((cachedU == null) && !singular) {
|
---|
174 | final int m = pivot.length;
|
---|
175 | cachedU = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
176 | for (int i = 0; i < m; ++i) {
|
---|
177 | final T[] luI = lu[i];
|
---|
178 | for (int j = i; j < m; ++j) {
|
---|
179 | cachedU.setEntry(i, j, luI[j]);
|
---|
180 | }
|
---|
181 | }
|
---|
182 | }
|
---|
183 | return cachedU;
|
---|
184 | }
|
---|
185 |
|
---|
186 | /** {@inheritDoc} */
|
---|
187 | public FieldMatrix<T> getP() {
|
---|
188 | if ((cachedP == null) && !singular) {
|
---|
189 | final int m = pivot.length;
|
---|
190 | cachedP = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
191 | for (int i = 0; i < m; ++i) {
|
---|
192 | cachedP.setEntry(i, pivot[i], field.getOne());
|
---|
193 | }
|
---|
194 | }
|
---|
195 | return cachedP;
|
---|
196 | }
|
---|
197 |
|
---|
198 | /** {@inheritDoc} */
|
---|
199 | public int[] getPivot() {
|
---|
200 | return pivot.clone();
|
---|
201 | }
|
---|
202 |
|
---|
203 | /** {@inheritDoc} */
|
---|
204 | public T getDeterminant() {
|
---|
205 | if (singular) {
|
---|
206 | return field.getZero();
|
---|
207 | } else {
|
---|
208 | final int m = pivot.length;
|
---|
209 | T determinant = even ? field.getOne() : field.getZero().subtract(field.getOne());
|
---|
210 | for (int i = 0; i < m; i++) {
|
---|
211 | determinant = determinant.multiply(lu[i][i]);
|
---|
212 | }
|
---|
213 | return determinant;
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 | /** {@inheritDoc} */
|
---|
218 | public FieldDecompositionSolver<T> getSolver() {
|
---|
219 | return new Solver<T>(field, lu, pivot, singular);
|
---|
220 | }
|
---|
221 |
|
---|
222 | /** Specialized solver. */
|
---|
223 | private static class Solver<T extends FieldElement<T>> implements FieldDecompositionSolver<T> {
|
---|
224 |
|
---|
225 | /** Serializable version identifier. */
|
---|
226 | private static final long serialVersionUID = -6353105415121373022L;
|
---|
227 |
|
---|
228 | /** Field to which the elements belong. */
|
---|
229 | private final Field<T> field;
|
---|
230 |
|
---|
231 | /** Entries of LU decomposition. */
|
---|
232 | private final T lu[][];
|
---|
233 |
|
---|
234 | /** Pivot permutation associated with LU decomposition. */
|
---|
235 | private final int[] pivot;
|
---|
236 |
|
---|
237 | /** Singularity indicator. */
|
---|
238 | private final boolean singular;
|
---|
239 |
|
---|
240 | /**
|
---|
241 | * Build a solver from decomposed matrix.
|
---|
242 | * @param field field to which the matrix elements belong
|
---|
243 | * @param lu entries of LU decomposition
|
---|
244 | * @param pivot pivot permutation associated with LU decomposition
|
---|
245 | * @param singular singularity indicator
|
---|
246 | */
|
---|
247 | private Solver(final Field<T> field, final T[][] lu,
|
---|
248 | final int[] pivot, final boolean singular) {
|
---|
249 | this.field = field;
|
---|
250 | this.lu = lu;
|
---|
251 | this.pivot = pivot;
|
---|
252 | this.singular = singular;
|
---|
253 | }
|
---|
254 |
|
---|
255 | /** {@inheritDoc} */
|
---|
256 | public boolean isNonSingular() {
|
---|
257 | return !singular;
|
---|
258 | }
|
---|
259 |
|
---|
260 | /** {@inheritDoc} */
|
---|
261 | public T[] solve(T[] b)
|
---|
262 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
263 |
|
---|
264 | final int m = pivot.length;
|
---|
265 | if (b.length != m) {
|
---|
266 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
267 | LocalizedFormats.VECTOR_LENGTH_MISMATCH,
|
---|
268 | b.length, m);
|
---|
269 | }
|
---|
270 | if (singular) {
|
---|
271 | throw new SingularMatrixException();
|
---|
272 | }
|
---|
273 |
|
---|
274 | @SuppressWarnings("unchecked") // field is of type T
|
---|
275 | final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(), m);
|
---|
276 |
|
---|
277 | // Apply permutations to b
|
---|
278 | for (int row = 0; row < m; row++) {
|
---|
279 | bp[row] = b[pivot[row]];
|
---|
280 | }
|
---|
281 |
|
---|
282 | // Solve LY = b
|
---|
283 | for (int col = 0; col < m; col++) {
|
---|
284 | final T bpCol = bp[col];
|
---|
285 | for (int i = col + 1; i < m; i++) {
|
---|
286 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
287 | }
|
---|
288 | }
|
---|
289 |
|
---|
290 | // Solve UX = Y
|
---|
291 | for (int col = m - 1; col >= 0; col--) {
|
---|
292 | bp[col] = bp[col].divide(lu[col][col]);
|
---|
293 | final T bpCol = bp[col];
|
---|
294 | for (int i = 0; i < col; i++) {
|
---|
295 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
296 | }
|
---|
297 | }
|
---|
298 |
|
---|
299 | return bp;
|
---|
300 |
|
---|
301 | }
|
---|
302 |
|
---|
303 | /** {@inheritDoc} */
|
---|
304 | public FieldVector<T> solve(FieldVector<T> b)
|
---|
305 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
306 | try {
|
---|
307 | return solve((ArrayFieldVector<T>) b);
|
---|
308 | } catch (ClassCastException cce) {
|
---|
309 |
|
---|
310 | final int m = pivot.length;
|
---|
311 | if (b.getDimension() != m) {
|
---|
312 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
313 | LocalizedFormats.VECTOR_LENGTH_MISMATCH,
|
---|
314 | b.getDimension(), m);
|
---|
315 | }
|
---|
316 | if (singular) {
|
---|
317 | throw new SingularMatrixException();
|
---|
318 | }
|
---|
319 |
|
---|
320 | @SuppressWarnings("unchecked") // field is of type T
|
---|
321 | final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(), m);
|
---|
322 |
|
---|
323 | // Apply permutations to b
|
---|
324 | for (int row = 0; row < m; row++) {
|
---|
325 | bp[row] = b.getEntry(pivot[row]);
|
---|
326 | }
|
---|
327 |
|
---|
328 | // Solve LY = b
|
---|
329 | for (int col = 0; col < m; col++) {
|
---|
330 | final T bpCol = bp[col];
|
---|
331 | for (int i = col + 1; i < m; i++) {
|
---|
332 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
333 | }
|
---|
334 | }
|
---|
335 |
|
---|
336 | // Solve UX = Y
|
---|
337 | for (int col = m - 1; col >= 0; col--) {
|
---|
338 | bp[col] = bp[col].divide(lu[col][col]);
|
---|
339 | final T bpCol = bp[col];
|
---|
340 | for (int i = 0; i < col; i++) {
|
---|
341 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | return new ArrayFieldVector<T>(bp, false);
|
---|
346 |
|
---|
347 | }
|
---|
348 | }
|
---|
349 |
|
---|
350 | /** Solve the linear equation A × X = B.
|
---|
351 | * <p>The A matrix is implicit here. It is </p>
|
---|
352 | * @param b right-hand side of the equation A × X = B
|
---|
353 | * @return a vector X such that A × X = B
|
---|
354 | * @exception IllegalArgumentException if matrices dimensions don't match
|
---|
355 | * @exception InvalidMatrixException if decomposed matrix is singular
|
---|
356 | */
|
---|
357 | public ArrayFieldVector<T> solve(ArrayFieldVector<T> b)
|
---|
358 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
359 | return new ArrayFieldVector<T>(solve(b.getDataRef()), false);
|
---|
360 | }
|
---|
361 |
|
---|
362 | /** {@inheritDoc} */
|
---|
363 | public FieldMatrix<T> solve(FieldMatrix<T> b)
|
---|
364 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
365 |
|
---|
366 | final int m = pivot.length;
|
---|
367 | if (b.getRowDimension() != m) {
|
---|
368 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
369 | LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
|
---|
370 | b.getRowDimension(), b.getColumnDimension(), m, "n");
|
---|
371 | }
|
---|
372 | if (singular) {
|
---|
373 | throw new SingularMatrixException();
|
---|
374 | }
|
---|
375 |
|
---|
376 | final int nColB = b.getColumnDimension();
|
---|
377 |
|
---|
378 | // Apply permutations to b
|
---|
379 | @SuppressWarnings("unchecked") // field is of type T
|
---|
380 | final T[][] bp = (T[][]) Array.newInstance(field.getZero().getClass(), new int[] { m, nColB });
|
---|
381 | for (int row = 0; row < m; row++) {
|
---|
382 | final T[] bpRow = bp[row];
|
---|
383 | final int pRow = pivot[row];
|
---|
384 | for (int col = 0; col < nColB; col++) {
|
---|
385 | bpRow[col] = b.getEntry(pRow, col);
|
---|
386 | }
|
---|
387 | }
|
---|
388 |
|
---|
389 | // Solve LY = b
|
---|
390 | for (int col = 0; col < m; col++) {
|
---|
391 | final T[] bpCol = bp[col];
|
---|
392 | for (int i = col + 1; i < m; i++) {
|
---|
393 | final T[] bpI = bp[i];
|
---|
394 | final T luICol = lu[i][col];
|
---|
395 | for (int j = 0; j < nColB; j++) {
|
---|
396 | bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
|
---|
397 | }
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 | // Solve UX = Y
|
---|
402 | for (int col = m - 1; col >= 0; col--) {
|
---|
403 | final T[] bpCol = bp[col];
|
---|
404 | final T luDiag = lu[col][col];
|
---|
405 | for (int j = 0; j < nColB; j++) {
|
---|
406 | bpCol[j] = bpCol[j].divide(luDiag);
|
---|
407 | }
|
---|
408 | for (int i = 0; i < col; i++) {
|
---|
409 | final T[] bpI = bp[i];
|
---|
410 | final T luICol = lu[i][col];
|
---|
411 | for (int j = 0; j < nColB; j++) {
|
---|
412 | bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
|
---|
413 | }
|
---|
414 | }
|
---|
415 | }
|
---|
416 |
|
---|
417 | return new Array2DRowFieldMatrix<T>(bp, false);
|
---|
418 |
|
---|
419 | }
|
---|
420 |
|
---|
421 | /** {@inheritDoc} */
|
---|
422 | public FieldMatrix<T> getInverse() throws InvalidMatrixException {
|
---|
423 | final int m = pivot.length;
|
---|
424 | final T one = field.getOne();
|
---|
425 | FieldMatrix<T> identity = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
426 | for (int i = 0; i < m; ++i) {
|
---|
427 | identity.setEntry(i, i, one);
|
---|
428 | }
|
---|
429 | return solve(identity);
|
---|
430 | }
|
---|
431 |
|
---|
432 | }
|
---|
433 |
|
---|
434 | }
|
---|