1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.distribution;
|
---|
18 |
|
---|
19 | import java.io.Serializable;
|
---|
20 |
|
---|
21 | import agents.org.apache.commons.math.MathException;
|
---|
22 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
23 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
24 | import agents.org.apache.commons.math.special.Beta;
|
---|
25 | import agents.org.apache.commons.math.special.Gamma;
|
---|
26 | import agents.org.apache.commons.math.util.FastMath;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * Default implementation of
|
---|
30 | * {@link agents.org.apache.commons.math.distribution.TDistribution}.
|
---|
31 | *
|
---|
32 | * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
|
---|
33 | */
|
---|
34 | public class TDistributionImpl
|
---|
35 | extends AbstractContinuousDistribution
|
---|
36 | implements TDistribution, Serializable {
|
---|
37 |
|
---|
38 | /**
|
---|
39 | * Default inverse cumulative probability accuracy
|
---|
40 | * @since 2.1
|
---|
41 | */
|
---|
42 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
43 |
|
---|
44 | /** Serializable version identifier */
|
---|
45 | private static final long serialVersionUID = -5852615386664158222L;
|
---|
46 |
|
---|
47 | /** The degrees of freedom*/
|
---|
48 | private double degreesOfFreedom;
|
---|
49 |
|
---|
50 | /** Inverse cumulative probability accuracy */
|
---|
51 | private final double solverAbsoluteAccuracy;
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Create a t distribution using the given degrees of freedom and the
|
---|
55 | * specified inverse cumulative probability absolute accuracy.
|
---|
56 | *
|
---|
57 | * @param degreesOfFreedom the degrees of freedom.
|
---|
58 | * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
|
---|
59 | * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
|
---|
60 | * @since 2.1
|
---|
61 | */
|
---|
62 | public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy) {
|
---|
63 | super();
|
---|
64 | setDegreesOfFreedomInternal(degreesOfFreedom);
|
---|
65 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
66 | }
|
---|
67 |
|
---|
68 | /**
|
---|
69 | * Create a t distribution using the given degrees of freedom.
|
---|
70 | * @param degreesOfFreedom the degrees of freedom.
|
---|
71 | */
|
---|
72 | public TDistributionImpl(double degreesOfFreedom) {
|
---|
73 | this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
74 | }
|
---|
75 |
|
---|
76 | /**
|
---|
77 | * Modify the degrees of freedom.
|
---|
78 | * @param degreesOfFreedom the new degrees of freedom.
|
---|
79 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
80 | */
|
---|
81 | @Deprecated
|
---|
82 | public void setDegreesOfFreedom(double degreesOfFreedom) {
|
---|
83 | setDegreesOfFreedomInternal(degreesOfFreedom);
|
---|
84 | }
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Modify the degrees of freedom.
|
---|
88 | * @param newDegreesOfFreedom the new degrees of freedom.
|
---|
89 | */
|
---|
90 | private void setDegreesOfFreedomInternal(double newDegreesOfFreedom) {
|
---|
91 | if (newDegreesOfFreedom <= 0.0) {
|
---|
92 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
93 | LocalizedFormats.NOT_POSITIVE_DEGREES_OF_FREEDOM,
|
---|
94 | newDegreesOfFreedom);
|
---|
95 | }
|
---|
96 | this.degreesOfFreedom = newDegreesOfFreedom;
|
---|
97 | }
|
---|
98 |
|
---|
99 | /**
|
---|
100 | * Access the degrees of freedom.
|
---|
101 | * @return the degrees of freedom.
|
---|
102 | */
|
---|
103 | public double getDegreesOfFreedom() {
|
---|
104 | return degreesOfFreedom;
|
---|
105 | }
|
---|
106 |
|
---|
107 | /**
|
---|
108 | * Returns the probability density for a particular point.
|
---|
109 | *
|
---|
110 | * @param x The point at which the density should be computed.
|
---|
111 | * @return The pdf at point x.
|
---|
112 | * @since 2.1
|
---|
113 | */
|
---|
114 | @Override
|
---|
115 | public double density(double x) {
|
---|
116 | final double n = degreesOfFreedom;
|
---|
117 | final double nPlus1Over2 = (n + 1) / 2;
|
---|
118 | return FastMath.exp(Gamma.logGamma(nPlus1Over2) - 0.5 * (FastMath.log(FastMath.PI) + FastMath.log(n)) -
|
---|
119 | Gamma.logGamma(n/2) - nPlus1Over2 * FastMath.log(1 + x * x /n));
|
---|
120 | }
|
---|
121 |
|
---|
122 | /**
|
---|
123 | * For this distribution, X, this method returns P(X < <code>x</code>).
|
---|
124 | * @param x the value at which the CDF is evaluated.
|
---|
125 | * @return CDF evaluated at <code>x</code>.
|
---|
126 | * @throws MathException if the cumulative probability can not be
|
---|
127 | * computed due to convergence or other numerical errors.
|
---|
128 | */
|
---|
129 | public double cumulativeProbability(double x) throws MathException{
|
---|
130 | double ret;
|
---|
131 | if (x == 0.0) {
|
---|
132 | ret = 0.5;
|
---|
133 | } else {
|
---|
134 | double t =
|
---|
135 | Beta.regularizedBeta(
|
---|
136 | degreesOfFreedom / (degreesOfFreedom + (x * x)),
|
---|
137 | 0.5 * degreesOfFreedom,
|
---|
138 | 0.5);
|
---|
139 | if (x < 0.0) {
|
---|
140 | ret = 0.5 * t;
|
---|
141 | } else {
|
---|
142 | ret = 1.0 - 0.5 * t;
|
---|
143 | }
|
---|
144 | }
|
---|
145 |
|
---|
146 | return ret;
|
---|
147 | }
|
---|
148 |
|
---|
149 | /**
|
---|
150 | * For this distribution, X, this method returns the critical point x, such
|
---|
151 | * that P(X < x) = <code>p</code>.
|
---|
152 | * <p>
|
---|
153 | * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and
|
---|
154 | * <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
|
---|
155 | *
|
---|
156 | * @param p the desired probability
|
---|
157 | * @return x, such that P(X < x) = <code>p</code>
|
---|
158 | * @throws MathException if the inverse cumulative probability can not be
|
---|
159 | * computed due to convergence or other numerical errors.
|
---|
160 | * @throws IllegalArgumentException if <code>p</code> is not a valid
|
---|
161 | * probability.
|
---|
162 | */
|
---|
163 | @Override
|
---|
164 | public double inverseCumulativeProbability(final double p)
|
---|
165 | throws MathException {
|
---|
166 | if (p == 0) {
|
---|
167 | return Double.NEGATIVE_INFINITY;
|
---|
168 | }
|
---|
169 | if (p == 1) {
|
---|
170 | return Double.POSITIVE_INFINITY;
|
---|
171 | }
|
---|
172 | return super.inverseCumulativeProbability(p);
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Access the domain value lower bound, based on <code>p</code>, used to
|
---|
177 | * bracket a CDF root. This method is used by
|
---|
178 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
179 | *
|
---|
180 | * @param p the desired probability for the critical value
|
---|
181 | * @return domain value lower bound, i.e.
|
---|
182 | * P(X < <i>lower bound</i>) < <code>p</code>
|
---|
183 | */
|
---|
184 | @Override
|
---|
185 | protected double getDomainLowerBound(double p) {
|
---|
186 | return -Double.MAX_VALUE;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /**
|
---|
190 | * Access the domain value upper bound, based on <code>p</code>, used to
|
---|
191 | * bracket a CDF root. This method is used by
|
---|
192 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
193 | *
|
---|
194 | * @param p the desired probability for the critical value
|
---|
195 | * @return domain value upper bound, i.e.
|
---|
196 | * P(X < <i>upper bound</i>) > <code>p</code>
|
---|
197 | */
|
---|
198 | @Override
|
---|
199 | protected double getDomainUpperBound(double p) {
|
---|
200 | return Double.MAX_VALUE;
|
---|
201 | }
|
---|
202 |
|
---|
203 | /**
|
---|
204 | * Access the initial domain value, based on <code>p</code>, used to
|
---|
205 | * bracket a CDF root. This method is used by
|
---|
206 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
207 | *
|
---|
208 | * @param p the desired probability for the critical value
|
---|
209 | * @return initial domain value
|
---|
210 | */
|
---|
211 | @Override
|
---|
212 | protected double getInitialDomain(double p) {
|
---|
213 | return 0.0;
|
---|
214 | }
|
---|
215 |
|
---|
216 | /**
|
---|
217 | * Return the absolute accuracy setting of the solver used to estimate
|
---|
218 | * inverse cumulative probabilities.
|
---|
219 | *
|
---|
220 | * @return the solver absolute accuracy
|
---|
221 | * @since 2.1
|
---|
222 | */
|
---|
223 | @Override
|
---|
224 | protected double getSolverAbsoluteAccuracy() {
|
---|
225 | return solverAbsoluteAccuracy;
|
---|
226 | }
|
---|
227 |
|
---|
228 | /**
|
---|
229 | * Returns the lower bound of the support for the distribution.
|
---|
230 | *
|
---|
231 | * The lower bound of the support is always negative infinity
|
---|
232 | * no matter the parameters.
|
---|
233 | *
|
---|
234 | * @return lower bound of the support (always Double.NEGATIVE_INFINITY)
|
---|
235 | * @since 2.2
|
---|
236 | */
|
---|
237 | public double getSupportLowerBound() {
|
---|
238 | return Double.NEGATIVE_INFINITY;
|
---|
239 | }
|
---|
240 |
|
---|
241 | /**
|
---|
242 | * Returns the upper bound of the support for the distribution.
|
---|
243 | *
|
---|
244 | * The upper bound of the support is always positive infinity
|
---|
245 | * no matter the parameters.
|
---|
246 | *
|
---|
247 | * @return upper bound of the support (always Double.POSITIVE_INFINITY)
|
---|
248 | * @since 2.2
|
---|
249 | */
|
---|
250 | public double getSupportUpperBound() {
|
---|
251 | return Double.POSITIVE_INFINITY;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /**
|
---|
255 | * Returns the mean.
|
---|
256 | *
|
---|
257 | * For degrees of freedom parameter df, the mean is
|
---|
258 | * <ul>
|
---|
259 | * <li>if <code>df > 1</code> then <code>0</code></li>
|
---|
260 | * <li>else <code>undefined</code></li>
|
---|
261 | * </ul>
|
---|
262 | *
|
---|
263 | * @return the mean
|
---|
264 | * @since 2.2
|
---|
265 | */
|
---|
266 | public double getNumericalMean() {
|
---|
267 | final double df = getDegreesOfFreedom();
|
---|
268 |
|
---|
269 | if (df > 1) {
|
---|
270 | return 0;
|
---|
271 | }
|
---|
272 |
|
---|
273 | return Double.NaN;
|
---|
274 | }
|
---|
275 |
|
---|
276 | /**
|
---|
277 | * Returns the variance.
|
---|
278 | *
|
---|
279 | * For degrees of freedom parameter df, the variance is
|
---|
280 | * <ul>
|
---|
281 | * <li>if <code>df > 2</code> then <code>df / (df - 2)</code> </li>
|
---|
282 | * <li>if <code>1 < df <= 2</code> then <code>positive infinity</code></li>
|
---|
283 | * <li>else <code>undefined</code></li>
|
---|
284 | * </ul>
|
---|
285 | *
|
---|
286 | * @return the variance
|
---|
287 | * @since 2.2
|
---|
288 | */
|
---|
289 | public double getNumericalVariance() {
|
---|
290 | final double df = getDegreesOfFreedom();
|
---|
291 |
|
---|
292 | if (df > 2) {
|
---|
293 | return df / (df - 2);
|
---|
294 | }
|
---|
295 |
|
---|
296 | if (df > 1 && df <= 2) {
|
---|
297 | return Double.POSITIVE_INFINITY;
|
---|
298 | }
|
---|
299 |
|
---|
300 | return Double.NaN;
|
---|
301 | }
|
---|
302 |
|
---|
303 | }
|
---|