1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.distribution;
|
---|
19 |
|
---|
20 | import java.io.Serializable;
|
---|
21 |
|
---|
22 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
23 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
24 | import agents.org.apache.commons.math.special.Gamma;
|
---|
25 | import agents.org.apache.commons.math.util.FastMath;
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * Default implementation of
|
---|
29 | * {@link agents.org.apache.commons.math.distribution.WeibullDistribution}.
|
---|
30 | *
|
---|
31 | * @since 1.1
|
---|
32 | * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
|
---|
33 | */
|
---|
34 | public class WeibullDistributionImpl extends AbstractContinuousDistribution
|
---|
35 | implements WeibullDistribution, Serializable {
|
---|
36 |
|
---|
37 | /**
|
---|
38 | * Default inverse cumulative probability accuracy
|
---|
39 | * @since 2.1
|
---|
40 | */
|
---|
41 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
42 |
|
---|
43 | /** Serializable version identifier */
|
---|
44 | private static final long serialVersionUID = 8589540077390120676L;
|
---|
45 |
|
---|
46 | /** The shape parameter. */
|
---|
47 | private double shape;
|
---|
48 |
|
---|
49 | /** The scale parameter. */
|
---|
50 | private double scale;
|
---|
51 |
|
---|
52 | /** Inverse cumulative probability accuracy */
|
---|
53 | private final double solverAbsoluteAccuracy;
|
---|
54 |
|
---|
55 | /** Cached numerical mean */
|
---|
56 | private double numericalMean = Double.NaN;
|
---|
57 |
|
---|
58 | /** Whether or not the numerical mean has been calculated */
|
---|
59 | private boolean numericalMeanIsCalculated = false;
|
---|
60 |
|
---|
61 | /** Cached numerical variance */
|
---|
62 | private double numericalVariance = Double.NaN;
|
---|
63 |
|
---|
64 | /** Whether or not the numerical variance has been calculated */
|
---|
65 | private boolean numericalVarianceIsCalculated = false;
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Creates weibull distribution with the given shape and scale and a
|
---|
69 | * location equal to zero.
|
---|
70 | * @param alpha the shape parameter.
|
---|
71 | * @param beta the scale parameter.
|
---|
72 | */
|
---|
73 | public WeibullDistributionImpl(double alpha, double beta){
|
---|
74 | this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
75 | }
|
---|
76 |
|
---|
77 | /**
|
---|
78 | * Creates weibull distribution with the given shape, scale and inverse
|
---|
79 | * cumulative probability accuracy and a location equal to zero.
|
---|
80 | * @param alpha the shape parameter.
|
---|
81 | * @param beta the scale parameter.
|
---|
82 | * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
|
---|
83 | * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
|
---|
84 | * @since 2.1
|
---|
85 | */
|
---|
86 | public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy){
|
---|
87 | super();
|
---|
88 | setShapeInternal(alpha);
|
---|
89 | setScaleInternal(beta);
|
---|
90 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
91 | }
|
---|
92 |
|
---|
93 | /**
|
---|
94 | * For this distribution, X, this method returns P(X < <code>x</code>).
|
---|
95 | * @param x the value at which the CDF is evaluated.
|
---|
96 | * @return CDF evaluated at <code>x</code>.
|
---|
97 | */
|
---|
98 | public double cumulativeProbability(double x) {
|
---|
99 | double ret;
|
---|
100 | if (x <= 0.0) {
|
---|
101 | ret = 0.0;
|
---|
102 | } else {
|
---|
103 | ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape));
|
---|
104 | }
|
---|
105 | return ret;
|
---|
106 | }
|
---|
107 |
|
---|
108 | /**
|
---|
109 | * Access the shape parameter.
|
---|
110 | * @return the shape parameter.
|
---|
111 | */
|
---|
112 | public double getShape() {
|
---|
113 | return shape;
|
---|
114 | }
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * Access the scale parameter.
|
---|
118 | * @return the scale parameter.
|
---|
119 | */
|
---|
120 | public double getScale() {
|
---|
121 | return scale;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * Returns the probability density for a particular point.
|
---|
126 | *
|
---|
127 | * @param x The point at which the density should be computed.
|
---|
128 | * @return The pdf at point x.
|
---|
129 | * @since 2.1
|
---|
130 | */
|
---|
131 | @Override
|
---|
132 | public double density(double x) {
|
---|
133 | if (x < 0) {
|
---|
134 | return 0;
|
---|
135 | }
|
---|
136 |
|
---|
137 | final double xscale = x / scale;
|
---|
138 | final double xscalepow = FastMath.pow(xscale, shape - 1);
|
---|
139 |
|
---|
140 | /*
|
---|
141 | * FastMath.pow(x / scale, shape) =
|
---|
142 | * FastMath.pow(xscale, shape) =
|
---|
143 | * FastMath.pow(xscale, shape - 1) * xscale
|
---|
144 | */
|
---|
145 | final double xscalepowshape = xscalepow * xscale;
|
---|
146 |
|
---|
147 | return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape);
|
---|
148 | }
|
---|
149 |
|
---|
150 | /**
|
---|
151 | * For this distribution, X, this method returns the critical point x, such
|
---|
152 | * that P(X < x) = <code>p</code>.
|
---|
153 | * <p>
|
---|
154 | * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and
|
---|
155 | * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
|
---|
156 | *
|
---|
157 | * @param p the desired probability
|
---|
158 | * @return x, such that P(X < x) = <code>p</code>
|
---|
159 | * @throws IllegalArgumentException if <code>p</code> is not a valid
|
---|
160 | * probability.
|
---|
161 | */
|
---|
162 | @Override
|
---|
163 | public double inverseCumulativeProbability(double p) {
|
---|
164 | double ret;
|
---|
165 | if (p < 0.0 || p > 1.0) {
|
---|
166 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
167 | LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
|
---|
168 | } else if (p == 0) {
|
---|
169 | ret = 0.0;
|
---|
170 | } else if (p == 1) {
|
---|
171 | ret = Double.POSITIVE_INFINITY;
|
---|
172 | } else {
|
---|
173 | ret = scale * FastMath.pow(-FastMath.log(1.0 - p), 1.0 / shape);
|
---|
174 | }
|
---|
175 | return ret;
|
---|
176 | }
|
---|
177 |
|
---|
178 | /**
|
---|
179 | * Modify the shape parameter.
|
---|
180 | * @param alpha the new shape parameter value.
|
---|
181 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
182 | */
|
---|
183 | @Deprecated
|
---|
184 | public void setShape(double alpha) {
|
---|
185 | setShapeInternal(alpha);
|
---|
186 | invalidateParameterDependentMoments();
|
---|
187 | }
|
---|
188 | /**
|
---|
189 | * Modify the shape parameter.
|
---|
190 | * @param alpha the new shape parameter value.
|
---|
191 | */
|
---|
192 | private void setShapeInternal(double alpha) {
|
---|
193 | if (alpha <= 0.0) {
|
---|
194 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
195 | LocalizedFormats.NOT_POSITIVE_SHAPE,
|
---|
196 | alpha);
|
---|
197 | }
|
---|
198 | this.shape = alpha;
|
---|
199 | }
|
---|
200 |
|
---|
201 | /**
|
---|
202 | * Modify the scale parameter.
|
---|
203 | * @param beta the new scale parameter value.
|
---|
204 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
205 | */
|
---|
206 | @Deprecated
|
---|
207 | public void setScale(double beta) {
|
---|
208 | setScaleInternal(beta);
|
---|
209 | invalidateParameterDependentMoments();
|
---|
210 | }
|
---|
211 | /**
|
---|
212 | * Modify the scale parameter.
|
---|
213 | * @param beta the new scale parameter value.
|
---|
214 | */
|
---|
215 | private void setScaleInternal(double beta) {
|
---|
216 | if (beta <= 0.0) {
|
---|
217 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
218 | LocalizedFormats.NOT_POSITIVE_SCALE,
|
---|
219 | beta);
|
---|
220 | }
|
---|
221 | this.scale = beta;
|
---|
222 | }
|
---|
223 |
|
---|
224 | /**
|
---|
225 | * Access the domain value lower bound, based on <code>p</code>, used to
|
---|
226 | * bracket a CDF root. This method is used by
|
---|
227 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
228 | *
|
---|
229 | * @param p the desired probability for the critical value
|
---|
230 | * @return domain value lower bound, i.e.
|
---|
231 | * P(X < <i>lower bound</i>) < <code>p</code>
|
---|
232 | */
|
---|
233 | @Override
|
---|
234 | protected double getDomainLowerBound(double p) {
|
---|
235 | return 0.0;
|
---|
236 | }
|
---|
237 |
|
---|
238 | /**
|
---|
239 | * Access the domain value upper bound, based on <code>p</code>, used to
|
---|
240 | * bracket a CDF root. This method is used by
|
---|
241 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
242 | *
|
---|
243 | * @param p the desired probability for the critical value
|
---|
244 | * @return domain value upper bound, i.e.
|
---|
245 | * P(X < <i>upper bound</i>) > <code>p</code>
|
---|
246 | */
|
---|
247 | @Override
|
---|
248 | protected double getDomainUpperBound(double p) {
|
---|
249 | return Double.MAX_VALUE;
|
---|
250 | }
|
---|
251 |
|
---|
252 | /**
|
---|
253 | * Access the initial domain value, based on <code>p</code>, used to
|
---|
254 | * bracket a CDF root. This method is used by
|
---|
255 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
256 | *
|
---|
257 | * @param p the desired probability for the critical value
|
---|
258 | * @return initial domain value
|
---|
259 | */
|
---|
260 | @Override
|
---|
261 | protected double getInitialDomain(double p) {
|
---|
262 | // use median
|
---|
263 | return FastMath.pow(scale * FastMath.log(2.0), 1.0 / shape);
|
---|
264 | }
|
---|
265 |
|
---|
266 | /**
|
---|
267 | * Return the absolute accuracy setting of the solver used to estimate
|
---|
268 | * inverse cumulative probabilities.
|
---|
269 | *
|
---|
270 | * @return the solver absolute accuracy
|
---|
271 | * @since 2.1
|
---|
272 | */
|
---|
273 | @Override
|
---|
274 | protected double getSolverAbsoluteAccuracy() {
|
---|
275 | return solverAbsoluteAccuracy;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * Returns the lower bound of the support for the distribution.
|
---|
280 | *
|
---|
281 | * The lower bound of the support is always 0 no matter the parameters.
|
---|
282 | *
|
---|
283 | * @return lower bound of the support (always 0)
|
---|
284 | * @since 2.2
|
---|
285 | */
|
---|
286 | public double getSupportLowerBound() {
|
---|
287 | return 0;
|
---|
288 | }
|
---|
289 |
|
---|
290 | /**
|
---|
291 | * Returns the upper bound of the support for the distribution.
|
---|
292 | *
|
---|
293 | * The upper bound of the support is always positive infinity
|
---|
294 | * no matter the parameters.
|
---|
295 | *
|
---|
296 | * @return upper bound of the support (always Double.POSITIVE_INFINITY)
|
---|
297 | * @since 2.2
|
---|
298 | */
|
---|
299 | public double getSupportUpperBound() {
|
---|
300 | return Double.POSITIVE_INFINITY;
|
---|
301 | }
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * Calculates the mean.
|
---|
305 | *
|
---|
306 | * The mean is <code>scale * Gamma(1 + (1 / shape))</code>
|
---|
307 | * where <code>Gamma(...)</code> is the Gamma-function
|
---|
308 | *
|
---|
309 | * @return the mean
|
---|
310 | * @since 2.2
|
---|
311 | */
|
---|
312 | protected double calculateNumericalMean() {
|
---|
313 | final double sh = getShape();
|
---|
314 | final double sc = getScale();
|
---|
315 |
|
---|
316 | return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh)));
|
---|
317 | }
|
---|
318 |
|
---|
319 | /**
|
---|
320 | * Calculates the variance.
|
---|
321 | *
|
---|
322 | * The variance is
|
---|
323 | * <code>scale^2 * Gamma(1 + (2 / shape)) - mean^2</code>
|
---|
324 | * where <code>Gamma(...)</code> is the Gamma-function
|
---|
325 | *
|
---|
326 | * @return the variance
|
---|
327 | * @since 2.2
|
---|
328 | */
|
---|
329 | private double calculateNumericalVariance() {
|
---|
330 | final double sh = getShape();
|
---|
331 | final double sc = getScale();
|
---|
332 | final double mn = getNumericalMean();
|
---|
333 |
|
---|
334 | return (sc * sc) *
|
---|
335 | FastMath.exp(Gamma.logGamma(1 + (2 / sh))) -
|
---|
336 | (mn * mn);
|
---|
337 | }
|
---|
338 |
|
---|
339 | /**
|
---|
340 | * Returns the mean of the distribution.
|
---|
341 | *
|
---|
342 | * @return the mean or Double.NaN if it's not defined
|
---|
343 | * @since 2.2
|
---|
344 | */
|
---|
345 | public double getNumericalMean() {
|
---|
346 | if (!numericalMeanIsCalculated) {
|
---|
347 | numericalMean = calculateNumericalMean();
|
---|
348 | numericalMeanIsCalculated = true;
|
---|
349 | }
|
---|
350 |
|
---|
351 | return numericalMean;
|
---|
352 | }
|
---|
353 |
|
---|
354 | /**
|
---|
355 | * Returns the variance of the distribution.
|
---|
356 | *
|
---|
357 | * @return the variance (possibly Double.POSITIVE_INFINITY as
|
---|
358 | * for certain cases in {@link TDistributionImpl}) or
|
---|
359 | * Double.NaN if it's not defined
|
---|
360 | * @since 2.2
|
---|
361 | */
|
---|
362 | public double getNumericalVariance() {
|
---|
363 | if (!numericalVarianceIsCalculated) {
|
---|
364 | numericalVariance = calculateNumericalVariance();
|
---|
365 | numericalVarianceIsCalculated = true;
|
---|
366 | }
|
---|
367 |
|
---|
368 | return numericalVariance;
|
---|
369 | }
|
---|
370 |
|
---|
371 | /**
|
---|
372 | * Invalidates the cached mean and variance.
|
---|
373 | */
|
---|
374 | private void invalidateParameterDependentMoments() {
|
---|
375 | numericalMeanIsCalculated = false;
|
---|
376 | numericalVarianceIsCalculated = false;
|
---|
377 | }
|
---|
378 | }
|
---|