1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.geometry;
|
---|
19 |
|
---|
20 | import java.io.Serializable;
|
---|
21 |
|
---|
22 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
23 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
24 | import agents.org.apache.commons.math.util.FastMath;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * This class implements rotations in a three-dimensional space.
|
---|
28 | *
|
---|
29 | * <p>Rotations can be represented by several different mathematical
|
---|
30 | * entities (matrices, axe and angle, Cardan or Euler angles,
|
---|
31 | * quaternions). This class presents an higher level abstraction, more
|
---|
32 | * user-oriented and hiding this implementation details. Well, for the
|
---|
33 | * curious, we use quaternions for the internal representation. The
|
---|
34 | * user can build a rotation from any of these representations, and
|
---|
35 | * any of these representations can be retrieved from a
|
---|
36 | * <code>Rotation</code> instance (see the various constructors and
|
---|
37 | * getters). In addition, a rotation can also be built implicitly
|
---|
38 | * from a set of vectors and their image.</p>
|
---|
39 | * <p>This implies that this class can be used to convert from one
|
---|
40 | * representation to another one. For example, converting a rotation
|
---|
41 | * matrix into a set of Cardan angles from can be done using the
|
---|
42 | * following single line of code:</p>
|
---|
43 | * <pre>
|
---|
44 | * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
|
---|
45 | * </pre>
|
---|
46 | * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
|
---|
47 | * underlying representation. Once it has been built, and regardless of its
|
---|
48 | * internal representation, a rotation is an <em>operator</em> which basically
|
---|
49 | * transforms three dimensional {@link Vector3D vectors} into other three
|
---|
50 | * dimensional {@link Vector3D vectors}. Depending on the application, the
|
---|
51 | * meaning of these vectors may vary and the semantics of the rotation also.</p>
|
---|
52 | * <p>For example in an spacecraft attitude simulation tool, users will often
|
---|
53 | * consider the vectors are fixed (say the Earth direction for example) and the
|
---|
54 | * frames change. The rotation transforms the coordinates of the vector in inertial
|
---|
55 | * frame into the coordinates of the same vector in satellite frame. In this
|
---|
56 | * case, the rotation implicitly defines the relation between the two frames.</p>
|
---|
57 | * <p>Another example could be a telescope control application, where the rotation
|
---|
58 | * would transform the sighting direction at rest into the desired observing
|
---|
59 | * direction when the telescope is pointed towards an object of interest. In this
|
---|
60 | * case the rotation transforms the direction at rest in a topocentric frame
|
---|
61 | * into the sighting direction in the same topocentric frame. This implies in this
|
---|
62 | * case the frame is fixed and the vector moves.</p>
|
---|
63 | * <p>In many case, both approaches will be combined. In our telescope example,
|
---|
64 | * we will probably also need to transform the observing direction in the topocentric
|
---|
65 | * frame into the observing direction in inertial frame taking into account the observatory
|
---|
66 | * location and the Earth rotation, which would essentially be an application of the
|
---|
67 | * first approach.</p>
|
---|
68 | *
|
---|
69 | * <p>These examples show that a rotation is what the user wants it to be. This
|
---|
70 | * class does not push the user towards one specific definition and hence does not
|
---|
71 | * provide methods like <code>projectVectorIntoDestinationFrame</code> or
|
---|
72 | * <code>computeTransformedDirection</code>. It provides simpler and more generic
|
---|
73 | * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
|
---|
74 | * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
|
---|
75 | *
|
---|
76 | * <p>Since a rotation is basically a vectorial operator, several rotations can be
|
---|
77 | * composed together and the composite operation <code>r = r<sub>1</sub> o
|
---|
78 | * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
|
---|
79 | * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
|
---|
80 | * we can consider that in addition to vectors, a rotation can be applied to other
|
---|
81 | * rotations as well (or to itself). With our previous notations, we would say we
|
---|
82 | * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
|
---|
83 | * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
|
---|
84 | * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
|
---|
85 | * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
|
---|
86 | *
|
---|
87 | * <p>Rotations are guaranteed to be immutable objects.</p>
|
---|
88 | *
|
---|
89 | * @version $Revision: 1067500 $ $Date: 2011-02-05 21:11:30 +0100 (sam. 05 févr. 2011) $
|
---|
90 | * @see Vector3D
|
---|
91 | * @see RotationOrder
|
---|
92 | * @since 1.2
|
---|
93 | */
|
---|
94 |
|
---|
95 | public class Rotation implements Serializable {
|
---|
96 |
|
---|
97 | /** Identity rotation. */
|
---|
98 | public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
|
---|
99 |
|
---|
100 | /** Serializable version identifier */
|
---|
101 | private static final long serialVersionUID = -2153622329907944313L;
|
---|
102 |
|
---|
103 | /** Scalar coordinate of the quaternion. */
|
---|
104 | private final double q0;
|
---|
105 |
|
---|
106 | /** First coordinate of the vectorial part of the quaternion. */
|
---|
107 | private final double q1;
|
---|
108 |
|
---|
109 | /** Second coordinate of the vectorial part of the quaternion. */
|
---|
110 | private final double q2;
|
---|
111 |
|
---|
112 | /** Third coordinate of the vectorial part of the quaternion. */
|
---|
113 | private final double q3;
|
---|
114 |
|
---|
115 | /** Build a rotation from the quaternion coordinates.
|
---|
116 | * <p>A rotation can be built from a <em>normalized</em> quaternion,
|
---|
117 | * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
|
---|
118 | * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
|
---|
119 | * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
|
---|
120 | * the constructor can normalize it in a preprocessing step.</p>
|
---|
121 | * <p>Note that some conventions put the scalar part of the quaternion
|
---|
122 | * as the 4<sup>th</sup> component and the vector part as the first three
|
---|
123 | * components. This is <em>not</em> our convention. We put the scalar part
|
---|
124 | * as the first component.</p>
|
---|
125 | * @param q0 scalar part of the quaternion
|
---|
126 | * @param q1 first coordinate of the vectorial part of the quaternion
|
---|
127 | * @param q2 second coordinate of the vectorial part of the quaternion
|
---|
128 | * @param q3 third coordinate of the vectorial part of the quaternion
|
---|
129 | * @param needsNormalization if true, the coordinates are considered
|
---|
130 | * not to be normalized, a normalization preprocessing step is performed
|
---|
131 | * before using them
|
---|
132 | */
|
---|
133 | public Rotation(double q0, double q1, double q2, double q3,
|
---|
134 | boolean needsNormalization) {
|
---|
135 |
|
---|
136 | if (needsNormalization) {
|
---|
137 | // normalization preprocessing
|
---|
138 | double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
|
---|
139 | q0 *= inv;
|
---|
140 | q1 *= inv;
|
---|
141 | q2 *= inv;
|
---|
142 | q3 *= inv;
|
---|
143 | }
|
---|
144 |
|
---|
145 | this.q0 = q0;
|
---|
146 | this.q1 = q1;
|
---|
147 | this.q2 = q2;
|
---|
148 | this.q3 = q3;
|
---|
149 |
|
---|
150 | }
|
---|
151 |
|
---|
152 | /** Build a rotation from an axis and an angle.
|
---|
153 | * <p>We use the convention that angles are oriented according to
|
---|
154 | * the effect of the rotation on vectors around the axis. That means
|
---|
155 | * that if (i, j, k) is a direct frame and if we first provide +k as
|
---|
156 | * the axis and π/2 as the angle to this constructor, and then
|
---|
157 | * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
|
---|
158 | * +j.</p>
|
---|
159 | * <p>Another way to represent our convention is to say that a rotation
|
---|
160 | * of angle θ about the unit vector (x, y, z) is the same as the
|
---|
161 | * rotation build from quaternion components { cos(-θ/2),
|
---|
162 | * x * sin(-θ/2), y * sin(-θ/2), z * sin(-θ/2) }.
|
---|
163 | * Note the minus sign on the angle!</p>
|
---|
164 | * <p>On the one hand this convention is consistent with a vectorial
|
---|
165 | * perspective (moving vectors in fixed frames), on the other hand it
|
---|
166 | * is different from conventions with a frame perspective (fixed vectors
|
---|
167 | * viewed from different frames) like the ones used for example in spacecraft
|
---|
168 | * attitude community or in the graphics community.</p>
|
---|
169 | * @param axis axis around which to rotate
|
---|
170 | * @param angle rotation angle.
|
---|
171 | * @exception ArithmeticException if the axis norm is zero
|
---|
172 | */
|
---|
173 | public Rotation(Vector3D axis, double angle) {
|
---|
174 |
|
---|
175 | double norm = axis.getNorm();
|
---|
176 | if (norm == 0) {
|
---|
177 | throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
|
---|
178 | }
|
---|
179 |
|
---|
180 | double halfAngle = -0.5 * angle;
|
---|
181 | double coeff = FastMath.sin(halfAngle) / norm;
|
---|
182 |
|
---|
183 | q0 = FastMath.cos (halfAngle);
|
---|
184 | q1 = coeff * axis.getX();
|
---|
185 | q2 = coeff * axis.getY();
|
---|
186 | q3 = coeff * axis.getZ();
|
---|
187 |
|
---|
188 | }
|
---|
189 |
|
---|
190 | /** Build a rotation from a 3X3 matrix.
|
---|
191 |
|
---|
192 | * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
|
---|
193 | * (which are matrices for which m.m<sup>T</sup> = I) with real
|
---|
194 | * coefficients. The module of the determinant of unit matrices is
|
---|
195 | * 1, among the orthogonal 3X3 matrices, only the ones having a
|
---|
196 | * positive determinant (+1) are rotation matrices.</p>
|
---|
197 | *
|
---|
198 | * <p>When a rotation is defined by a matrix with truncated values
|
---|
199 | * (typically when it is extracted from a technical sheet where only
|
---|
200 | * four to five significant digits are available), the matrix is not
|
---|
201 | * orthogonal anymore. This constructor handles this case
|
---|
202 | * transparently by using a copy of the given matrix and applying a
|
---|
203 | * correction to the copy in order to perfect its orthogonality. If
|
---|
204 | * the Frobenius norm of the correction needed is above the given
|
---|
205 | * threshold, then the matrix is considered to be too far from a
|
---|
206 | * true rotation matrix and an exception is thrown.<p>
|
---|
207 | *
|
---|
208 | * @param m rotation matrix
|
---|
209 | * @param threshold convergence threshold for the iterative
|
---|
210 | * orthogonality correction (convergence is reached when the
|
---|
211 | * difference between two steps of the Frobenius norm of the
|
---|
212 | * correction is below this threshold)
|
---|
213 | *
|
---|
214 | * @exception NotARotationMatrixException if the matrix is not a 3X3
|
---|
215 | * matrix, or if it cannot be transformed into an orthogonal matrix
|
---|
216 | * with the given threshold, or if the determinant of the resulting
|
---|
217 | * orthogonal matrix is negative
|
---|
218 | *
|
---|
219 | */
|
---|
220 | public Rotation(double[][] m, double threshold)
|
---|
221 | throws NotARotationMatrixException {
|
---|
222 |
|
---|
223 | // dimension check
|
---|
224 | if ((m.length != 3) || (m[0].length != 3) ||
|
---|
225 | (m[1].length != 3) || (m[2].length != 3)) {
|
---|
226 | throw new NotARotationMatrixException(
|
---|
227 | LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
|
---|
228 | m.length, m[0].length);
|
---|
229 | }
|
---|
230 |
|
---|
231 | // compute a "close" orthogonal matrix
|
---|
232 | double[][] ort = orthogonalizeMatrix(m, threshold);
|
---|
233 |
|
---|
234 | // check the sign of the determinant
|
---|
235 | double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
|
---|
236 | ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
|
---|
237 | ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
|
---|
238 | if (det < 0.0) {
|
---|
239 | throw new NotARotationMatrixException(
|
---|
240 | LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
|
---|
241 | det);
|
---|
242 | }
|
---|
243 |
|
---|
244 | // There are different ways to compute the quaternions elements
|
---|
245 | // from the matrix. They all involve computing one element from
|
---|
246 | // the diagonal of the matrix, and computing the three other ones
|
---|
247 | // using a formula involving a division by the first element,
|
---|
248 | // which unfortunately can be zero. Since the norm of the
|
---|
249 | // quaternion is 1, we know at least one element has an absolute
|
---|
250 | // value greater or equal to 0.5, so it is always possible to
|
---|
251 | // select the right formula and avoid division by zero and even
|
---|
252 | // numerical inaccuracy. Checking the elements in turn and using
|
---|
253 | // the first one greater than 0.45 is safe (this leads to a simple
|
---|
254 | // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
|
---|
255 | double s = ort[0][0] + ort[1][1] + ort[2][2];
|
---|
256 | if (s > -0.19) {
|
---|
257 | // compute q0 and deduce q1, q2 and q3
|
---|
258 | q0 = 0.5 * FastMath.sqrt(s + 1.0);
|
---|
259 | double inv = 0.25 / q0;
|
---|
260 | q1 = inv * (ort[1][2] - ort[2][1]);
|
---|
261 | q2 = inv * (ort[2][0] - ort[0][2]);
|
---|
262 | q3 = inv * (ort[0][1] - ort[1][0]);
|
---|
263 | } else {
|
---|
264 | s = ort[0][0] - ort[1][1] - ort[2][2];
|
---|
265 | if (s > -0.19) {
|
---|
266 | // compute q1 and deduce q0, q2 and q3
|
---|
267 | q1 = 0.5 * FastMath.sqrt(s + 1.0);
|
---|
268 | double inv = 0.25 / q1;
|
---|
269 | q0 = inv * (ort[1][2] - ort[2][1]);
|
---|
270 | q2 = inv * (ort[0][1] + ort[1][0]);
|
---|
271 | q3 = inv * (ort[0][2] + ort[2][0]);
|
---|
272 | } else {
|
---|
273 | s = ort[1][1] - ort[0][0] - ort[2][2];
|
---|
274 | if (s > -0.19) {
|
---|
275 | // compute q2 and deduce q0, q1 and q3
|
---|
276 | q2 = 0.5 * FastMath.sqrt(s + 1.0);
|
---|
277 | double inv = 0.25 / q2;
|
---|
278 | q0 = inv * (ort[2][0] - ort[0][2]);
|
---|
279 | q1 = inv * (ort[0][1] + ort[1][0]);
|
---|
280 | q3 = inv * (ort[2][1] + ort[1][2]);
|
---|
281 | } else {
|
---|
282 | // compute q3 and deduce q0, q1 and q2
|
---|
283 | s = ort[2][2] - ort[0][0] - ort[1][1];
|
---|
284 | q3 = 0.5 * FastMath.sqrt(s + 1.0);
|
---|
285 | double inv = 0.25 / q3;
|
---|
286 | q0 = inv * (ort[0][1] - ort[1][0]);
|
---|
287 | q1 = inv * (ort[0][2] + ort[2][0]);
|
---|
288 | q2 = inv * (ort[2][1] + ort[1][2]);
|
---|
289 | }
|
---|
290 | }
|
---|
291 | }
|
---|
292 |
|
---|
293 | }
|
---|
294 |
|
---|
295 | /** Build the rotation that transforms a pair of vector into another pair.
|
---|
296 |
|
---|
297 | * <p>Except for possible scale factors, if the instance were applied to
|
---|
298 | * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
|
---|
299 | * (v<sub>1</sub>, v<sub>2</sub>).</p>
|
---|
300 | *
|
---|
301 | * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
|
---|
302 | * not the same as the angular separation between v<sub>1</sub> and
|
---|
303 | * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
|
---|
304 | * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
|
---|
305 | * v<sub>2</sub>) plane.</p>
|
---|
306 | *
|
---|
307 | * @param u1 first vector of the origin pair
|
---|
308 | * @param u2 second vector of the origin pair
|
---|
309 | * @param v1 desired image of u1 by the rotation
|
---|
310 | * @param v2 desired image of u2 by the rotation
|
---|
311 | * @exception IllegalArgumentException if the norm of one of the vectors is zero
|
---|
312 | */
|
---|
313 | public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
|
---|
314 |
|
---|
315 | // norms computation
|
---|
316 | double u1u1 = Vector3D.dotProduct(u1, u1);
|
---|
317 | double u2u2 = Vector3D.dotProduct(u2, u2);
|
---|
318 | double v1v1 = Vector3D.dotProduct(v1, v1);
|
---|
319 | double v2v2 = Vector3D.dotProduct(v2, v2);
|
---|
320 | if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
|
---|
321 | throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
|
---|
322 | }
|
---|
323 |
|
---|
324 | double u1x = u1.getX();
|
---|
325 | double u1y = u1.getY();
|
---|
326 | double u1z = u1.getZ();
|
---|
327 |
|
---|
328 | double u2x = u2.getX();
|
---|
329 | double u2y = u2.getY();
|
---|
330 | double u2z = u2.getZ();
|
---|
331 |
|
---|
332 | // normalize v1 in order to have (v1'|v1') = (u1|u1)
|
---|
333 | double coeff = FastMath.sqrt (u1u1 / v1v1);
|
---|
334 | double v1x = coeff * v1.getX();
|
---|
335 | double v1y = coeff * v1.getY();
|
---|
336 | double v1z = coeff * v1.getZ();
|
---|
337 | v1 = new Vector3D(v1x, v1y, v1z);
|
---|
338 |
|
---|
339 | // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2)
|
---|
340 | double u1u2 = Vector3D.dotProduct(u1, u2);
|
---|
341 | double v1v2 = Vector3D.dotProduct(v1, v2);
|
---|
342 | double coeffU = u1u2 / u1u1;
|
---|
343 | double coeffV = v1v2 / u1u1;
|
---|
344 | double beta = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
|
---|
345 | double alpha = coeffU - beta * coeffV;
|
---|
346 | double v2x = alpha * v1x + beta * v2.getX();
|
---|
347 | double v2y = alpha * v1y + beta * v2.getY();
|
---|
348 | double v2z = alpha * v1z + beta * v2.getZ();
|
---|
349 | v2 = new Vector3D(v2x, v2y, v2z);
|
---|
350 |
|
---|
351 | // preliminary computation (we use explicit formulation instead
|
---|
352 | // of relying on the Vector3D class in order to avoid building lots
|
---|
353 | // of temporary objects)
|
---|
354 | Vector3D uRef = u1;
|
---|
355 | Vector3D vRef = v1;
|
---|
356 | double dx1 = v1x - u1.getX();
|
---|
357 | double dy1 = v1y - u1.getY();
|
---|
358 | double dz1 = v1z - u1.getZ();
|
---|
359 | double dx2 = v2x - u2.getX();
|
---|
360 | double dy2 = v2y - u2.getY();
|
---|
361 | double dz2 = v2z - u2.getZ();
|
---|
362 | Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2,
|
---|
363 | dz1 * dx2 - dx1 * dz2,
|
---|
364 | dx1 * dy2 - dy1 * dx2);
|
---|
365 | double c = k.getX() * (u1y * u2z - u1z * u2y) +
|
---|
366 | k.getY() * (u1z * u2x - u1x * u2z) +
|
---|
367 | k.getZ() * (u1x * u2y - u1y * u2x);
|
---|
368 |
|
---|
369 | if (c == 0) {
|
---|
370 | // the (q1, q2, q3) vector is in the (u1, u2) plane
|
---|
371 | // we try other vectors
|
---|
372 | Vector3D u3 = Vector3D.crossProduct(u1, u2);
|
---|
373 | Vector3D v3 = Vector3D.crossProduct(v1, v2);
|
---|
374 | double u3x = u3.getX();
|
---|
375 | double u3y = u3.getY();
|
---|
376 | double u3z = u3.getZ();
|
---|
377 | double v3x = v3.getX();
|
---|
378 | double v3y = v3.getY();
|
---|
379 | double v3z = v3.getZ();
|
---|
380 |
|
---|
381 | double dx3 = v3x - u3x;
|
---|
382 | double dy3 = v3y - u3y;
|
---|
383 | double dz3 = v3z - u3z;
|
---|
384 | k = new Vector3D(dy1 * dz3 - dz1 * dy3,
|
---|
385 | dz1 * dx3 - dx1 * dz3,
|
---|
386 | dx1 * dy3 - dy1 * dx3);
|
---|
387 | c = k.getX() * (u1y * u3z - u1z * u3y) +
|
---|
388 | k.getY() * (u1z * u3x - u1x * u3z) +
|
---|
389 | k.getZ() * (u1x * u3y - u1y * u3x);
|
---|
390 |
|
---|
391 | if (c == 0) {
|
---|
392 | // the (q1, q2, q3) vector is aligned with u1:
|
---|
393 | // we try (u2, u3) and (v2, v3)
|
---|
394 | k = new Vector3D(dy2 * dz3 - dz2 * dy3,
|
---|
395 | dz2 * dx3 - dx2 * dz3,
|
---|
396 | dx2 * dy3 - dy2 * dx3);
|
---|
397 | c = k.getX() * (u2y * u3z - u2z * u3y) +
|
---|
398 | k.getY() * (u2z * u3x - u2x * u3z) +
|
---|
399 | k.getZ() * (u2x * u3y - u2y * u3x);
|
---|
400 |
|
---|
401 | if (c == 0) {
|
---|
402 | // the (q1, q2, q3) vector is aligned with everything
|
---|
403 | // this is really the identity rotation
|
---|
404 | q0 = 1.0;
|
---|
405 | q1 = 0.0;
|
---|
406 | q2 = 0.0;
|
---|
407 | q3 = 0.0;
|
---|
408 | return;
|
---|
409 | }
|
---|
410 |
|
---|
411 | // we will have to use u2 and v2 to compute the scalar part
|
---|
412 | uRef = u2;
|
---|
413 | vRef = v2;
|
---|
414 |
|
---|
415 | }
|
---|
416 |
|
---|
417 | }
|
---|
418 |
|
---|
419 | // compute the vectorial part
|
---|
420 | c = FastMath.sqrt(c);
|
---|
421 | double inv = 1.0 / (c + c);
|
---|
422 | q1 = inv * k.getX();
|
---|
423 | q2 = inv * k.getY();
|
---|
424 | q3 = inv * k.getZ();
|
---|
425 |
|
---|
426 | // compute the scalar part
|
---|
427 | k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
|
---|
428 | uRef.getZ() * q1 - uRef.getX() * q3,
|
---|
429 | uRef.getX() * q2 - uRef.getY() * q1);
|
---|
430 | c = Vector3D.dotProduct(k, k);
|
---|
431 | q0 = Vector3D.dotProduct(vRef, k) / (c + c);
|
---|
432 |
|
---|
433 | }
|
---|
434 |
|
---|
435 | /** Build one of the rotations that transform one vector into another one.
|
---|
436 |
|
---|
437 | * <p>Except for a possible scale factor, if the instance were
|
---|
438 | * applied to the vector u it will produce the vector v. There is an
|
---|
439 | * infinite number of such rotations, this constructor choose the
|
---|
440 | * one with the smallest associated angle (i.e. the one whose axis
|
---|
441 | * is orthogonal to the (u, v) plane). If u and v are colinear, an
|
---|
442 | * arbitrary rotation axis is chosen.</p>
|
---|
443 | *
|
---|
444 | * @param u origin vector
|
---|
445 | * @param v desired image of u by the rotation
|
---|
446 | * @exception IllegalArgumentException if the norm of one of the vectors is zero
|
---|
447 | */
|
---|
448 | public Rotation(Vector3D u, Vector3D v) {
|
---|
449 |
|
---|
450 | double normProduct = u.getNorm() * v.getNorm();
|
---|
451 | if (normProduct == 0) {
|
---|
452 | throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
|
---|
453 | }
|
---|
454 |
|
---|
455 | double dot = Vector3D.dotProduct(u, v);
|
---|
456 |
|
---|
457 | if (dot < ((2.0e-15 - 1.0) * normProduct)) {
|
---|
458 | // special case u = -v: we select a PI angle rotation around
|
---|
459 | // an arbitrary vector orthogonal to u
|
---|
460 | Vector3D w = u.orthogonal();
|
---|
461 | q0 = 0.0;
|
---|
462 | q1 = -w.getX();
|
---|
463 | q2 = -w.getY();
|
---|
464 | q3 = -w.getZ();
|
---|
465 | } else {
|
---|
466 | // general case: (u, v) defines a plane, we select
|
---|
467 | // the shortest possible rotation: axis orthogonal to this plane
|
---|
468 | q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
|
---|
469 | double coeff = 1.0 / (2.0 * q0 * normProduct);
|
---|
470 | q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY());
|
---|
471 | q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ());
|
---|
472 | q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX());
|
---|
473 | }
|
---|
474 |
|
---|
475 | }
|
---|
476 |
|
---|
477 | /** Build a rotation from three Cardan or Euler elementary rotations.
|
---|
478 |
|
---|
479 | * <p>Cardan rotations are three successive rotations around the
|
---|
480 | * canonical axes X, Y and Z, each axis being used once. There are
|
---|
481 | * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
|
---|
482 | * rotations are three successive rotations around the canonical
|
---|
483 | * axes X, Y and Z, the first and last rotations being around the
|
---|
484 | * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
|
---|
485 | * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
|
---|
486 | * <p>Beware that many people routinely use the term Euler angles even
|
---|
487 | * for what really are Cardan angles (this confusion is especially
|
---|
488 | * widespread in the aerospace business where Roll, Pitch and Yaw angles
|
---|
489 | * are often wrongly tagged as Euler angles).</p>
|
---|
490 | *
|
---|
491 | * @param order order of rotations to use
|
---|
492 | * @param alpha1 angle of the first elementary rotation
|
---|
493 | * @param alpha2 angle of the second elementary rotation
|
---|
494 | * @param alpha3 angle of the third elementary rotation
|
---|
495 | */
|
---|
496 | public Rotation(RotationOrder order,
|
---|
497 | double alpha1, double alpha2, double alpha3) {
|
---|
498 | Rotation r1 = new Rotation(order.getA1(), alpha1);
|
---|
499 | Rotation r2 = new Rotation(order.getA2(), alpha2);
|
---|
500 | Rotation r3 = new Rotation(order.getA3(), alpha3);
|
---|
501 | Rotation composed = r1.applyTo(r2.applyTo(r3));
|
---|
502 | q0 = composed.q0;
|
---|
503 | q1 = composed.q1;
|
---|
504 | q2 = composed.q2;
|
---|
505 | q3 = composed.q3;
|
---|
506 | }
|
---|
507 |
|
---|
508 | /** Revert a rotation.
|
---|
509 | * Build a rotation which reverse the effect of another
|
---|
510 | * rotation. This means that if r(u) = v, then r.revert(v) = u. The
|
---|
511 | * instance is not changed.
|
---|
512 | * @return a new rotation whose effect is the reverse of the effect
|
---|
513 | * of the instance
|
---|
514 | */
|
---|
515 | public Rotation revert() {
|
---|
516 | return new Rotation(-q0, q1, q2, q3, false);
|
---|
517 | }
|
---|
518 |
|
---|
519 | /** Get the scalar coordinate of the quaternion.
|
---|
520 | * @return scalar coordinate of the quaternion
|
---|
521 | */
|
---|
522 | public double getQ0() {
|
---|
523 | return q0;
|
---|
524 | }
|
---|
525 |
|
---|
526 | /** Get the first coordinate of the vectorial part of the quaternion.
|
---|
527 | * @return first coordinate of the vectorial part of the quaternion
|
---|
528 | */
|
---|
529 | public double getQ1() {
|
---|
530 | return q1;
|
---|
531 | }
|
---|
532 |
|
---|
533 | /** Get the second coordinate of the vectorial part of the quaternion.
|
---|
534 | * @return second coordinate of the vectorial part of the quaternion
|
---|
535 | */
|
---|
536 | public double getQ2() {
|
---|
537 | return q2;
|
---|
538 | }
|
---|
539 |
|
---|
540 | /** Get the third coordinate of the vectorial part of the quaternion.
|
---|
541 | * @return third coordinate of the vectorial part of the quaternion
|
---|
542 | */
|
---|
543 | public double getQ3() {
|
---|
544 | return q3;
|
---|
545 | }
|
---|
546 |
|
---|
547 | /** Get the normalized axis of the rotation.
|
---|
548 | * @return normalized axis of the rotation
|
---|
549 | * @see #Rotation(Vector3D, double)
|
---|
550 | */
|
---|
551 | public Vector3D getAxis() {
|
---|
552 | double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
|
---|
553 | if (squaredSine == 0) {
|
---|
554 | return new Vector3D(1, 0, 0);
|
---|
555 | } else if (q0 < 0) {
|
---|
556 | double inverse = 1 / FastMath.sqrt(squaredSine);
|
---|
557 | return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
|
---|
558 | }
|
---|
559 | double inverse = -1 / FastMath.sqrt(squaredSine);
|
---|
560 | return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
|
---|
561 | }
|
---|
562 |
|
---|
563 | /** Get the angle of the rotation.
|
---|
564 | * @return angle of the rotation (between 0 and π)
|
---|
565 | * @see #Rotation(Vector3D, double)
|
---|
566 | */
|
---|
567 | public double getAngle() {
|
---|
568 | if ((q0 < -0.1) || (q0 > 0.1)) {
|
---|
569 | return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
|
---|
570 | } else if (q0 < 0) {
|
---|
571 | return 2 * FastMath.acos(-q0);
|
---|
572 | }
|
---|
573 | return 2 * FastMath.acos(q0);
|
---|
574 | }
|
---|
575 |
|
---|
576 | /** Get the Cardan or Euler angles corresponding to the instance.
|
---|
577 |
|
---|
578 | * <p>The equations show that each rotation can be defined by two
|
---|
579 | * different values of the Cardan or Euler angles set. For example
|
---|
580 | * if Cardan angles are used, the rotation defined by the angles
|
---|
581 | * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
|
---|
582 | * the rotation defined by the angles π + a<sub>1</sub>, π
|
---|
583 | * - a<sub>2</sub> and π + a<sub>3</sub>. This method implements
|
---|
584 | * the following arbitrary choices:</p>
|
---|
585 | * <ul>
|
---|
586 | * <li>for Cardan angles, the chosen set is the one for which the
|
---|
587 | * second angle is between -π/2 and π/2 (i.e its cosine is
|
---|
588 | * positive),</li>
|
---|
589 | * <li>for Euler angles, the chosen set is the one for which the
|
---|
590 | * second angle is between 0 and π (i.e its sine is positive).</li>
|
---|
591 | * </ul>
|
---|
592 | *
|
---|
593 | * <p>Cardan and Euler angle have a very disappointing drawback: all
|
---|
594 | * of them have singularities. This means that if the instance is
|
---|
595 | * too close to the singularities corresponding to the given
|
---|
596 | * rotation order, it will be impossible to retrieve the angles. For
|
---|
597 | * Cardan angles, this is often called gimbal lock. There is
|
---|
598 | * <em>nothing</em> to do to prevent this, it is an intrinsic problem
|
---|
599 | * with Cardan and Euler representation (but not a problem with the
|
---|
600 | * rotation itself, which is perfectly well defined). For Cardan
|
---|
601 | * angles, singularities occur when the second angle is close to
|
---|
602 | * -π/2 or +π/2, for Euler angle singularities occur when the
|
---|
603 | * second angle is close to 0 or π, this implies that the identity
|
---|
604 | * rotation is always singular for Euler angles!</p>
|
---|
605 | *
|
---|
606 | * @param order rotation order to use
|
---|
607 | * @return an array of three angles, in the order specified by the set
|
---|
608 | * @exception CardanEulerSingularityException if the rotation is
|
---|
609 | * singular with respect to the angles set specified
|
---|
610 | */
|
---|
611 | public double[] getAngles(RotationOrder order)
|
---|
612 | throws CardanEulerSingularityException {
|
---|
613 |
|
---|
614 | if (order == RotationOrder.XYZ) {
|
---|
615 |
|
---|
616 | // r (Vector3D.plusK) coordinates are :
|
---|
617 | // sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
|
---|
618 | // (-r) (Vector3D.plusI) coordinates are :
|
---|
619 | // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
|
---|
620 | // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
|
---|
621 | Vector3D v1 = applyTo(Vector3D.PLUS_K);
|
---|
622 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
|
---|
623 | if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
|
---|
624 | throw new CardanEulerSingularityException(true);
|
---|
625 | }
|
---|
626 | return new double[] {
|
---|
627 | FastMath.atan2(-(v1.getY()), v1.getZ()),
|
---|
628 | FastMath.asin(v2.getZ()),
|
---|
629 | FastMath.atan2(-(v2.getY()), v2.getX())
|
---|
630 | };
|
---|
631 |
|
---|
632 | } else if (order == RotationOrder.XZY) {
|
---|
633 |
|
---|
634 | // r (Vector3D.plusJ) coordinates are :
|
---|
635 | // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
|
---|
636 | // (-r) (Vector3D.plusI) coordinates are :
|
---|
637 | // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
|
---|
638 | // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
|
---|
639 | Vector3D v1 = applyTo(Vector3D.PLUS_J);
|
---|
640 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
|
---|
641 | if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
|
---|
642 | throw new CardanEulerSingularityException(true);
|
---|
643 | }
|
---|
644 | return new double[] {
|
---|
645 | FastMath.atan2(v1.getZ(), v1.getY()),
|
---|
646 | -FastMath.asin(v2.getY()),
|
---|
647 | FastMath.atan2(v2.getZ(), v2.getX())
|
---|
648 | };
|
---|
649 |
|
---|
650 | } else if (order == RotationOrder.YXZ) {
|
---|
651 |
|
---|
652 | // r (Vector3D.plusK) coordinates are :
|
---|
653 | // cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
|
---|
654 | // (-r) (Vector3D.plusJ) coordinates are :
|
---|
655 | // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
|
---|
656 | // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
|
---|
657 | Vector3D v1 = applyTo(Vector3D.PLUS_K);
|
---|
658 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
|
---|
659 | if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
|
---|
660 | throw new CardanEulerSingularityException(true);
|
---|
661 | }
|
---|
662 | return new double[] {
|
---|
663 | FastMath.atan2(v1.getX(), v1.getZ()),
|
---|
664 | -FastMath.asin(v2.getZ()),
|
---|
665 | FastMath.atan2(v2.getX(), v2.getY())
|
---|
666 | };
|
---|
667 |
|
---|
668 | } else if (order == RotationOrder.YZX) {
|
---|
669 |
|
---|
670 | // r (Vector3D.plusI) coordinates are :
|
---|
671 | // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
|
---|
672 | // (-r) (Vector3D.plusJ) coordinates are :
|
---|
673 | // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
|
---|
674 | // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
|
---|
675 | Vector3D v1 = applyTo(Vector3D.PLUS_I);
|
---|
676 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
|
---|
677 | if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
|
---|
678 | throw new CardanEulerSingularityException(true);
|
---|
679 | }
|
---|
680 | return new double[] {
|
---|
681 | FastMath.atan2(-(v1.getZ()), v1.getX()),
|
---|
682 | FastMath.asin(v2.getX()),
|
---|
683 | FastMath.atan2(-(v2.getZ()), v2.getY())
|
---|
684 | };
|
---|
685 |
|
---|
686 | } else if (order == RotationOrder.ZXY) {
|
---|
687 |
|
---|
688 | // r (Vector3D.plusJ) coordinates are :
|
---|
689 | // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
|
---|
690 | // (-r) (Vector3D.plusK) coordinates are :
|
---|
691 | // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
|
---|
692 | // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
|
---|
693 | Vector3D v1 = applyTo(Vector3D.PLUS_J);
|
---|
694 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
|
---|
695 | if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
|
---|
696 | throw new CardanEulerSingularityException(true);
|
---|
697 | }
|
---|
698 | return new double[] {
|
---|
699 | FastMath.atan2(-(v1.getX()), v1.getY()),
|
---|
700 | FastMath.asin(v2.getY()),
|
---|
701 | FastMath.atan2(-(v2.getX()), v2.getZ())
|
---|
702 | };
|
---|
703 |
|
---|
704 | } else if (order == RotationOrder.ZYX) {
|
---|
705 |
|
---|
706 | // r (Vector3D.plusI) coordinates are :
|
---|
707 | // cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
|
---|
708 | // (-r) (Vector3D.plusK) coordinates are :
|
---|
709 | // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
|
---|
710 | // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
|
---|
711 | Vector3D v1 = applyTo(Vector3D.PLUS_I);
|
---|
712 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
|
---|
713 | if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
|
---|
714 | throw new CardanEulerSingularityException(true);
|
---|
715 | }
|
---|
716 | return new double[] {
|
---|
717 | FastMath.atan2(v1.getY(), v1.getX()),
|
---|
718 | -FastMath.asin(v2.getX()),
|
---|
719 | FastMath.atan2(v2.getY(), v2.getZ())
|
---|
720 | };
|
---|
721 |
|
---|
722 | } else if (order == RotationOrder.XYX) {
|
---|
723 |
|
---|
724 | // r (Vector3D.plusI) coordinates are :
|
---|
725 | // cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
|
---|
726 | // (-r) (Vector3D.plusI) coordinates are :
|
---|
727 | // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
|
---|
728 | // and we can choose to have theta in the interval [0 ; PI]
|
---|
729 | Vector3D v1 = applyTo(Vector3D.PLUS_I);
|
---|
730 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
|
---|
731 | if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
|
---|
732 | throw new CardanEulerSingularityException(false);
|
---|
733 | }
|
---|
734 | return new double[] {
|
---|
735 | FastMath.atan2(v1.getY(), -v1.getZ()),
|
---|
736 | FastMath.acos(v2.getX()),
|
---|
737 | FastMath.atan2(v2.getY(), v2.getZ())
|
---|
738 | };
|
---|
739 |
|
---|
740 | } else if (order == RotationOrder.XZX) {
|
---|
741 |
|
---|
742 | // r (Vector3D.plusI) coordinates are :
|
---|
743 | // cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
|
---|
744 | // (-r) (Vector3D.plusI) coordinates are :
|
---|
745 | // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
|
---|
746 | // and we can choose to have psi in the interval [0 ; PI]
|
---|
747 | Vector3D v1 = applyTo(Vector3D.PLUS_I);
|
---|
748 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
|
---|
749 | if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
|
---|
750 | throw new CardanEulerSingularityException(false);
|
---|
751 | }
|
---|
752 | return new double[] {
|
---|
753 | FastMath.atan2(v1.getZ(), v1.getY()),
|
---|
754 | FastMath.acos(v2.getX()),
|
---|
755 | FastMath.atan2(v2.getZ(), -v2.getY())
|
---|
756 | };
|
---|
757 |
|
---|
758 | } else if (order == RotationOrder.YXY) {
|
---|
759 |
|
---|
760 | // r (Vector3D.plusJ) coordinates are :
|
---|
761 | // sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
|
---|
762 | // (-r) (Vector3D.plusJ) coordinates are :
|
---|
763 | // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
|
---|
764 | // and we can choose to have phi in the interval [0 ; PI]
|
---|
765 | Vector3D v1 = applyTo(Vector3D.PLUS_J);
|
---|
766 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
|
---|
767 | if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
|
---|
768 | throw new CardanEulerSingularityException(false);
|
---|
769 | }
|
---|
770 | return new double[] {
|
---|
771 | FastMath.atan2(v1.getX(), v1.getZ()),
|
---|
772 | FastMath.acos(v2.getY()),
|
---|
773 | FastMath.atan2(v2.getX(), -v2.getZ())
|
---|
774 | };
|
---|
775 |
|
---|
776 | } else if (order == RotationOrder.YZY) {
|
---|
777 |
|
---|
778 | // r (Vector3D.plusJ) coordinates are :
|
---|
779 | // -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
|
---|
780 | // (-r) (Vector3D.plusJ) coordinates are :
|
---|
781 | // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
|
---|
782 | // and we can choose to have psi in the interval [0 ; PI]
|
---|
783 | Vector3D v1 = applyTo(Vector3D.PLUS_J);
|
---|
784 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
|
---|
785 | if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
|
---|
786 | throw new CardanEulerSingularityException(false);
|
---|
787 | }
|
---|
788 | return new double[] {
|
---|
789 | FastMath.atan2(v1.getZ(), -v1.getX()),
|
---|
790 | FastMath.acos(v2.getY()),
|
---|
791 | FastMath.atan2(v2.getZ(), v2.getX())
|
---|
792 | };
|
---|
793 |
|
---|
794 | } else if (order == RotationOrder.ZXZ) {
|
---|
795 |
|
---|
796 | // r (Vector3D.plusK) coordinates are :
|
---|
797 | // sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
|
---|
798 | // (-r) (Vector3D.plusK) coordinates are :
|
---|
799 | // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
|
---|
800 | // and we can choose to have phi in the interval [0 ; PI]
|
---|
801 | Vector3D v1 = applyTo(Vector3D.PLUS_K);
|
---|
802 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
|
---|
803 | if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
|
---|
804 | throw new CardanEulerSingularityException(false);
|
---|
805 | }
|
---|
806 | return new double[] {
|
---|
807 | FastMath.atan2(v1.getX(), -v1.getY()),
|
---|
808 | FastMath.acos(v2.getZ()),
|
---|
809 | FastMath.atan2(v2.getX(), v2.getY())
|
---|
810 | };
|
---|
811 |
|
---|
812 | } else { // last possibility is ZYZ
|
---|
813 |
|
---|
814 | // r (Vector3D.plusK) coordinates are :
|
---|
815 | // cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
|
---|
816 | // (-r) (Vector3D.plusK) coordinates are :
|
---|
817 | // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
|
---|
818 | // and we can choose to have theta in the interval [0 ; PI]
|
---|
819 | Vector3D v1 = applyTo(Vector3D.PLUS_K);
|
---|
820 | Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
|
---|
821 | if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
|
---|
822 | throw new CardanEulerSingularityException(false);
|
---|
823 | }
|
---|
824 | return new double[] {
|
---|
825 | FastMath.atan2(v1.getY(), v1.getX()),
|
---|
826 | FastMath.acos(v2.getZ()),
|
---|
827 | FastMath.atan2(v2.getY(), -v2.getX())
|
---|
828 | };
|
---|
829 |
|
---|
830 | }
|
---|
831 |
|
---|
832 | }
|
---|
833 |
|
---|
834 | /** Get the 3X3 matrix corresponding to the instance
|
---|
835 | * @return the matrix corresponding to the instance
|
---|
836 | */
|
---|
837 | public double[][] getMatrix() {
|
---|
838 |
|
---|
839 | // products
|
---|
840 | double q0q0 = q0 * q0;
|
---|
841 | double q0q1 = q0 * q1;
|
---|
842 | double q0q2 = q0 * q2;
|
---|
843 | double q0q3 = q0 * q3;
|
---|
844 | double q1q1 = q1 * q1;
|
---|
845 | double q1q2 = q1 * q2;
|
---|
846 | double q1q3 = q1 * q3;
|
---|
847 | double q2q2 = q2 * q2;
|
---|
848 | double q2q3 = q2 * q3;
|
---|
849 | double q3q3 = q3 * q3;
|
---|
850 |
|
---|
851 | // create the matrix
|
---|
852 | double[][] m = new double[3][];
|
---|
853 | m[0] = new double[3];
|
---|
854 | m[1] = new double[3];
|
---|
855 | m[2] = new double[3];
|
---|
856 |
|
---|
857 | m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
|
---|
858 | m [1][0] = 2.0 * (q1q2 - q0q3);
|
---|
859 | m [2][0] = 2.0 * (q1q3 + q0q2);
|
---|
860 |
|
---|
861 | m [0][1] = 2.0 * (q1q2 + q0q3);
|
---|
862 | m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
|
---|
863 | m [2][1] = 2.0 * (q2q3 - q0q1);
|
---|
864 |
|
---|
865 | m [0][2] = 2.0 * (q1q3 - q0q2);
|
---|
866 | m [1][2] = 2.0 * (q2q3 + q0q1);
|
---|
867 | m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
|
---|
868 |
|
---|
869 | return m;
|
---|
870 |
|
---|
871 | }
|
---|
872 |
|
---|
873 | /** Apply the rotation to a vector.
|
---|
874 | * @param u vector to apply the rotation to
|
---|
875 | * @return a new vector which is the image of u by the rotation
|
---|
876 | */
|
---|
877 | public Vector3D applyTo(Vector3D u) {
|
---|
878 |
|
---|
879 | double x = u.getX();
|
---|
880 | double y = u.getY();
|
---|
881 | double z = u.getZ();
|
---|
882 |
|
---|
883 | double s = q1 * x + q2 * y + q3 * z;
|
---|
884 |
|
---|
885 | return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
|
---|
886 | 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
|
---|
887 | 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
|
---|
888 |
|
---|
889 | }
|
---|
890 |
|
---|
891 | /** Apply the inverse of the rotation to a vector.
|
---|
892 | * @param u vector to apply the inverse of the rotation to
|
---|
893 | * @return a new vector which such that u is its image by the rotation
|
---|
894 | */
|
---|
895 | public Vector3D applyInverseTo(Vector3D u) {
|
---|
896 |
|
---|
897 | double x = u.getX();
|
---|
898 | double y = u.getY();
|
---|
899 | double z = u.getZ();
|
---|
900 |
|
---|
901 | double s = q1 * x + q2 * y + q3 * z;
|
---|
902 | double m0 = -q0;
|
---|
903 |
|
---|
904 | return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
|
---|
905 | 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
|
---|
906 | 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
|
---|
907 |
|
---|
908 | }
|
---|
909 |
|
---|
910 | /** Apply the instance to another rotation.
|
---|
911 | * Applying the instance to a rotation is computing the composition
|
---|
912 | * in an order compliant with the following rule : let u be any
|
---|
913 | * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
|
---|
914 | * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
|
---|
915 | * where comp = applyTo(r).
|
---|
916 | * @param r rotation to apply the rotation to
|
---|
917 | * @return a new rotation which is the composition of r by the instance
|
---|
918 | */
|
---|
919 | public Rotation applyTo(Rotation r) {
|
---|
920 | return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
|
---|
921 | r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
|
---|
922 | r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
|
---|
923 | r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
|
---|
924 | false);
|
---|
925 | }
|
---|
926 |
|
---|
927 | /** Apply the inverse of the instance to another rotation.
|
---|
928 | * Applying the inverse of the instance to a rotation is computing
|
---|
929 | * the composition in an order compliant with the following rule :
|
---|
930 | * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
|
---|
931 | * let w be the inverse image of v by the instance
|
---|
932 | * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
|
---|
933 | * comp = applyInverseTo(r).
|
---|
934 | * @param r rotation to apply the rotation to
|
---|
935 | * @return a new rotation which is the composition of r by the inverse
|
---|
936 | * of the instance
|
---|
937 | */
|
---|
938 | public Rotation applyInverseTo(Rotation r) {
|
---|
939 | return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
|
---|
940 | -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
|
---|
941 | -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
|
---|
942 | -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
|
---|
943 | false);
|
---|
944 | }
|
---|
945 |
|
---|
946 | /** Perfect orthogonality on a 3X3 matrix.
|
---|
947 | * @param m initial matrix (not exactly orthogonal)
|
---|
948 | * @param threshold convergence threshold for the iterative
|
---|
949 | * orthogonality correction (convergence is reached when the
|
---|
950 | * difference between two steps of the Frobenius norm of the
|
---|
951 | * correction is below this threshold)
|
---|
952 | * @return an orthogonal matrix close to m
|
---|
953 | * @exception NotARotationMatrixException if the matrix cannot be
|
---|
954 | * orthogonalized with the given threshold after 10 iterations
|
---|
955 | */
|
---|
956 | private double[][] orthogonalizeMatrix(double[][] m, double threshold)
|
---|
957 | throws NotARotationMatrixException {
|
---|
958 | double[] m0 = m[0];
|
---|
959 | double[] m1 = m[1];
|
---|
960 | double[] m2 = m[2];
|
---|
961 | double x00 = m0[0];
|
---|
962 | double x01 = m0[1];
|
---|
963 | double x02 = m0[2];
|
---|
964 | double x10 = m1[0];
|
---|
965 | double x11 = m1[1];
|
---|
966 | double x12 = m1[2];
|
---|
967 | double x20 = m2[0];
|
---|
968 | double x21 = m2[1];
|
---|
969 | double x22 = m2[2];
|
---|
970 | double fn = 0;
|
---|
971 | double fn1;
|
---|
972 |
|
---|
973 | double[][] o = new double[3][3];
|
---|
974 | double[] o0 = o[0];
|
---|
975 | double[] o1 = o[1];
|
---|
976 | double[] o2 = o[2];
|
---|
977 |
|
---|
978 | // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
|
---|
979 | int i = 0;
|
---|
980 | while (++i < 11) {
|
---|
981 |
|
---|
982 | // Mt.Xn
|
---|
983 | double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
|
---|
984 | double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
|
---|
985 | double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
|
---|
986 | double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
|
---|
987 | double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
|
---|
988 | double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
|
---|
989 | double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
|
---|
990 | double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
|
---|
991 | double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
|
---|
992 |
|
---|
993 | // Xn+1
|
---|
994 | o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
|
---|
995 | o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
|
---|
996 | o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
|
---|
997 | o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
|
---|
998 | o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
|
---|
999 | o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
|
---|
1000 | o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
|
---|
1001 | o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
|
---|
1002 | o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
|
---|
1003 |
|
---|
1004 | // correction on each elements
|
---|
1005 | double corr00 = o0[0] - m0[0];
|
---|
1006 | double corr01 = o0[1] - m0[1];
|
---|
1007 | double corr02 = o0[2] - m0[2];
|
---|
1008 | double corr10 = o1[0] - m1[0];
|
---|
1009 | double corr11 = o1[1] - m1[1];
|
---|
1010 | double corr12 = o1[2] - m1[2];
|
---|
1011 | double corr20 = o2[0] - m2[0];
|
---|
1012 | double corr21 = o2[1] - m2[1];
|
---|
1013 | double corr22 = o2[2] - m2[2];
|
---|
1014 |
|
---|
1015 | // Frobenius norm of the correction
|
---|
1016 | fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
|
---|
1017 | corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
|
---|
1018 | corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
|
---|
1019 |
|
---|
1020 | // convergence test
|
---|
1021 | if (FastMath.abs(fn1 - fn) <= threshold)
|
---|
1022 | return o;
|
---|
1023 |
|
---|
1024 | // prepare next iteration
|
---|
1025 | x00 = o0[0];
|
---|
1026 | x01 = o0[1];
|
---|
1027 | x02 = o0[2];
|
---|
1028 | x10 = o1[0];
|
---|
1029 | x11 = o1[1];
|
---|
1030 | x12 = o1[2];
|
---|
1031 | x20 = o2[0];
|
---|
1032 | x21 = o2[1];
|
---|
1033 | x22 = o2[2];
|
---|
1034 | fn = fn1;
|
---|
1035 |
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | // the algorithm did not converge after 10 iterations
|
---|
1039 | throw new NotARotationMatrixException(
|
---|
1040 | LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
|
---|
1041 | i - 1);
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | /** Compute the <i>distance</i> between two rotations.
|
---|
1045 | * <p>The <i>distance</i> is intended here as a way to check if two
|
---|
1046 | * rotations are almost similar (i.e. they transform vectors the same way)
|
---|
1047 | * or very different. It is mathematically defined as the angle of
|
---|
1048 | * the rotation r that prepended to one of the rotations gives the other
|
---|
1049 | * one:</p>
|
---|
1050 | * <pre>
|
---|
1051 | * r<sub>1</sub>(r) = r<sub>2</sub>
|
---|
1052 | * </pre>
|
---|
1053 | * <p>This distance is an angle between 0 and π. Its value is the smallest
|
---|
1054 | * possible upper bound of the angle in radians between r<sub>1</sub>(v)
|
---|
1055 | * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
|
---|
1056 | * reached for some v. The distance is equal to 0 if and only if the two
|
---|
1057 | * rotations are identical.</p>
|
---|
1058 | * <p>Comparing two rotations should always be done using this value rather
|
---|
1059 | * than for example comparing the components of the quaternions. It is much
|
---|
1060 | * more stable, and has a geometric meaning. Also comparing quaternions
|
---|
1061 | * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
|
---|
1062 | * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
|
---|
1063 | * their components are different (they are exact opposites).</p>
|
---|
1064 | * @param r1 first rotation
|
---|
1065 | * @param r2 second rotation
|
---|
1066 | * @return <i>distance</i> between r1 and r2
|
---|
1067 | */
|
---|
1068 | public static double distance(Rotation r1, Rotation r2) {
|
---|
1069 | return r1.applyInverseTo(r2).getAngle();
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | }
|
---|