source: src/main/java/agents/org/apache/commons/math/distribution/TDistributionImpl.java

Last change on this file was 1, checked in by Wouter Pasman, 7 years ago

Initial import : Genius 9.0.0

File size: 9.6 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.org.apache.commons.math.distribution;
18
19import java.io.Serializable;
20
21import agents.org.apache.commons.math.MathException;
22import agents.org.apache.commons.math.MathRuntimeException;
23import agents.org.apache.commons.math.exception.util.LocalizedFormats;
24import agents.org.apache.commons.math.special.Beta;
25import agents.org.apache.commons.math.special.Gamma;
26import agents.org.apache.commons.math.util.FastMath;
27
28/**
29 * Default implementation of
30 * {@link agents.org.apache.commons.math.distribution.TDistribution}.
31 *
32 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
33 */
34public class TDistributionImpl
35 extends AbstractContinuousDistribution
36 implements TDistribution, Serializable {
37
38 /**
39 * Default inverse cumulative probability accuracy
40 * @since 2.1
41 */
42 public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
43
44 /** Serializable version identifier */
45 private static final long serialVersionUID = -5852615386664158222L;
46
47 /** The degrees of freedom*/
48 private double degreesOfFreedom;
49
50 /** Inverse cumulative probability accuracy */
51 private final double solverAbsoluteAccuracy;
52
53 /**
54 * Create a t distribution using the given degrees of freedom and the
55 * specified inverse cumulative probability absolute accuracy.
56 *
57 * @param degreesOfFreedom the degrees of freedom.
58 * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
59 * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
60 * @since 2.1
61 */
62 public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy) {
63 super();
64 setDegreesOfFreedomInternal(degreesOfFreedom);
65 solverAbsoluteAccuracy = inverseCumAccuracy;
66 }
67
68 /**
69 * Create a t distribution using the given degrees of freedom.
70 * @param degreesOfFreedom the degrees of freedom.
71 */
72 public TDistributionImpl(double degreesOfFreedom) {
73 this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
74 }
75
76 /**
77 * Modify the degrees of freedom.
78 * @param degreesOfFreedom the new degrees of freedom.
79 * @deprecated as of 2.1 (class will become immutable in 3.0)
80 */
81 @Deprecated
82 public void setDegreesOfFreedom(double degreesOfFreedom) {
83 setDegreesOfFreedomInternal(degreesOfFreedom);
84 }
85
86 /**
87 * Modify the degrees of freedom.
88 * @param newDegreesOfFreedom the new degrees of freedom.
89 */
90 private void setDegreesOfFreedomInternal(double newDegreesOfFreedom) {
91 if (newDegreesOfFreedom <= 0.0) {
92 throw MathRuntimeException.createIllegalArgumentException(
93 LocalizedFormats.NOT_POSITIVE_DEGREES_OF_FREEDOM,
94 newDegreesOfFreedom);
95 }
96 this.degreesOfFreedom = newDegreesOfFreedom;
97 }
98
99 /**
100 * Access the degrees of freedom.
101 * @return the degrees of freedom.
102 */
103 public double getDegreesOfFreedom() {
104 return degreesOfFreedom;
105 }
106
107 /**
108 * Returns the probability density for a particular point.
109 *
110 * @param x The point at which the density should be computed.
111 * @return The pdf at point x.
112 * @since 2.1
113 */
114 @Override
115 public double density(double x) {
116 final double n = degreesOfFreedom;
117 final double nPlus1Over2 = (n + 1) / 2;
118 return FastMath.exp(Gamma.logGamma(nPlus1Over2) - 0.5 * (FastMath.log(FastMath.PI) + FastMath.log(n)) -
119 Gamma.logGamma(n/2) - nPlus1Over2 * FastMath.log(1 + x * x /n));
120 }
121
122 /**
123 * For this distribution, X, this method returns P(X &lt; <code>x</code>).
124 * @param x the value at which the CDF is evaluated.
125 * @return CDF evaluated at <code>x</code>.
126 * @throws MathException if the cumulative probability can not be
127 * computed due to convergence or other numerical errors.
128 */
129 public double cumulativeProbability(double x) throws MathException{
130 double ret;
131 if (x == 0.0) {
132 ret = 0.5;
133 } else {
134 double t =
135 Beta.regularizedBeta(
136 degreesOfFreedom / (degreesOfFreedom + (x * x)),
137 0.5 * degreesOfFreedom,
138 0.5);
139 if (x < 0.0) {
140 ret = 0.5 * t;
141 } else {
142 ret = 1.0 - 0.5 * t;
143 }
144 }
145
146 return ret;
147 }
148
149 /**
150 * For this distribution, X, this method returns the critical point x, such
151 * that P(X &lt; x) = <code>p</code>.
152 * <p>
153 * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and
154 * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
155 *
156 * @param p the desired probability
157 * @return x, such that P(X &lt; x) = <code>p</code>
158 * @throws MathException if the inverse cumulative probability can not be
159 * computed due to convergence or other numerical errors.
160 * @throws IllegalArgumentException if <code>p</code> is not a valid
161 * probability.
162 */
163 @Override
164 public double inverseCumulativeProbability(final double p)
165 throws MathException {
166 if (p == 0) {
167 return Double.NEGATIVE_INFINITY;
168 }
169 if (p == 1) {
170 return Double.POSITIVE_INFINITY;
171 }
172 return super.inverseCumulativeProbability(p);
173 }
174
175 /**
176 * Access the domain value lower bound, based on <code>p</code>, used to
177 * bracket a CDF root. This method is used by
178 * {@link #inverseCumulativeProbability(double)} to find critical values.
179 *
180 * @param p the desired probability for the critical value
181 * @return domain value lower bound, i.e.
182 * P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
183 */
184 @Override
185 protected double getDomainLowerBound(double p) {
186 return -Double.MAX_VALUE;
187 }
188
189 /**
190 * Access the domain value upper bound, based on <code>p</code>, used to
191 * bracket a CDF root. This method is used by
192 * {@link #inverseCumulativeProbability(double)} to find critical values.
193 *
194 * @param p the desired probability for the critical value
195 * @return domain value upper bound, i.e.
196 * P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
197 */
198 @Override
199 protected double getDomainUpperBound(double p) {
200 return Double.MAX_VALUE;
201 }
202
203 /**
204 * Access the initial domain value, based on <code>p</code>, used to
205 * bracket a CDF root. This method is used by
206 * {@link #inverseCumulativeProbability(double)} to find critical values.
207 *
208 * @param p the desired probability for the critical value
209 * @return initial domain value
210 */
211 @Override
212 protected double getInitialDomain(double p) {
213 return 0.0;
214 }
215
216 /**
217 * Return the absolute accuracy setting of the solver used to estimate
218 * inverse cumulative probabilities.
219 *
220 * @return the solver absolute accuracy
221 * @since 2.1
222 */
223 @Override
224 protected double getSolverAbsoluteAccuracy() {
225 return solverAbsoluteAccuracy;
226 }
227
228 /**
229 * Returns the lower bound of the support for the distribution.
230 *
231 * The lower bound of the support is always negative infinity
232 * no matter the parameters.
233 *
234 * @return lower bound of the support (always Double.NEGATIVE_INFINITY)
235 * @since 2.2
236 */
237 public double getSupportLowerBound() {
238 return Double.NEGATIVE_INFINITY;
239 }
240
241 /**
242 * Returns the upper bound of the support for the distribution.
243 *
244 * The upper bound of the support is always positive infinity
245 * no matter the parameters.
246 *
247 * @return upper bound of the support (always Double.POSITIVE_INFINITY)
248 * @since 2.2
249 */
250 public double getSupportUpperBound() {
251 return Double.POSITIVE_INFINITY;
252 }
253
254 /**
255 * Returns the mean.
256 *
257 * For degrees of freedom parameter df, the mean is
258 * <ul>
259 * <li>if <code>df &gt; 1</code> then <code>0</code></li>
260 * <li>else <code>undefined</code></li>
261 * </ul>
262 *
263 * @return the mean
264 * @since 2.2
265 */
266 public double getNumericalMean() {
267 final double df = getDegreesOfFreedom();
268
269 if (df > 1) {
270 return 0;
271 }
272
273 return Double.NaN;
274 }
275
276 /**
277 * Returns the variance.
278 *
279 * For degrees of freedom parameter df, the variance is
280 * <ul>
281 * <li>if <code>df &gt; 2</code> then <code>df / (df - 2)</code> </li>
282 * <li>if <code>1 &lt; df &lt;= 2</code> then <code>positive infinity</code></li>
283 * <li>else <code>undefined</code></li>
284 * </ul>
285 *
286 * @return the variance
287 * @since 2.2
288 */
289 public double getNumericalVariance() {
290 final double df = getDegreesOfFreedom();
291
292 if (df > 2) {
293 return df / (df - 2);
294 }
295
296 if (df > 1 && df <= 2) {
297 return Double.POSITIVE_INFINITY;
298 }
299
300 return Double.NaN;
301 }
302
303}
Note: See TracBrowser for help on using the repository browser.