1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.distribution;
|
---|
18 |
|
---|
19 | import java.io.Serializable;
|
---|
20 |
|
---|
21 | import agents.org.apache.commons.math.MathException;
|
---|
22 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
23 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
24 | import agents.org.apache.commons.math.special.Gamma;
|
---|
25 | import agents.org.apache.commons.math.util.FastMath;
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * The default implementation of {@link GammaDistribution}.
|
---|
29 | *
|
---|
30 | * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
|
---|
31 | */
|
---|
32 | public class GammaDistributionImpl extends AbstractContinuousDistribution
|
---|
33 | implements GammaDistribution, Serializable {
|
---|
34 |
|
---|
35 | /**
|
---|
36 | * Default inverse cumulative probability accuracy
|
---|
37 | * @since 2.1
|
---|
38 | */
|
---|
39 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
40 |
|
---|
41 | /** Serializable version identifier */
|
---|
42 | private static final long serialVersionUID = -3239549463135430361L;
|
---|
43 |
|
---|
44 | /** The shape parameter. */
|
---|
45 | private double alpha;
|
---|
46 |
|
---|
47 | /** The scale parameter. */
|
---|
48 | private double beta;
|
---|
49 |
|
---|
50 | /** Inverse cumulative probability accuracy */
|
---|
51 | private final double solverAbsoluteAccuracy;
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Create a new gamma distribution with the given alpha and beta values.
|
---|
55 | * @param alpha the shape parameter.
|
---|
56 | * @param beta the scale parameter.
|
---|
57 | */
|
---|
58 | public GammaDistributionImpl(double alpha, double beta) {
|
---|
59 | this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
60 | }
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * Create a new gamma distribution with the given alpha and beta values.
|
---|
64 | * @param alpha the shape parameter.
|
---|
65 | * @param beta the scale parameter.
|
---|
66 | * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
|
---|
67 | * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
|
---|
68 | * @since 2.1
|
---|
69 | */
|
---|
70 | public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {
|
---|
71 | super();
|
---|
72 | setAlphaInternal(alpha);
|
---|
73 | setBetaInternal(beta);
|
---|
74 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
75 | }
|
---|
76 |
|
---|
77 | /**
|
---|
78 | * For this distribution, X, this method returns P(X < x).
|
---|
79 | *
|
---|
80 | * The implementation of this method is based on:
|
---|
81 | * <ul>
|
---|
82 | * <li>
|
---|
83 | * <a href="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
|
---|
84 | * Chi-Squared Distribution</a>, equation (9).</li>
|
---|
85 | * <li>Casella, G., & Berger, R. (1990). <i>Statistical Inference</i>.
|
---|
86 | * Belmont, CA: Duxbury Press.</li>
|
---|
87 | * </ul>
|
---|
88 | *
|
---|
89 | * @param x the value at which the CDF is evaluated.
|
---|
90 | * @return CDF for this distribution.
|
---|
91 | * @throws MathException if the cumulative probability can not be
|
---|
92 | * computed due to convergence or other numerical errors.
|
---|
93 | */
|
---|
94 | public double cumulativeProbability(double x) throws MathException{
|
---|
95 | double ret;
|
---|
96 |
|
---|
97 | if (x <= 0.0) {
|
---|
98 | ret = 0.0;
|
---|
99 | } else {
|
---|
100 | ret = Gamma.regularizedGammaP(alpha, x / beta);
|
---|
101 | }
|
---|
102 |
|
---|
103 | return ret;
|
---|
104 | }
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * For this distribution, X, this method returns the critical point x, such
|
---|
108 | * that P(X < x) = <code>p</code>.
|
---|
109 | * <p>
|
---|
110 | * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
|
---|
111 | *
|
---|
112 | * @param p the desired probability
|
---|
113 | * @return x, such that P(X < x) = <code>p</code>
|
---|
114 | * @throws MathException if the inverse cumulative probability can not be
|
---|
115 | * computed due to convergence or other numerical errors.
|
---|
116 | * @throws IllegalArgumentException if <code>p</code> is not a valid
|
---|
117 | * probability.
|
---|
118 | */
|
---|
119 | @Override
|
---|
120 | public double inverseCumulativeProbability(final double p)
|
---|
121 | throws MathException {
|
---|
122 | if (p == 0) {
|
---|
123 | return 0d;
|
---|
124 | }
|
---|
125 | if (p == 1) {
|
---|
126 | return Double.POSITIVE_INFINITY;
|
---|
127 | }
|
---|
128 | return super.inverseCumulativeProbability(p);
|
---|
129 | }
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * Modify the shape parameter, alpha.
|
---|
133 | * @param alpha the new shape parameter.
|
---|
134 | * @throws IllegalArgumentException if <code>alpha</code> is not positive.
|
---|
135 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
136 | */
|
---|
137 | @Deprecated
|
---|
138 | public void setAlpha(double alpha) {
|
---|
139 | setAlphaInternal(alpha);
|
---|
140 | }
|
---|
141 |
|
---|
142 | /**
|
---|
143 | * Modify the shape parameter, alpha.
|
---|
144 | * @param newAlpha the new shape parameter.
|
---|
145 | * @throws IllegalArgumentException if <code>newAlpha</code> is not positive.
|
---|
146 | */
|
---|
147 | private void setAlphaInternal(double newAlpha) {
|
---|
148 | if (newAlpha <= 0.0) {
|
---|
149 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
150 | LocalizedFormats.NOT_POSITIVE_ALPHA,
|
---|
151 | newAlpha);
|
---|
152 | }
|
---|
153 | this.alpha = newAlpha;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * Access the shape parameter, alpha
|
---|
158 | * @return alpha.
|
---|
159 | */
|
---|
160 | public double getAlpha() {
|
---|
161 | return alpha;
|
---|
162 | }
|
---|
163 |
|
---|
164 | /**
|
---|
165 | * Modify the scale parameter, beta.
|
---|
166 | * @param newBeta the new scale parameter.
|
---|
167 | * @throws IllegalArgumentException if <code>newBeta</code> is not positive.
|
---|
168 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
169 | */
|
---|
170 | @Deprecated
|
---|
171 | public void setBeta(double newBeta) {
|
---|
172 | setBetaInternal(newBeta);
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Modify the scale parameter, beta.
|
---|
177 | * @param newBeta the new scale parameter.
|
---|
178 | * @throws IllegalArgumentException if <code>newBeta</code> is not positive.
|
---|
179 | */
|
---|
180 | private void setBetaInternal(double newBeta) {
|
---|
181 | if (newBeta <= 0.0) {
|
---|
182 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
183 | LocalizedFormats.NOT_POSITIVE_BETA,
|
---|
184 | newBeta);
|
---|
185 | }
|
---|
186 | this.beta = newBeta;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /**
|
---|
190 | * Access the scale parameter, beta
|
---|
191 | * @return beta.
|
---|
192 | */
|
---|
193 | public double getBeta() {
|
---|
194 | return beta;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /**
|
---|
198 | * Returns the probability density for a particular point.
|
---|
199 | *
|
---|
200 | * @param x The point at which the density should be computed.
|
---|
201 | * @return The pdf at point x.
|
---|
202 | */
|
---|
203 | @Override
|
---|
204 | public double density(double x) {
|
---|
205 | if (x < 0) return 0;
|
---|
206 | return FastMath.pow(x / beta, alpha - 1) / beta * FastMath.exp(-x / beta) / FastMath.exp(Gamma.logGamma(alpha));
|
---|
207 | }
|
---|
208 |
|
---|
209 | /**
|
---|
210 | * Return the probability density for a particular point.
|
---|
211 | *
|
---|
212 | * @param x The point at which the density should be computed.
|
---|
213 | * @return The pdf at point x.
|
---|
214 | * @deprecated
|
---|
215 | */
|
---|
216 | @Deprecated
|
---|
217 | public double density(Double x) {
|
---|
218 | return density(x.doubleValue());
|
---|
219 | }
|
---|
220 |
|
---|
221 | /**
|
---|
222 | * Access the domain value lower bound, based on <code>p</code>, used to
|
---|
223 | * bracket a CDF root. This method is used by
|
---|
224 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
225 | *
|
---|
226 | * @param p the desired probability for the critical value
|
---|
227 | * @return domain value lower bound, i.e.
|
---|
228 | * P(X < <i>lower bound</i>) < <code>p</code>
|
---|
229 | */
|
---|
230 | @Override
|
---|
231 | protected double getDomainLowerBound(double p) {
|
---|
232 | // TODO: try to improve on this estimate
|
---|
233 | return Double.MIN_VALUE;
|
---|
234 | }
|
---|
235 |
|
---|
236 | /**
|
---|
237 | * Access the domain value upper bound, based on <code>p</code>, used to
|
---|
238 | * bracket a CDF root. This method is used by
|
---|
239 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
240 | *
|
---|
241 | * @param p the desired probability for the critical value
|
---|
242 | * @return domain value upper bound, i.e.
|
---|
243 | * P(X < <i>upper bound</i>) > <code>p</code>
|
---|
244 | */
|
---|
245 | @Override
|
---|
246 | protected double getDomainUpperBound(double p) {
|
---|
247 | // TODO: try to improve on this estimate
|
---|
248 | // NOTE: gamma is skewed to the left
|
---|
249 | // NOTE: therefore, P(X < μ) > .5
|
---|
250 |
|
---|
251 | double ret;
|
---|
252 |
|
---|
253 | if (p < .5) {
|
---|
254 | // use mean
|
---|
255 | ret = alpha * beta;
|
---|
256 | } else {
|
---|
257 | // use max value
|
---|
258 | ret = Double.MAX_VALUE;
|
---|
259 | }
|
---|
260 |
|
---|
261 | return ret;
|
---|
262 | }
|
---|
263 |
|
---|
264 | /**
|
---|
265 | * Access the initial domain value, based on <code>p</code>, used to
|
---|
266 | * bracket a CDF root. This method is used by
|
---|
267 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
268 | *
|
---|
269 | * @param p the desired probability for the critical value
|
---|
270 | * @return initial domain value
|
---|
271 | */
|
---|
272 | @Override
|
---|
273 | protected double getInitialDomain(double p) {
|
---|
274 | // TODO: try to improve on this estimate
|
---|
275 | // Gamma is skewed to the left, therefore, P(X < μ) > .5
|
---|
276 |
|
---|
277 | double ret;
|
---|
278 |
|
---|
279 | if (p < .5) {
|
---|
280 | // use 1/2 mean
|
---|
281 | ret = alpha * beta * .5;
|
---|
282 | } else {
|
---|
283 | // use mean
|
---|
284 | ret = alpha * beta;
|
---|
285 | }
|
---|
286 |
|
---|
287 | return ret;
|
---|
288 | }
|
---|
289 |
|
---|
290 | /**
|
---|
291 | * Return the absolute accuracy setting of the solver used to estimate
|
---|
292 | * inverse cumulative probabilities.
|
---|
293 | *
|
---|
294 | * @return the solver absolute accuracy
|
---|
295 | * @since 2.1
|
---|
296 | */
|
---|
297 | @Override
|
---|
298 | protected double getSolverAbsoluteAccuracy() {
|
---|
299 | return solverAbsoluteAccuracy;
|
---|
300 | }
|
---|
301 |
|
---|
302 | /**
|
---|
303 | * Returns the upper bound of the support for the distribution.
|
---|
304 | *
|
---|
305 | * The lower bound of the support is always 0, regardless of the parameters.
|
---|
306 | *
|
---|
307 | * @return lower bound of the support (always 0)
|
---|
308 | * @since 2.2
|
---|
309 | */
|
---|
310 | public double getSupportLowerBound() {
|
---|
311 | return 0;
|
---|
312 | }
|
---|
313 |
|
---|
314 | /**
|
---|
315 | * Returns the upper bound of the support for the distribution.
|
---|
316 | *
|
---|
317 | * The upper bound of the support is always positive infinity,
|
---|
318 | * regardless of the parameters.
|
---|
319 | *
|
---|
320 | * @return upper bound of the support (always Double.POSITIVE_INFINITY)
|
---|
321 | * @since 2.2
|
---|
322 | */
|
---|
323 | public double getSupportUpperBound() {
|
---|
324 | return Double.POSITIVE_INFINITY;
|
---|
325 | }
|
---|
326 |
|
---|
327 | /**
|
---|
328 | * Returns the mean.
|
---|
329 | *
|
---|
330 | * For shape parameter <code>alpha</code> and scale
|
---|
331 | * parameter <code>beta</code>, the mean is
|
---|
332 | * <code>alpha * beta</code>
|
---|
333 | *
|
---|
334 | * @return the mean
|
---|
335 | * @since 2.2
|
---|
336 | */
|
---|
337 | public double getNumericalMean() {
|
---|
338 | return getAlpha() * getBeta();
|
---|
339 | }
|
---|
340 |
|
---|
341 | /**
|
---|
342 | * Returns the variance.
|
---|
343 | *
|
---|
344 | * For shape parameter <code>alpha</code> and scale
|
---|
345 | * parameter <code>beta</code>, the variance is
|
---|
346 | * <code>alpha * beta^2</code>
|
---|
347 | *
|
---|
348 | * @return the variance
|
---|
349 | * @since 2.2
|
---|
350 | */
|
---|
351 | public double getNumericalVariance() {
|
---|
352 | final double b = getBeta();
|
---|
353 | return getAlpha() * b * b;
|
---|
354 | }
|
---|
355 | }
|
---|