1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.linear;
|
---|
19 |
|
---|
20 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
21 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
22 | import agents.org.apache.commons.math.util.FastMath;
|
---|
23 |
|
---|
24 |
|
---|
25 | /**
|
---|
26 | * Calculates the Cholesky decomposition of a matrix.
|
---|
27 | * <p>The Cholesky decomposition of a real symmetric positive-definite
|
---|
28 | * matrix A consists of a lower triangular matrix L with same size that
|
---|
29 | * satisfy: A = LL<sup>T</sup>Q = I). In a sense, this is the square root of A.</p>
|
---|
30 | *
|
---|
31 | * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
|
---|
32 | * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
|
---|
33 | * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
|
---|
34 | * @since 2.0
|
---|
35 | */
|
---|
36 | public class CholeskyDecompositionImpl implements CholeskyDecomposition {
|
---|
37 |
|
---|
38 | /** Default threshold above which off-diagonal elements are considered too different
|
---|
39 | * and matrix not symmetric. */
|
---|
40 | public static final double DEFAULT_RELATIVE_SYMMETRY_THRESHOLD = 1.0e-15;
|
---|
41 |
|
---|
42 | /** Default threshold below which diagonal elements are considered null
|
---|
43 | * and matrix not positive definite. */
|
---|
44 | public static final double DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD = 1.0e-10;
|
---|
45 |
|
---|
46 | /** Row-oriented storage for L<sup>T</sup> matrix data. */
|
---|
47 | private double[][] lTData;
|
---|
48 |
|
---|
49 | /** Cached value of L. */
|
---|
50 | private RealMatrix cachedL;
|
---|
51 |
|
---|
52 | /** Cached value of LT. */
|
---|
53 | private RealMatrix cachedLT;
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * Calculates the Cholesky decomposition of the given matrix.
|
---|
57 | * <p>
|
---|
58 | * Calling this constructor is equivalent to call {@link
|
---|
59 | * #CholeskyDecompositionImpl(RealMatrix, double, double)} with the
|
---|
60 | * thresholds set to the default values {@link
|
---|
61 | * #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} and {@link
|
---|
62 | * #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD}
|
---|
63 | * </p>
|
---|
64 | * @param matrix the matrix to decompose
|
---|
65 | * @exception NonSquareMatrixException if matrix is not square
|
---|
66 | * @exception NotSymmetricMatrixException if matrix is not symmetric
|
---|
67 | * @exception NotPositiveDefiniteMatrixException if the matrix is not
|
---|
68 | * strictly positive definite
|
---|
69 | * @see #CholeskyDecompositionImpl(RealMatrix, double, double)
|
---|
70 | * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
|
---|
71 | * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
|
---|
72 | */
|
---|
73 | public CholeskyDecompositionImpl(final RealMatrix matrix)
|
---|
74 | throws NonSquareMatrixException,
|
---|
75 | NotSymmetricMatrixException, NotPositiveDefiniteMatrixException {
|
---|
76 | this(matrix, DEFAULT_RELATIVE_SYMMETRY_THRESHOLD,
|
---|
77 | DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
|
---|
78 | }
|
---|
79 |
|
---|
80 | /**
|
---|
81 | * Calculates the Cholesky decomposition of the given matrix.
|
---|
82 | * @param matrix the matrix to decompose
|
---|
83 | * @param relativeSymmetryThreshold threshold above which off-diagonal
|
---|
84 | * elements are considered too different and matrix not symmetric
|
---|
85 | * @param absolutePositivityThreshold threshold below which diagonal
|
---|
86 | * elements are considered null and matrix not positive definite
|
---|
87 | * @exception NonSquareMatrixException if matrix is not square
|
---|
88 | * @exception NotSymmetricMatrixException if matrix is not symmetric
|
---|
89 | * @exception NotPositiveDefiniteMatrixException if the matrix is not
|
---|
90 | * strictly positive definite
|
---|
91 | * @see #CholeskyDecompositionImpl(RealMatrix)
|
---|
92 | * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
|
---|
93 | * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
|
---|
94 | */
|
---|
95 | public CholeskyDecompositionImpl(final RealMatrix matrix,
|
---|
96 | final double relativeSymmetryThreshold,
|
---|
97 | final double absolutePositivityThreshold)
|
---|
98 | throws NonSquareMatrixException,
|
---|
99 | NotSymmetricMatrixException, NotPositiveDefiniteMatrixException {
|
---|
100 |
|
---|
101 | if (!matrix.isSquare()) {
|
---|
102 | throw new NonSquareMatrixException(matrix.getRowDimension(),
|
---|
103 | matrix.getColumnDimension());
|
---|
104 | }
|
---|
105 |
|
---|
106 | final int order = matrix.getRowDimension();
|
---|
107 | lTData = matrix.getData();
|
---|
108 | cachedL = null;
|
---|
109 | cachedLT = null;
|
---|
110 |
|
---|
111 | // check the matrix before transformation
|
---|
112 | for (int i = 0; i < order; ++i) {
|
---|
113 |
|
---|
114 | final double[] lI = lTData[i];
|
---|
115 |
|
---|
116 | // check off-diagonal elements (and reset them to 0)
|
---|
117 | for (int j = i + 1; j < order; ++j) {
|
---|
118 | final double[] lJ = lTData[j];
|
---|
119 | final double lIJ = lI[j];
|
---|
120 | final double lJI = lJ[i];
|
---|
121 | final double maxDelta =
|
---|
122 | relativeSymmetryThreshold * FastMath.max(FastMath.abs(lIJ), FastMath.abs(lJI));
|
---|
123 | if (FastMath.abs(lIJ - lJI) > maxDelta) {
|
---|
124 | throw new NotSymmetricMatrixException();
|
---|
125 | }
|
---|
126 | lJ[i] = 0;
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 | // transform the matrix
|
---|
131 | for (int i = 0; i < order; ++i) {
|
---|
132 |
|
---|
133 | final double[] ltI = lTData[i];
|
---|
134 |
|
---|
135 | // check diagonal element
|
---|
136 | if (ltI[i] < absolutePositivityThreshold) {
|
---|
137 | throw new NotPositiveDefiniteMatrixException();
|
---|
138 | }
|
---|
139 |
|
---|
140 | ltI[i] = FastMath.sqrt(ltI[i]);
|
---|
141 | final double inverse = 1.0 / ltI[i];
|
---|
142 |
|
---|
143 | for (int q = order - 1; q > i; --q) {
|
---|
144 | ltI[q] *= inverse;
|
---|
145 | final double[] ltQ = lTData[q];
|
---|
146 | for (int p = q; p < order; ++p) {
|
---|
147 | ltQ[p] -= ltI[q] * ltI[p];
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | }
|
---|
152 |
|
---|
153 | }
|
---|
154 |
|
---|
155 | /** {@inheritDoc} */
|
---|
156 | public RealMatrix getL() {
|
---|
157 | if (cachedL == null) {
|
---|
158 | cachedL = getLT().transpose();
|
---|
159 | }
|
---|
160 | return cachedL;
|
---|
161 | }
|
---|
162 |
|
---|
163 | /** {@inheritDoc} */
|
---|
164 | public RealMatrix getLT() {
|
---|
165 |
|
---|
166 | if (cachedLT == null) {
|
---|
167 | cachedLT = MatrixUtils.createRealMatrix(lTData);
|
---|
168 | }
|
---|
169 |
|
---|
170 | // return the cached matrix
|
---|
171 | return cachedLT;
|
---|
172 |
|
---|
173 | }
|
---|
174 |
|
---|
175 | /** {@inheritDoc} */
|
---|
176 | public double getDeterminant() {
|
---|
177 | double determinant = 1.0;
|
---|
178 | for (int i = 0; i < lTData.length; ++i) {
|
---|
179 | double lTii = lTData[i][i];
|
---|
180 | determinant *= lTii * lTii;
|
---|
181 | }
|
---|
182 | return determinant;
|
---|
183 | }
|
---|
184 |
|
---|
185 | /** {@inheritDoc} */
|
---|
186 | public DecompositionSolver getSolver() {
|
---|
187 | return new Solver(lTData);
|
---|
188 | }
|
---|
189 |
|
---|
190 | /** Specialized solver. */
|
---|
191 | private static class Solver implements DecompositionSolver {
|
---|
192 |
|
---|
193 | /** Row-oriented storage for L<sup>T</sup> matrix data. */
|
---|
194 | private final double[][] lTData;
|
---|
195 |
|
---|
196 | /**
|
---|
197 | * Build a solver from decomposed matrix.
|
---|
198 | * @param lTData row-oriented storage for L<sup>T</sup> matrix data
|
---|
199 | */
|
---|
200 | private Solver(final double[][] lTData) {
|
---|
201 | this.lTData = lTData;
|
---|
202 | }
|
---|
203 |
|
---|
204 | /** {@inheritDoc} */
|
---|
205 | public boolean isNonSingular() {
|
---|
206 | // if we get this far, the matrix was positive definite, hence non-singular
|
---|
207 | return true;
|
---|
208 | }
|
---|
209 |
|
---|
210 | /** {@inheritDoc} */
|
---|
211 | public double[] solve(double[] b)
|
---|
212 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
213 |
|
---|
214 | final int m = lTData.length;
|
---|
215 | if (b.length != m) {
|
---|
216 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
217 | LocalizedFormats.VECTOR_LENGTH_MISMATCH,
|
---|
218 | b.length, m);
|
---|
219 | }
|
---|
220 |
|
---|
221 | final double[] x = b.clone();
|
---|
222 |
|
---|
223 | // Solve LY = b
|
---|
224 | for (int j = 0; j < m; j++) {
|
---|
225 | final double[] lJ = lTData[j];
|
---|
226 | x[j] /= lJ[j];
|
---|
227 | final double xJ = x[j];
|
---|
228 | for (int i = j + 1; i < m; i++) {
|
---|
229 | x[i] -= xJ * lJ[i];
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | // Solve LTX = Y
|
---|
234 | for (int j = m - 1; j >= 0; j--) {
|
---|
235 | x[j] /= lTData[j][j];
|
---|
236 | final double xJ = x[j];
|
---|
237 | for (int i = 0; i < j; i++) {
|
---|
238 | x[i] -= xJ * lTData[i][j];
|
---|
239 | }
|
---|
240 | }
|
---|
241 |
|
---|
242 | return x;
|
---|
243 |
|
---|
244 | }
|
---|
245 |
|
---|
246 | /** {@inheritDoc} */
|
---|
247 | public RealVector solve(RealVector b)
|
---|
248 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
249 | try {
|
---|
250 | return solve((ArrayRealVector) b);
|
---|
251 | } catch (ClassCastException cce) {
|
---|
252 |
|
---|
253 | final int m = lTData.length;
|
---|
254 | if (b.getDimension() != m) {
|
---|
255 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
256 | LocalizedFormats.VECTOR_LENGTH_MISMATCH,
|
---|
257 | b.getDimension(), m);
|
---|
258 | }
|
---|
259 |
|
---|
260 | final double[] x = b.getData();
|
---|
261 |
|
---|
262 | // Solve LY = b
|
---|
263 | for (int j = 0; j < m; j++) {
|
---|
264 | final double[] lJ = lTData[j];
|
---|
265 | x[j] /= lJ[j];
|
---|
266 | final double xJ = x[j];
|
---|
267 | for (int i = j + 1; i < m; i++) {
|
---|
268 | x[i] -= xJ * lJ[i];
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | // Solve LTX = Y
|
---|
273 | for (int j = m - 1; j >= 0; j--) {
|
---|
274 | x[j] /= lTData[j][j];
|
---|
275 | final double xJ = x[j];
|
---|
276 | for (int i = 0; i < j; i++) {
|
---|
277 | x[i] -= xJ * lTData[i][j];
|
---|
278 | }
|
---|
279 | }
|
---|
280 |
|
---|
281 | return new ArrayRealVector(x, false);
|
---|
282 |
|
---|
283 | }
|
---|
284 | }
|
---|
285 |
|
---|
286 | /** Solve the linear equation A × X = B.
|
---|
287 | * <p>The A matrix is implicit here. It is </p>
|
---|
288 | * @param b right-hand side of the equation A × X = B
|
---|
289 | * @return a vector X such that A × X = B
|
---|
290 | * @exception IllegalArgumentException if matrices dimensions don't match
|
---|
291 | * @exception InvalidMatrixException if decomposed matrix is singular
|
---|
292 | */
|
---|
293 | public ArrayRealVector solve(ArrayRealVector b)
|
---|
294 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
295 | return new ArrayRealVector(solve(b.getDataRef()), false);
|
---|
296 | }
|
---|
297 |
|
---|
298 | /** {@inheritDoc} */
|
---|
299 | public RealMatrix solve(RealMatrix b)
|
---|
300 | throws IllegalArgumentException, InvalidMatrixException {
|
---|
301 |
|
---|
302 | final int m = lTData.length;
|
---|
303 | if (b.getRowDimension() != m) {
|
---|
304 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
305 | LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
|
---|
306 | b.getRowDimension(), b.getColumnDimension(), m, "n");
|
---|
307 | }
|
---|
308 |
|
---|
309 | final int nColB = b.getColumnDimension();
|
---|
310 | double[][] x = b.getData();
|
---|
311 |
|
---|
312 | // Solve LY = b
|
---|
313 | for (int j = 0; j < m; j++) {
|
---|
314 | final double[] lJ = lTData[j];
|
---|
315 | final double lJJ = lJ[j];
|
---|
316 | final double[] xJ = x[j];
|
---|
317 | for (int k = 0; k < nColB; ++k) {
|
---|
318 | xJ[k] /= lJJ;
|
---|
319 | }
|
---|
320 | for (int i = j + 1; i < m; i++) {
|
---|
321 | final double[] xI = x[i];
|
---|
322 | final double lJI = lJ[i];
|
---|
323 | for (int k = 0; k < nColB; ++k) {
|
---|
324 | xI[k] -= xJ[k] * lJI;
|
---|
325 | }
|
---|
326 | }
|
---|
327 | }
|
---|
328 |
|
---|
329 | // Solve LTX = Y
|
---|
330 | for (int j = m - 1; j >= 0; j--) {
|
---|
331 | final double lJJ = lTData[j][j];
|
---|
332 | final double[] xJ = x[j];
|
---|
333 | for (int k = 0; k < nColB; ++k) {
|
---|
334 | xJ[k] /= lJJ;
|
---|
335 | }
|
---|
336 | for (int i = 0; i < j; i++) {
|
---|
337 | final double[] xI = x[i];
|
---|
338 | final double lIJ = lTData[i][j];
|
---|
339 | for (int k = 0; k < nColB; ++k) {
|
---|
340 | xI[k] -= xJ[k] * lIJ;
|
---|
341 | }
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | return new Array2DRowRealMatrix(x, false);
|
---|
346 |
|
---|
347 | }
|
---|
348 |
|
---|
349 | /** {@inheritDoc} */
|
---|
350 | public RealMatrix getInverse() throws InvalidMatrixException {
|
---|
351 | return solve(MatrixUtils.createRealIdentityMatrix(lTData.length));
|
---|
352 | }
|
---|
353 |
|
---|
354 | }
|
---|
355 |
|
---|
356 | }
|
---|