source: src/main/java/agents/org/apache/commons/math/geometry/Rotation.java

Last change on this file was 1, checked in by Wouter Pasman, 7 years ago

Initial import : Genius 9.0.0

File size: 42.5 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package agents.org.apache.commons.math.geometry;
19
20import java.io.Serializable;
21
22import agents.org.apache.commons.math.MathRuntimeException;
23import agents.org.apache.commons.math.exception.util.LocalizedFormats;
24import agents.org.apache.commons.math.util.FastMath;
25
26/**
27 * This class implements rotations in a three-dimensional space.
28 *
29 * <p>Rotations can be represented by several different mathematical
30 * entities (matrices, axe and angle, Cardan or Euler angles,
31 * quaternions). This class presents an higher level abstraction, more
32 * user-oriented and hiding this implementation details. Well, for the
33 * curious, we use quaternions for the internal representation. The
34 * user can build a rotation from any of these representations, and
35 * any of these representations can be retrieved from a
36 * <code>Rotation</code> instance (see the various constructors and
37 * getters). In addition, a rotation can also be built implicitly
38 * from a set of vectors and their image.</p>
39 * <p>This implies that this class can be used to convert from one
40 * representation to another one. For example, converting a rotation
41 * matrix into a set of Cardan angles from can be done using the
42 * following single line of code:</p>
43 * <pre>
44 * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
45 * </pre>
46 * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
47 * underlying representation. Once it has been built, and regardless of its
48 * internal representation, a rotation is an <em>operator</em> which basically
49 * transforms three dimensional {@link Vector3D vectors} into other three
50 * dimensional {@link Vector3D vectors}. Depending on the application, the
51 * meaning of these vectors may vary and the semantics of the rotation also.</p>
52 * <p>For example in an spacecraft attitude simulation tool, users will often
53 * consider the vectors are fixed (say the Earth direction for example) and the
54 * frames change. The rotation transforms the coordinates of the vector in inertial
55 * frame into the coordinates of the same vector in satellite frame. In this
56 * case, the rotation implicitly defines the relation between the two frames.</p>
57 * <p>Another example could be a telescope control application, where the rotation
58 * would transform the sighting direction at rest into the desired observing
59 * direction when the telescope is pointed towards an object of interest. In this
60 * case the rotation transforms the direction at rest in a topocentric frame
61 * into the sighting direction in the same topocentric frame. This implies in this
62 * case the frame is fixed and the vector moves.</p>
63 * <p>In many case, both approaches will be combined. In our telescope example,
64 * we will probably also need to transform the observing direction in the topocentric
65 * frame into the observing direction in inertial frame taking into account the observatory
66 * location and the Earth rotation, which would essentially be an application of the
67 * first approach.</p>
68 *
69 * <p>These examples show that a rotation is what the user wants it to be. This
70 * class does not push the user towards one specific definition and hence does not
71 * provide methods like <code>projectVectorIntoDestinationFrame</code> or
72 * <code>computeTransformedDirection</code>. It provides simpler and more generic
73 * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
74 * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
75 *
76 * <p>Since a rotation is basically a vectorial operator, several rotations can be
77 * composed together and the composite operation <code>r = r<sub>1</sub> o
78 * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
79 * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
80 * we can consider that in addition to vectors, a rotation can be applied to other
81 * rotations as well (or to itself). With our previous notations, we would say we
82 * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
83 * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
84 * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
85 * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
86 *
87 * <p>Rotations are guaranteed to be immutable objects.</p>
88 *
89 * @version $Revision: 1067500 $ $Date: 2011-02-05 21:11:30 +0100 (sam. 05 févr. 2011) $
90 * @see Vector3D
91 * @see RotationOrder
92 * @since 1.2
93 */
94
95public class Rotation implements Serializable {
96
97 /** Identity rotation. */
98 public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
99
100 /** Serializable version identifier */
101 private static final long serialVersionUID = -2153622329907944313L;
102
103 /** Scalar coordinate of the quaternion. */
104 private final double q0;
105
106 /** First coordinate of the vectorial part of the quaternion. */
107 private final double q1;
108
109 /** Second coordinate of the vectorial part of the quaternion. */
110 private final double q2;
111
112 /** Third coordinate of the vectorial part of the quaternion. */
113 private final double q3;
114
115 /** Build a rotation from the quaternion coordinates.
116 * <p>A rotation can be built from a <em>normalized</em> quaternion,
117 * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
118 * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
119 * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
120 * the constructor can normalize it in a preprocessing step.</p>
121 * <p>Note that some conventions put the scalar part of the quaternion
122 * as the 4<sup>th</sup> component and the vector part as the first three
123 * components. This is <em>not</em> our convention. We put the scalar part
124 * as the first component.</p>
125 * @param q0 scalar part of the quaternion
126 * @param q1 first coordinate of the vectorial part of the quaternion
127 * @param q2 second coordinate of the vectorial part of the quaternion
128 * @param q3 third coordinate of the vectorial part of the quaternion
129 * @param needsNormalization if true, the coordinates are considered
130 * not to be normalized, a normalization preprocessing step is performed
131 * before using them
132 */
133 public Rotation(double q0, double q1, double q2, double q3,
134 boolean needsNormalization) {
135
136 if (needsNormalization) {
137 // normalization preprocessing
138 double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
139 q0 *= inv;
140 q1 *= inv;
141 q2 *= inv;
142 q3 *= inv;
143 }
144
145 this.q0 = q0;
146 this.q1 = q1;
147 this.q2 = q2;
148 this.q3 = q3;
149
150 }
151
152 /** Build a rotation from an axis and an angle.
153 * <p>We use the convention that angles are oriented according to
154 * the effect of the rotation on vectors around the axis. That means
155 * that if (i, j, k) is a direct frame and if we first provide +k as
156 * the axis and &pi;/2 as the angle to this constructor, and then
157 * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
158 * +j.</p>
159 * <p>Another way to represent our convention is to say that a rotation
160 * of angle &theta; about the unit vector (x, y, z) is the same as the
161 * rotation build from quaternion components { cos(-&theta;/2),
162 * x * sin(-&theta;/2), y * sin(-&theta;/2), z * sin(-&theta;/2) }.
163 * Note the minus sign on the angle!</p>
164 * <p>On the one hand this convention is consistent with a vectorial
165 * perspective (moving vectors in fixed frames), on the other hand it
166 * is different from conventions with a frame perspective (fixed vectors
167 * viewed from different frames) like the ones used for example in spacecraft
168 * attitude community or in the graphics community.</p>
169 * @param axis axis around which to rotate
170 * @param angle rotation angle.
171 * @exception ArithmeticException if the axis norm is zero
172 */
173 public Rotation(Vector3D axis, double angle) {
174
175 double norm = axis.getNorm();
176 if (norm == 0) {
177 throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
178 }
179
180 double halfAngle = -0.5 * angle;
181 double coeff = FastMath.sin(halfAngle) / norm;
182
183 q0 = FastMath.cos (halfAngle);
184 q1 = coeff * axis.getX();
185 q2 = coeff * axis.getY();
186 q3 = coeff * axis.getZ();
187
188 }
189
190 /** Build a rotation from a 3X3 matrix.
191
192 * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
193 * (which are matrices for which m.m<sup>T</sup> = I) with real
194 * coefficients. The module of the determinant of unit matrices is
195 * 1, among the orthogonal 3X3 matrices, only the ones having a
196 * positive determinant (+1) are rotation matrices.</p>
197 *
198 * <p>When a rotation is defined by a matrix with truncated values
199 * (typically when it is extracted from a technical sheet where only
200 * four to five significant digits are available), the matrix is not
201 * orthogonal anymore. This constructor handles this case
202 * transparently by using a copy of the given matrix and applying a
203 * correction to the copy in order to perfect its orthogonality. If
204 * the Frobenius norm of the correction needed is above the given
205 * threshold, then the matrix is considered to be too far from a
206 * true rotation matrix and an exception is thrown.<p>
207 *
208 * @param m rotation matrix
209 * @param threshold convergence threshold for the iterative
210 * orthogonality correction (convergence is reached when the
211 * difference between two steps of the Frobenius norm of the
212 * correction is below this threshold)
213 *
214 * @exception NotARotationMatrixException if the matrix is not a 3X3
215 * matrix, or if it cannot be transformed into an orthogonal matrix
216 * with the given threshold, or if the determinant of the resulting
217 * orthogonal matrix is negative
218 *
219 */
220 public Rotation(double[][] m, double threshold)
221 throws NotARotationMatrixException {
222
223 // dimension check
224 if ((m.length != 3) || (m[0].length != 3) ||
225 (m[1].length != 3) || (m[2].length != 3)) {
226 throw new NotARotationMatrixException(
227 LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
228 m.length, m[0].length);
229 }
230
231 // compute a "close" orthogonal matrix
232 double[][] ort = orthogonalizeMatrix(m, threshold);
233
234 // check the sign of the determinant
235 double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
236 ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
237 ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
238 if (det < 0.0) {
239 throw new NotARotationMatrixException(
240 LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
241 det);
242 }
243
244 // There are different ways to compute the quaternions elements
245 // from the matrix. They all involve computing one element from
246 // the diagonal of the matrix, and computing the three other ones
247 // using a formula involving a division by the first element,
248 // which unfortunately can be zero. Since the norm of the
249 // quaternion is 1, we know at least one element has an absolute
250 // value greater or equal to 0.5, so it is always possible to
251 // select the right formula and avoid division by zero and even
252 // numerical inaccuracy. Checking the elements in turn and using
253 // the first one greater than 0.45 is safe (this leads to a simple
254 // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
255 double s = ort[0][0] + ort[1][1] + ort[2][2];
256 if (s > -0.19) {
257 // compute q0 and deduce q1, q2 and q3
258 q0 = 0.5 * FastMath.sqrt(s + 1.0);
259 double inv = 0.25 / q0;
260 q1 = inv * (ort[1][2] - ort[2][1]);
261 q2 = inv * (ort[2][0] - ort[0][2]);
262 q3 = inv * (ort[0][1] - ort[1][0]);
263 } else {
264 s = ort[0][0] - ort[1][1] - ort[2][2];
265 if (s > -0.19) {
266 // compute q1 and deduce q0, q2 and q3
267 q1 = 0.5 * FastMath.sqrt(s + 1.0);
268 double inv = 0.25 / q1;
269 q0 = inv * (ort[1][2] - ort[2][1]);
270 q2 = inv * (ort[0][1] + ort[1][0]);
271 q3 = inv * (ort[0][2] + ort[2][0]);
272 } else {
273 s = ort[1][1] - ort[0][0] - ort[2][2];
274 if (s > -0.19) {
275 // compute q2 and deduce q0, q1 and q3
276 q2 = 0.5 * FastMath.sqrt(s + 1.0);
277 double inv = 0.25 / q2;
278 q0 = inv * (ort[2][0] - ort[0][2]);
279 q1 = inv * (ort[0][1] + ort[1][0]);
280 q3 = inv * (ort[2][1] + ort[1][2]);
281 } else {
282 // compute q3 and deduce q0, q1 and q2
283 s = ort[2][2] - ort[0][0] - ort[1][1];
284 q3 = 0.5 * FastMath.sqrt(s + 1.0);
285 double inv = 0.25 / q3;
286 q0 = inv * (ort[0][1] - ort[1][0]);
287 q1 = inv * (ort[0][2] + ort[2][0]);
288 q2 = inv * (ort[2][1] + ort[1][2]);
289 }
290 }
291 }
292
293 }
294
295 /** Build the rotation that transforms a pair of vector into another pair.
296
297 * <p>Except for possible scale factors, if the instance were applied to
298 * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
299 * (v<sub>1</sub>, v<sub>2</sub>).</p>
300 *
301 * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
302 * not the same as the angular separation between v<sub>1</sub> and
303 * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
304 * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
305 * v<sub>2</sub>) plane.</p>
306 *
307 * @param u1 first vector of the origin pair
308 * @param u2 second vector of the origin pair
309 * @param v1 desired image of u1 by the rotation
310 * @param v2 desired image of u2 by the rotation
311 * @exception IllegalArgumentException if the norm of one of the vectors is zero
312 */
313 public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
314
315 // norms computation
316 double u1u1 = Vector3D.dotProduct(u1, u1);
317 double u2u2 = Vector3D.dotProduct(u2, u2);
318 double v1v1 = Vector3D.dotProduct(v1, v1);
319 double v2v2 = Vector3D.dotProduct(v2, v2);
320 if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
321 throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
322 }
323
324 double u1x = u1.getX();
325 double u1y = u1.getY();
326 double u1z = u1.getZ();
327
328 double u2x = u2.getX();
329 double u2y = u2.getY();
330 double u2z = u2.getZ();
331
332 // normalize v1 in order to have (v1'|v1') = (u1|u1)
333 double coeff = FastMath.sqrt (u1u1 / v1v1);
334 double v1x = coeff * v1.getX();
335 double v1y = coeff * v1.getY();
336 double v1z = coeff * v1.getZ();
337 v1 = new Vector3D(v1x, v1y, v1z);
338
339 // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2)
340 double u1u2 = Vector3D.dotProduct(u1, u2);
341 double v1v2 = Vector3D.dotProduct(v1, v2);
342 double coeffU = u1u2 / u1u1;
343 double coeffV = v1v2 / u1u1;
344 double beta = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
345 double alpha = coeffU - beta * coeffV;
346 double v2x = alpha * v1x + beta * v2.getX();
347 double v2y = alpha * v1y + beta * v2.getY();
348 double v2z = alpha * v1z + beta * v2.getZ();
349 v2 = new Vector3D(v2x, v2y, v2z);
350
351 // preliminary computation (we use explicit formulation instead
352 // of relying on the Vector3D class in order to avoid building lots
353 // of temporary objects)
354 Vector3D uRef = u1;
355 Vector3D vRef = v1;
356 double dx1 = v1x - u1.getX();
357 double dy1 = v1y - u1.getY();
358 double dz1 = v1z - u1.getZ();
359 double dx2 = v2x - u2.getX();
360 double dy2 = v2y - u2.getY();
361 double dz2 = v2z - u2.getZ();
362 Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2,
363 dz1 * dx2 - dx1 * dz2,
364 dx1 * dy2 - dy1 * dx2);
365 double c = k.getX() * (u1y * u2z - u1z * u2y) +
366 k.getY() * (u1z * u2x - u1x * u2z) +
367 k.getZ() * (u1x * u2y - u1y * u2x);
368
369 if (c == 0) {
370 // the (q1, q2, q3) vector is in the (u1, u2) plane
371 // we try other vectors
372 Vector3D u3 = Vector3D.crossProduct(u1, u2);
373 Vector3D v3 = Vector3D.crossProduct(v1, v2);
374 double u3x = u3.getX();
375 double u3y = u3.getY();
376 double u3z = u3.getZ();
377 double v3x = v3.getX();
378 double v3y = v3.getY();
379 double v3z = v3.getZ();
380
381 double dx3 = v3x - u3x;
382 double dy3 = v3y - u3y;
383 double dz3 = v3z - u3z;
384 k = new Vector3D(dy1 * dz3 - dz1 * dy3,
385 dz1 * dx3 - dx1 * dz3,
386 dx1 * dy3 - dy1 * dx3);
387 c = k.getX() * (u1y * u3z - u1z * u3y) +
388 k.getY() * (u1z * u3x - u1x * u3z) +
389 k.getZ() * (u1x * u3y - u1y * u3x);
390
391 if (c == 0) {
392 // the (q1, q2, q3) vector is aligned with u1:
393 // we try (u2, u3) and (v2, v3)
394 k = new Vector3D(dy2 * dz3 - dz2 * dy3,
395 dz2 * dx3 - dx2 * dz3,
396 dx2 * dy3 - dy2 * dx3);
397 c = k.getX() * (u2y * u3z - u2z * u3y) +
398 k.getY() * (u2z * u3x - u2x * u3z) +
399 k.getZ() * (u2x * u3y - u2y * u3x);
400
401 if (c == 0) {
402 // the (q1, q2, q3) vector is aligned with everything
403 // this is really the identity rotation
404 q0 = 1.0;
405 q1 = 0.0;
406 q2 = 0.0;
407 q3 = 0.0;
408 return;
409 }
410
411 // we will have to use u2 and v2 to compute the scalar part
412 uRef = u2;
413 vRef = v2;
414
415 }
416
417 }
418
419 // compute the vectorial part
420 c = FastMath.sqrt(c);
421 double inv = 1.0 / (c + c);
422 q1 = inv * k.getX();
423 q2 = inv * k.getY();
424 q3 = inv * k.getZ();
425
426 // compute the scalar part
427 k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
428 uRef.getZ() * q1 - uRef.getX() * q3,
429 uRef.getX() * q2 - uRef.getY() * q1);
430 c = Vector3D.dotProduct(k, k);
431 q0 = Vector3D.dotProduct(vRef, k) / (c + c);
432
433 }
434
435 /** Build one of the rotations that transform one vector into another one.
436
437 * <p>Except for a possible scale factor, if the instance were
438 * applied to the vector u it will produce the vector v. There is an
439 * infinite number of such rotations, this constructor choose the
440 * one with the smallest associated angle (i.e. the one whose axis
441 * is orthogonal to the (u, v) plane). If u and v are colinear, an
442 * arbitrary rotation axis is chosen.</p>
443 *
444 * @param u origin vector
445 * @param v desired image of u by the rotation
446 * @exception IllegalArgumentException if the norm of one of the vectors is zero
447 */
448 public Rotation(Vector3D u, Vector3D v) {
449
450 double normProduct = u.getNorm() * v.getNorm();
451 if (normProduct == 0) {
452 throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
453 }
454
455 double dot = Vector3D.dotProduct(u, v);
456
457 if (dot < ((2.0e-15 - 1.0) * normProduct)) {
458 // special case u = -v: we select a PI angle rotation around
459 // an arbitrary vector orthogonal to u
460 Vector3D w = u.orthogonal();
461 q0 = 0.0;
462 q1 = -w.getX();
463 q2 = -w.getY();
464 q3 = -w.getZ();
465 } else {
466 // general case: (u, v) defines a plane, we select
467 // the shortest possible rotation: axis orthogonal to this plane
468 q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
469 double coeff = 1.0 / (2.0 * q0 * normProduct);
470 q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY());
471 q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ());
472 q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX());
473 }
474
475 }
476
477 /** Build a rotation from three Cardan or Euler elementary rotations.
478
479 * <p>Cardan rotations are three successive rotations around the
480 * canonical axes X, Y and Z, each axis being used once. There are
481 * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
482 * rotations are three successive rotations around the canonical
483 * axes X, Y and Z, the first and last rotations being around the
484 * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
485 * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
486 * <p>Beware that many people routinely use the term Euler angles even
487 * for what really are Cardan angles (this confusion is especially
488 * widespread in the aerospace business where Roll, Pitch and Yaw angles
489 * are often wrongly tagged as Euler angles).</p>
490 *
491 * @param order order of rotations to use
492 * @param alpha1 angle of the first elementary rotation
493 * @param alpha2 angle of the second elementary rotation
494 * @param alpha3 angle of the third elementary rotation
495 */
496 public Rotation(RotationOrder order,
497 double alpha1, double alpha2, double alpha3) {
498 Rotation r1 = new Rotation(order.getA1(), alpha1);
499 Rotation r2 = new Rotation(order.getA2(), alpha2);
500 Rotation r3 = new Rotation(order.getA3(), alpha3);
501 Rotation composed = r1.applyTo(r2.applyTo(r3));
502 q0 = composed.q0;
503 q1 = composed.q1;
504 q2 = composed.q2;
505 q3 = composed.q3;
506 }
507
508 /** Revert a rotation.
509 * Build a rotation which reverse the effect of another
510 * rotation. This means that if r(u) = v, then r.revert(v) = u. The
511 * instance is not changed.
512 * @return a new rotation whose effect is the reverse of the effect
513 * of the instance
514 */
515 public Rotation revert() {
516 return new Rotation(-q0, q1, q2, q3, false);
517 }
518
519 /** Get the scalar coordinate of the quaternion.
520 * @return scalar coordinate of the quaternion
521 */
522 public double getQ0() {
523 return q0;
524 }
525
526 /** Get the first coordinate of the vectorial part of the quaternion.
527 * @return first coordinate of the vectorial part of the quaternion
528 */
529 public double getQ1() {
530 return q1;
531 }
532
533 /** Get the second coordinate of the vectorial part of the quaternion.
534 * @return second coordinate of the vectorial part of the quaternion
535 */
536 public double getQ2() {
537 return q2;
538 }
539
540 /** Get the third coordinate of the vectorial part of the quaternion.
541 * @return third coordinate of the vectorial part of the quaternion
542 */
543 public double getQ3() {
544 return q3;
545 }
546
547 /** Get the normalized axis of the rotation.
548 * @return normalized axis of the rotation
549 * @see #Rotation(Vector3D, double)
550 */
551 public Vector3D getAxis() {
552 double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
553 if (squaredSine == 0) {
554 return new Vector3D(1, 0, 0);
555 } else if (q0 < 0) {
556 double inverse = 1 / FastMath.sqrt(squaredSine);
557 return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
558 }
559 double inverse = -1 / FastMath.sqrt(squaredSine);
560 return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
561 }
562
563 /** Get the angle of the rotation.
564 * @return angle of the rotation (between 0 and &pi;)
565 * @see #Rotation(Vector3D, double)
566 */
567 public double getAngle() {
568 if ((q0 < -0.1) || (q0 > 0.1)) {
569 return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
570 } else if (q0 < 0) {
571 return 2 * FastMath.acos(-q0);
572 }
573 return 2 * FastMath.acos(q0);
574 }
575
576 /** Get the Cardan or Euler angles corresponding to the instance.
577
578 * <p>The equations show that each rotation can be defined by two
579 * different values of the Cardan or Euler angles set. For example
580 * if Cardan angles are used, the rotation defined by the angles
581 * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
582 * the rotation defined by the angles &pi; + a<sub>1</sub>, &pi;
583 * - a<sub>2</sub> and &pi; + a<sub>3</sub>. This method implements
584 * the following arbitrary choices:</p>
585 * <ul>
586 * <li>for Cardan angles, the chosen set is the one for which the
587 * second angle is between -&pi;/2 and &pi;/2 (i.e its cosine is
588 * positive),</li>
589 * <li>for Euler angles, the chosen set is the one for which the
590 * second angle is between 0 and &pi; (i.e its sine is positive).</li>
591 * </ul>
592 *
593 * <p>Cardan and Euler angle have a very disappointing drawback: all
594 * of them have singularities. This means that if the instance is
595 * too close to the singularities corresponding to the given
596 * rotation order, it will be impossible to retrieve the angles. For
597 * Cardan angles, this is often called gimbal lock. There is
598 * <em>nothing</em> to do to prevent this, it is an intrinsic problem
599 * with Cardan and Euler representation (but not a problem with the
600 * rotation itself, which is perfectly well defined). For Cardan
601 * angles, singularities occur when the second angle is close to
602 * -&pi;/2 or +&pi;/2, for Euler angle singularities occur when the
603 * second angle is close to 0 or &pi;, this implies that the identity
604 * rotation is always singular for Euler angles!</p>
605 *
606 * @param order rotation order to use
607 * @return an array of three angles, in the order specified by the set
608 * @exception CardanEulerSingularityException if the rotation is
609 * singular with respect to the angles set specified
610 */
611 public double[] getAngles(RotationOrder order)
612 throws CardanEulerSingularityException {
613
614 if (order == RotationOrder.XYZ) {
615
616 // r (Vector3D.plusK) coordinates are :
617 // sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
618 // (-r) (Vector3D.plusI) coordinates are :
619 // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
620 // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
621 Vector3D v1 = applyTo(Vector3D.PLUS_K);
622 Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
623 if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
624 throw new CardanEulerSingularityException(true);
625 }
626 return new double[] {
627 FastMath.atan2(-(v1.getY()), v1.getZ()),
628 FastMath.asin(v2.getZ()),
629 FastMath.atan2(-(v2.getY()), v2.getX())
630 };
631
632 } else if (order == RotationOrder.XZY) {
633
634 // r (Vector3D.plusJ) coordinates are :
635 // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
636 // (-r) (Vector3D.plusI) coordinates are :
637 // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
638 // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
639 Vector3D v1 = applyTo(Vector3D.PLUS_J);
640 Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
641 if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
642 throw new CardanEulerSingularityException(true);
643 }
644 return new double[] {
645 FastMath.atan2(v1.getZ(), v1.getY()),
646 -FastMath.asin(v2.getY()),
647 FastMath.atan2(v2.getZ(), v2.getX())
648 };
649
650 } else if (order == RotationOrder.YXZ) {
651
652 // r (Vector3D.plusK) coordinates are :
653 // cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
654 // (-r) (Vector3D.plusJ) coordinates are :
655 // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
656 // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
657 Vector3D v1 = applyTo(Vector3D.PLUS_K);
658 Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
659 if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
660 throw new CardanEulerSingularityException(true);
661 }
662 return new double[] {
663 FastMath.atan2(v1.getX(), v1.getZ()),
664 -FastMath.asin(v2.getZ()),
665 FastMath.atan2(v2.getX(), v2.getY())
666 };
667
668 } else if (order == RotationOrder.YZX) {
669
670 // r (Vector3D.plusI) coordinates are :
671 // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
672 // (-r) (Vector3D.plusJ) coordinates are :
673 // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
674 // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
675 Vector3D v1 = applyTo(Vector3D.PLUS_I);
676 Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
677 if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
678 throw new CardanEulerSingularityException(true);
679 }
680 return new double[] {
681 FastMath.atan2(-(v1.getZ()), v1.getX()),
682 FastMath.asin(v2.getX()),
683 FastMath.atan2(-(v2.getZ()), v2.getY())
684 };
685
686 } else if (order == RotationOrder.ZXY) {
687
688 // r (Vector3D.plusJ) coordinates are :
689 // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
690 // (-r) (Vector3D.plusK) coordinates are :
691 // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
692 // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
693 Vector3D v1 = applyTo(Vector3D.PLUS_J);
694 Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
695 if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
696 throw new CardanEulerSingularityException(true);
697 }
698 return new double[] {
699 FastMath.atan2(-(v1.getX()), v1.getY()),
700 FastMath.asin(v2.getY()),
701 FastMath.atan2(-(v2.getX()), v2.getZ())
702 };
703
704 } else if (order == RotationOrder.ZYX) {
705
706 // r (Vector3D.plusI) coordinates are :
707 // cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
708 // (-r) (Vector3D.plusK) coordinates are :
709 // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
710 // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
711 Vector3D v1 = applyTo(Vector3D.PLUS_I);
712 Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
713 if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
714 throw new CardanEulerSingularityException(true);
715 }
716 return new double[] {
717 FastMath.atan2(v1.getY(), v1.getX()),
718 -FastMath.asin(v2.getX()),
719 FastMath.atan2(v2.getY(), v2.getZ())
720 };
721
722 } else if (order == RotationOrder.XYX) {
723
724 // r (Vector3D.plusI) coordinates are :
725 // cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
726 // (-r) (Vector3D.plusI) coordinates are :
727 // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
728 // and we can choose to have theta in the interval [0 ; PI]
729 Vector3D v1 = applyTo(Vector3D.PLUS_I);
730 Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
731 if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
732 throw new CardanEulerSingularityException(false);
733 }
734 return new double[] {
735 FastMath.atan2(v1.getY(), -v1.getZ()),
736 FastMath.acos(v2.getX()),
737 FastMath.atan2(v2.getY(), v2.getZ())
738 };
739
740 } else if (order == RotationOrder.XZX) {
741
742 // r (Vector3D.plusI) coordinates are :
743 // cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
744 // (-r) (Vector3D.plusI) coordinates are :
745 // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
746 // and we can choose to have psi in the interval [0 ; PI]
747 Vector3D v1 = applyTo(Vector3D.PLUS_I);
748 Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
749 if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
750 throw new CardanEulerSingularityException(false);
751 }
752 return new double[] {
753 FastMath.atan2(v1.getZ(), v1.getY()),
754 FastMath.acos(v2.getX()),
755 FastMath.atan2(v2.getZ(), -v2.getY())
756 };
757
758 } else if (order == RotationOrder.YXY) {
759
760 // r (Vector3D.plusJ) coordinates are :
761 // sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
762 // (-r) (Vector3D.plusJ) coordinates are :
763 // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
764 // and we can choose to have phi in the interval [0 ; PI]
765 Vector3D v1 = applyTo(Vector3D.PLUS_J);
766 Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
767 if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
768 throw new CardanEulerSingularityException(false);
769 }
770 return new double[] {
771 FastMath.atan2(v1.getX(), v1.getZ()),
772 FastMath.acos(v2.getY()),
773 FastMath.atan2(v2.getX(), -v2.getZ())
774 };
775
776 } else if (order == RotationOrder.YZY) {
777
778 // r (Vector3D.plusJ) coordinates are :
779 // -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
780 // (-r) (Vector3D.plusJ) coordinates are :
781 // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
782 // and we can choose to have psi in the interval [0 ; PI]
783 Vector3D v1 = applyTo(Vector3D.PLUS_J);
784 Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
785 if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
786 throw new CardanEulerSingularityException(false);
787 }
788 return new double[] {
789 FastMath.atan2(v1.getZ(), -v1.getX()),
790 FastMath.acos(v2.getY()),
791 FastMath.atan2(v2.getZ(), v2.getX())
792 };
793
794 } else if (order == RotationOrder.ZXZ) {
795
796 // r (Vector3D.plusK) coordinates are :
797 // sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
798 // (-r) (Vector3D.plusK) coordinates are :
799 // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
800 // and we can choose to have phi in the interval [0 ; PI]
801 Vector3D v1 = applyTo(Vector3D.PLUS_K);
802 Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
803 if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
804 throw new CardanEulerSingularityException(false);
805 }
806 return new double[] {
807 FastMath.atan2(v1.getX(), -v1.getY()),
808 FastMath.acos(v2.getZ()),
809 FastMath.atan2(v2.getX(), v2.getY())
810 };
811
812 } else { // last possibility is ZYZ
813
814 // r (Vector3D.plusK) coordinates are :
815 // cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
816 // (-r) (Vector3D.plusK) coordinates are :
817 // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
818 // and we can choose to have theta in the interval [0 ; PI]
819 Vector3D v1 = applyTo(Vector3D.PLUS_K);
820 Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
821 if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
822 throw new CardanEulerSingularityException(false);
823 }
824 return new double[] {
825 FastMath.atan2(v1.getY(), v1.getX()),
826 FastMath.acos(v2.getZ()),
827 FastMath.atan2(v2.getY(), -v2.getX())
828 };
829
830 }
831
832 }
833
834 /** Get the 3X3 matrix corresponding to the instance
835 * @return the matrix corresponding to the instance
836 */
837 public double[][] getMatrix() {
838
839 // products
840 double q0q0 = q0 * q0;
841 double q0q1 = q0 * q1;
842 double q0q2 = q0 * q2;
843 double q0q3 = q0 * q3;
844 double q1q1 = q1 * q1;
845 double q1q2 = q1 * q2;
846 double q1q3 = q1 * q3;
847 double q2q2 = q2 * q2;
848 double q2q3 = q2 * q3;
849 double q3q3 = q3 * q3;
850
851 // create the matrix
852 double[][] m = new double[3][];
853 m[0] = new double[3];
854 m[1] = new double[3];
855 m[2] = new double[3];
856
857 m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
858 m [1][0] = 2.0 * (q1q2 - q0q3);
859 m [2][0] = 2.0 * (q1q3 + q0q2);
860
861 m [0][1] = 2.0 * (q1q2 + q0q3);
862 m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
863 m [2][1] = 2.0 * (q2q3 - q0q1);
864
865 m [0][2] = 2.0 * (q1q3 - q0q2);
866 m [1][2] = 2.0 * (q2q3 + q0q1);
867 m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
868
869 return m;
870
871 }
872
873 /** Apply the rotation to a vector.
874 * @param u vector to apply the rotation to
875 * @return a new vector which is the image of u by the rotation
876 */
877 public Vector3D applyTo(Vector3D u) {
878
879 double x = u.getX();
880 double y = u.getY();
881 double z = u.getZ();
882
883 double s = q1 * x + q2 * y + q3 * z;
884
885 return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
886 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
887 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
888
889 }
890
891 /** Apply the inverse of the rotation to a vector.
892 * @param u vector to apply the inverse of the rotation to
893 * @return a new vector which such that u is its image by the rotation
894 */
895 public Vector3D applyInverseTo(Vector3D u) {
896
897 double x = u.getX();
898 double y = u.getY();
899 double z = u.getZ();
900
901 double s = q1 * x + q2 * y + q3 * z;
902 double m0 = -q0;
903
904 return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
905 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
906 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
907
908 }
909
910 /** Apply the instance to another rotation.
911 * Applying the instance to a rotation is computing the composition
912 * in an order compliant with the following rule : let u be any
913 * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
914 * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
915 * where comp = applyTo(r).
916 * @param r rotation to apply the rotation to
917 * @return a new rotation which is the composition of r by the instance
918 */
919 public Rotation applyTo(Rotation r) {
920 return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
921 r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
922 r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
923 r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
924 false);
925 }
926
927 /** Apply the inverse of the instance to another rotation.
928 * Applying the inverse of the instance to a rotation is computing
929 * the composition in an order compliant with the following rule :
930 * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
931 * let w be the inverse image of v by the instance
932 * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
933 * comp = applyInverseTo(r).
934 * @param r rotation to apply the rotation to
935 * @return a new rotation which is the composition of r by the inverse
936 * of the instance
937 */
938 public Rotation applyInverseTo(Rotation r) {
939 return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
940 -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
941 -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
942 -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
943 false);
944 }
945
946 /** Perfect orthogonality on a 3X3 matrix.
947 * @param m initial matrix (not exactly orthogonal)
948 * @param threshold convergence threshold for the iterative
949 * orthogonality correction (convergence is reached when the
950 * difference between two steps of the Frobenius norm of the
951 * correction is below this threshold)
952 * @return an orthogonal matrix close to m
953 * @exception NotARotationMatrixException if the matrix cannot be
954 * orthogonalized with the given threshold after 10 iterations
955 */
956 private double[][] orthogonalizeMatrix(double[][] m, double threshold)
957 throws NotARotationMatrixException {
958 double[] m0 = m[0];
959 double[] m1 = m[1];
960 double[] m2 = m[2];
961 double x00 = m0[0];
962 double x01 = m0[1];
963 double x02 = m0[2];
964 double x10 = m1[0];
965 double x11 = m1[1];
966 double x12 = m1[2];
967 double x20 = m2[0];
968 double x21 = m2[1];
969 double x22 = m2[2];
970 double fn = 0;
971 double fn1;
972
973 double[][] o = new double[3][3];
974 double[] o0 = o[0];
975 double[] o1 = o[1];
976 double[] o2 = o[2];
977
978 // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
979 int i = 0;
980 while (++i < 11) {
981
982 // Mt.Xn
983 double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
984 double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
985 double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
986 double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
987 double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
988 double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
989 double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
990 double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
991 double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
992
993 // Xn+1
994 o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
995 o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
996 o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
997 o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
998 o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
999 o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
1000 o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
1001 o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
1002 o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
1003
1004 // correction on each elements
1005 double corr00 = o0[0] - m0[0];
1006 double corr01 = o0[1] - m0[1];
1007 double corr02 = o0[2] - m0[2];
1008 double corr10 = o1[0] - m1[0];
1009 double corr11 = o1[1] - m1[1];
1010 double corr12 = o1[2] - m1[2];
1011 double corr20 = o2[0] - m2[0];
1012 double corr21 = o2[1] - m2[1];
1013 double corr22 = o2[2] - m2[2];
1014
1015 // Frobenius norm of the correction
1016 fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
1017 corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
1018 corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
1019
1020 // convergence test
1021 if (FastMath.abs(fn1 - fn) <= threshold)
1022 return o;
1023
1024 // prepare next iteration
1025 x00 = o0[0];
1026 x01 = o0[1];
1027 x02 = o0[2];
1028 x10 = o1[0];
1029 x11 = o1[1];
1030 x12 = o1[2];
1031 x20 = o2[0];
1032 x21 = o2[1];
1033 x22 = o2[2];
1034 fn = fn1;
1035
1036 }
1037
1038 // the algorithm did not converge after 10 iterations
1039 throw new NotARotationMatrixException(
1040 LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
1041 i - 1);
1042 }
1043
1044 /** Compute the <i>distance</i> between two rotations.
1045 * <p>The <i>distance</i> is intended here as a way to check if two
1046 * rotations are almost similar (i.e. they transform vectors the same way)
1047 * or very different. It is mathematically defined as the angle of
1048 * the rotation r that prepended to one of the rotations gives the other
1049 * one:</p>
1050 * <pre>
1051 * r<sub>1</sub>(r) = r<sub>2</sub>
1052 * </pre>
1053 * <p>This distance is an angle between 0 and &pi;. Its value is the smallest
1054 * possible upper bound of the angle in radians between r<sub>1</sub>(v)
1055 * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
1056 * reached for some v. The distance is equal to 0 if and only if the two
1057 * rotations are identical.</p>
1058 * <p>Comparing two rotations should always be done using this value rather
1059 * than for example comparing the components of the quaternions. It is much
1060 * more stable, and has a geometric meaning. Also comparing quaternions
1061 * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
1062 * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
1063 * their components are different (they are exact opposites).</p>
1064 * @param r1 first rotation
1065 * @param r2 second rotation
1066 * @return <i>distance</i> between r1 and r2
1067 */
1068 public static double distance(Rotation r1, Rotation r2) {
1069 return r1.applyInverseTo(r2).getAngle();
1070 }
1071
1072}
Note: See TracBrowser for help on using the repository browser.