1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.distribution;
|
---|
18 |
|
---|
19 | import java.io.Serializable;
|
---|
20 |
|
---|
21 | import agents.org.apache.commons.math.MathException;
|
---|
22 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
23 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
24 | import agents.org.apache.commons.math.special.Beta;
|
---|
25 | import agents.org.apache.commons.math.util.FastMath;
|
---|
26 | import agents.org.apache.commons.math.util.MathUtils;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * The default implementation of {@link PascalDistribution}.
|
---|
30 | * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
|
---|
31 | * @since 1.2
|
---|
32 | */
|
---|
33 | public class PascalDistributionImpl extends AbstractIntegerDistribution
|
---|
34 | implements PascalDistribution, Serializable {
|
---|
35 |
|
---|
36 | /** Serializable version identifier */
|
---|
37 | private static final long serialVersionUID = 6751309484392813623L;
|
---|
38 |
|
---|
39 | /** The number of successes */
|
---|
40 | private int numberOfSuccesses;
|
---|
41 |
|
---|
42 | /** The probability of success */
|
---|
43 | private double probabilityOfSuccess;
|
---|
44 |
|
---|
45 | /**
|
---|
46 | * Create a Pascal distribution with the given number of trials and
|
---|
47 | * probability of success.
|
---|
48 | * @param r the number of successes
|
---|
49 | * @param p the probability of success
|
---|
50 | */
|
---|
51 | public PascalDistributionImpl(int r, double p) {
|
---|
52 | super();
|
---|
53 | setNumberOfSuccessesInternal(r);
|
---|
54 | setProbabilityOfSuccessInternal(p);
|
---|
55 | }
|
---|
56 |
|
---|
57 | /**
|
---|
58 | * Access the number of successes for this distribution.
|
---|
59 | * @return the number of successes
|
---|
60 | */
|
---|
61 | public int getNumberOfSuccesses() {
|
---|
62 | return numberOfSuccesses;
|
---|
63 | }
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * Access the probability of success for this distribution.
|
---|
67 | * @return the probability of success
|
---|
68 | */
|
---|
69 | public double getProbabilityOfSuccess() {
|
---|
70 | return probabilityOfSuccess;
|
---|
71 | }
|
---|
72 |
|
---|
73 | /**
|
---|
74 | * Change the number of successes for this distribution.
|
---|
75 | * @param successes the new number of successes
|
---|
76 | * @throws IllegalArgumentException if <code>successes</code> is not
|
---|
77 | * positive.
|
---|
78 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
79 | */
|
---|
80 | @Deprecated
|
---|
81 | public void setNumberOfSuccesses(int successes) {
|
---|
82 | setNumberOfSuccessesInternal(successes);
|
---|
83 | }
|
---|
84 |
|
---|
85 | /**
|
---|
86 | * Change the number of successes for this distribution.
|
---|
87 | * @param successes the new number of successes
|
---|
88 | * @throws IllegalArgumentException if <code>successes</code> is not
|
---|
89 | * positive.
|
---|
90 | */
|
---|
91 | private void setNumberOfSuccessesInternal(int successes) {
|
---|
92 | if (successes < 0) {
|
---|
93 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
94 | LocalizedFormats.NEGATIVE_NUMBER_OF_SUCCESSES,
|
---|
95 | successes);
|
---|
96 | }
|
---|
97 | numberOfSuccesses = successes;
|
---|
98 | }
|
---|
99 |
|
---|
100 | /**
|
---|
101 | * Change the probability of success for this distribution.
|
---|
102 | * @param p the new probability of success
|
---|
103 | * @throws IllegalArgumentException if <code>p</code> is not a valid
|
---|
104 | * probability.
|
---|
105 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
106 | */
|
---|
107 | @Deprecated
|
---|
108 | public void setProbabilityOfSuccess(double p) {
|
---|
109 | setProbabilityOfSuccessInternal(p);
|
---|
110 | }
|
---|
111 |
|
---|
112 | /**
|
---|
113 | * Change the probability of success for this distribution.
|
---|
114 | * @param p the new probability of success
|
---|
115 | * @throws IllegalArgumentException if <code>p</code> is not a valid
|
---|
116 | * probability.
|
---|
117 | */
|
---|
118 | private void setProbabilityOfSuccessInternal(double p) {
|
---|
119 | if (p < 0.0 || p > 1.0) {
|
---|
120 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
121 | LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
|
---|
122 | }
|
---|
123 | probabilityOfSuccess = p;
|
---|
124 | }
|
---|
125 |
|
---|
126 | /**
|
---|
127 | * Access the domain value lower bound, based on <code>p</code>, used to
|
---|
128 | * bracket a PDF root.
|
---|
129 | * @param p the desired probability for the critical value
|
---|
130 | * @return domain value lower bound, i.e. P(X < <i>lower bound</i>) <
|
---|
131 | * <code>p</code>
|
---|
132 | */
|
---|
133 | @Override
|
---|
134 | protected int getDomainLowerBound(double p) {
|
---|
135 | return -1;
|
---|
136 | }
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * Access the domain value upper bound, based on <code>p</code>, used to
|
---|
140 | * bracket a PDF root.
|
---|
141 | * @param p the desired probability for the critical value
|
---|
142 | * @return domain value upper bound, i.e. P(X < <i>upper bound</i>) >
|
---|
143 | * <code>p</code>
|
---|
144 | */
|
---|
145 | @Override
|
---|
146 | protected int getDomainUpperBound(double p) {
|
---|
147 | // use MAX - 1 because MAX causes loop
|
---|
148 | return Integer.MAX_VALUE - 1;
|
---|
149 | }
|
---|
150 |
|
---|
151 | /**
|
---|
152 | * For this distribution, X, this method returns P(X ≤ x).
|
---|
153 | * @param x the value at which the PDF is evaluated
|
---|
154 | * @return PDF for this distribution
|
---|
155 | * @throws MathException if the cumulative probability can not be computed
|
---|
156 | * due to convergence or other numerical errors
|
---|
157 | */
|
---|
158 | @Override
|
---|
159 | public double cumulativeProbability(int x) throws MathException {
|
---|
160 | double ret;
|
---|
161 | if (x < 0) {
|
---|
162 | ret = 0.0;
|
---|
163 | } else {
|
---|
164 | ret = Beta.regularizedBeta(probabilityOfSuccess,
|
---|
165 | numberOfSuccesses, x + 1);
|
---|
166 | }
|
---|
167 | return ret;
|
---|
168 | }
|
---|
169 |
|
---|
170 | /**
|
---|
171 | * For this distribution, X, this method returns P(X = x).
|
---|
172 | * @param x the value at which the PMF is evaluated
|
---|
173 | * @return PMF for this distribution
|
---|
174 | */
|
---|
175 | public double probability(int x) {
|
---|
176 | double ret;
|
---|
177 | if (x < 0) {
|
---|
178 | ret = 0.0;
|
---|
179 | } else {
|
---|
180 | ret = MathUtils.binomialCoefficientDouble(x +
|
---|
181 | numberOfSuccesses - 1, numberOfSuccesses - 1) *
|
---|
182 | FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
|
---|
183 | FastMath.pow(1.0 - probabilityOfSuccess, x);
|
---|
184 | }
|
---|
185 | return ret;
|
---|
186 | }
|
---|
187 |
|
---|
188 | /**
|
---|
189 | * For this distribution, X, this method returns the largest x, such that
|
---|
190 | * P(X ≤ x) ≤ <code>p</code>.
|
---|
191 | * <p>
|
---|
192 | * Returns <code>-1</code> for p=0 and <code>Integer.MAX_VALUE</code>
|
---|
193 | * for p=1.</p>
|
---|
194 | * @param p the desired probability
|
---|
195 | * @return the largest x such that P(X ≤ x) <= p
|
---|
196 | * @throws MathException if the inverse cumulative probability can not be
|
---|
197 | * computed due to convergence or other numerical errors.
|
---|
198 | * @throws IllegalArgumentException if p < 0 or p > 1
|
---|
199 | */
|
---|
200 | @Override
|
---|
201 | public int inverseCumulativeProbability(final double p)
|
---|
202 | throws MathException {
|
---|
203 | int ret;
|
---|
204 |
|
---|
205 | // handle extreme values explicitly
|
---|
206 | if (p == 0) {
|
---|
207 | ret = -1;
|
---|
208 | } else if (p == 1) {
|
---|
209 | ret = Integer.MAX_VALUE;
|
---|
210 | } else {
|
---|
211 | ret = super.inverseCumulativeProbability(p);
|
---|
212 | }
|
---|
213 |
|
---|
214 | return ret;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /**
|
---|
218 | * Returns the lower bound of the support for the distribution.
|
---|
219 | *
|
---|
220 | * The lower bound of the support is always 0 no matter the parameters.
|
---|
221 | *
|
---|
222 | * @return lower bound of the support (always 0)
|
---|
223 | * @since 2.2
|
---|
224 | */
|
---|
225 | public int getSupportLowerBound() {
|
---|
226 | return 0;
|
---|
227 | }
|
---|
228 |
|
---|
229 | /**
|
---|
230 | * Returns the upper bound of the support for the distribution.
|
---|
231 | *
|
---|
232 | * The upper bound of the support is always positive infinity
|
---|
233 | * no matter the parameters. Positive infinity is represented
|
---|
234 | * by <code>Integer.MAX_VALUE</code> together with
|
---|
235 | * {@link #isSupportUpperBoundInclusive()} being <code>false</code>
|
---|
236 | *
|
---|
237 | * @return upper bound of the support (always <code>Integer.MAX_VALUE</code> for positive infinity)
|
---|
238 | * @since 2.2
|
---|
239 | */
|
---|
240 | public int getSupportUpperBound() {
|
---|
241 | return Integer.MAX_VALUE;
|
---|
242 | }
|
---|
243 |
|
---|
244 | /**
|
---|
245 | * Returns the mean.
|
---|
246 | *
|
---|
247 | * For number of successes <code>r</code> and
|
---|
248 | * probability of success <code>p</code>, the mean is
|
---|
249 | * <code>( r * p ) / ( 1 - p )</code>
|
---|
250 | *
|
---|
251 | * @return the mean
|
---|
252 | * @since 2.2
|
---|
253 | */
|
---|
254 | public double getNumericalMean() {
|
---|
255 | final double p = getProbabilityOfSuccess();
|
---|
256 | final double r = getNumberOfSuccesses();
|
---|
257 | return ( r * p ) / ( 1 - p );
|
---|
258 | }
|
---|
259 |
|
---|
260 | /**
|
---|
261 | * Returns the variance.
|
---|
262 | *
|
---|
263 | * For number of successes <code>r</code> and
|
---|
264 | * probability of success <code>p</code>, the mean is
|
---|
265 | * <code>( r * p ) / ( 1 - p )^2</code>
|
---|
266 | *
|
---|
267 | * @return the variance
|
---|
268 | * @since 2.2
|
---|
269 | */
|
---|
270 | public double getNumericalVariance() {
|
---|
271 | final double p = getProbabilityOfSuccess();
|
---|
272 | final double r = getNumberOfSuccesses();
|
---|
273 | final double pInv = 1 - p;
|
---|
274 | return ( r * p ) / (pInv * pInv);
|
---|
275 | }
|
---|
276 | }
|
---|