1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.distribution;
|
---|
18 |
|
---|
19 | import java.io.Serializable;
|
---|
20 |
|
---|
21 | import agents.org.apache.commons.math.MathException;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * The default implementation of {@link ChiSquaredDistribution}
|
---|
25 | *
|
---|
26 | * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
|
---|
27 | */
|
---|
28 | public class ChiSquaredDistributionImpl
|
---|
29 | extends AbstractContinuousDistribution
|
---|
30 | implements ChiSquaredDistribution, Serializable {
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Default inverse cumulative probability accuracy
|
---|
34 | * @since 2.1
|
---|
35 | */
|
---|
36 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
37 |
|
---|
38 | /** Serializable version identifier */
|
---|
39 | private static final long serialVersionUID = -8352658048349159782L;
|
---|
40 |
|
---|
41 | /** Internal Gamma distribution. */
|
---|
42 | private GammaDistribution gamma;
|
---|
43 |
|
---|
44 | /** Inverse cumulative probability accuracy */
|
---|
45 | private final double solverAbsoluteAccuracy;
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * Create a Chi-Squared distribution with the given degrees of freedom.
|
---|
49 | * @param df degrees of freedom.
|
---|
50 | */
|
---|
51 | public ChiSquaredDistributionImpl(double df) {
|
---|
52 | this(df, new GammaDistributionImpl(df / 2.0, 2.0));
|
---|
53 | }
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * Create a Chi-Squared distribution with the given degrees of freedom.
|
---|
57 | * @param df degrees of freedom.
|
---|
58 | * @param g the underlying gamma distribution used to compute probabilities.
|
---|
59 | * @since 1.2
|
---|
60 | * @deprecated as of 2.1 (to avoid possibly inconsistent state, the
|
---|
61 | * "GammaDistribution" will be instantiated internally)
|
---|
62 | */
|
---|
63 | @Deprecated
|
---|
64 | public ChiSquaredDistributionImpl(double df, GammaDistribution g) {
|
---|
65 | super();
|
---|
66 | setGammaInternal(g);
|
---|
67 | setDegreesOfFreedomInternal(df);
|
---|
68 | solverAbsoluteAccuracy = DEFAULT_INVERSE_ABSOLUTE_ACCURACY;
|
---|
69 | }
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Create a Chi-Squared distribution with the given degrees of freedom and
|
---|
73 | * inverse cumulative probability accuracy.
|
---|
74 | * @param df degrees of freedom.
|
---|
75 | * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
|
---|
76 | * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
|
---|
77 | * @since 2.1
|
---|
78 | */
|
---|
79 | public ChiSquaredDistributionImpl(double df, double inverseCumAccuracy) {
|
---|
80 | super();
|
---|
81 | gamma = new GammaDistributionImpl(df / 2.0, 2.0);
|
---|
82 | setDegreesOfFreedomInternal(df);
|
---|
83 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
84 | }
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Modify the degrees of freedom.
|
---|
88 | * @param degreesOfFreedom the new degrees of freedom.
|
---|
89 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
90 | */
|
---|
91 | @Deprecated
|
---|
92 | public void setDegreesOfFreedom(double degreesOfFreedom) {
|
---|
93 | setDegreesOfFreedomInternal(degreesOfFreedom);
|
---|
94 | }
|
---|
95 | /**
|
---|
96 | * Modify the degrees of freedom.
|
---|
97 | * @param degreesOfFreedom the new degrees of freedom.
|
---|
98 | */
|
---|
99 | private void setDegreesOfFreedomInternal(double degreesOfFreedom) {
|
---|
100 | gamma.setAlpha(degreesOfFreedom / 2.0);
|
---|
101 | }
|
---|
102 |
|
---|
103 | /**
|
---|
104 | * Access the degrees of freedom.
|
---|
105 | * @return the degrees of freedom.
|
---|
106 | */
|
---|
107 | public double getDegreesOfFreedom() {
|
---|
108 | return gamma.getAlpha() * 2.0;
|
---|
109 | }
|
---|
110 |
|
---|
111 | /**
|
---|
112 | * Return the probability density for a particular point.
|
---|
113 | *
|
---|
114 | * @param x The point at which the density should be computed.
|
---|
115 | * @return The pdf at point x.
|
---|
116 | * @deprecated
|
---|
117 | */
|
---|
118 | @Deprecated
|
---|
119 | public double density(Double x) {
|
---|
120 | return density(x.doubleValue());
|
---|
121 | }
|
---|
122 |
|
---|
123 | /**
|
---|
124 | * Return the probability density for a particular point.
|
---|
125 | *
|
---|
126 | * @param x The point at which the density should be computed.
|
---|
127 | * @return The pdf at point x.
|
---|
128 | * @since 2.1
|
---|
129 | */
|
---|
130 | @Override
|
---|
131 | public double density(double x) {
|
---|
132 | return gamma.density(x);
|
---|
133 | }
|
---|
134 |
|
---|
135 | /**
|
---|
136 | * For this distribution, X, this method returns P(X < x).
|
---|
137 | * @param x the value at which the CDF is evaluated.
|
---|
138 | * @return CDF for this distribution.
|
---|
139 | * @throws MathException if the cumulative probability can not be
|
---|
140 | * computed due to convergence or other numerical errors.
|
---|
141 | */
|
---|
142 | public double cumulativeProbability(double x) throws MathException {
|
---|
143 | return gamma.cumulativeProbability(x);
|
---|
144 | }
|
---|
145 |
|
---|
146 | /**
|
---|
147 | * For this distribution, X, this method returns the critical point x, such
|
---|
148 | * that P(X < x) = <code>p</code>.
|
---|
149 | * <p>
|
---|
150 | * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
|
---|
151 | *
|
---|
152 | * @param p the desired probability
|
---|
153 | * @return x, such that P(X < x) = <code>p</code>
|
---|
154 | * @throws MathException if the inverse cumulative probability can not be
|
---|
155 | * computed due to convergence or other numerical errors.
|
---|
156 | * @throws IllegalArgumentException if <code>p</code> is not a valid
|
---|
157 | * probability.
|
---|
158 | */
|
---|
159 | @Override
|
---|
160 | public double inverseCumulativeProbability(final double p)
|
---|
161 | throws MathException {
|
---|
162 | if (p == 0) {
|
---|
163 | return 0d;
|
---|
164 | }
|
---|
165 | if (p == 1) {
|
---|
166 | return Double.POSITIVE_INFINITY;
|
---|
167 | }
|
---|
168 | return super.inverseCumulativeProbability(p);
|
---|
169 | }
|
---|
170 |
|
---|
171 | /**
|
---|
172 | * Access the domain value lower bound, based on <code>p</code>, used to
|
---|
173 | * bracket a CDF root. This method is used by
|
---|
174 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
175 | *
|
---|
176 | * @param p the desired probability for the critical value
|
---|
177 | * @return domain value lower bound, i.e.
|
---|
178 | * P(X < <i>lower bound</i>) < <code>p</code>
|
---|
179 | */
|
---|
180 | @Override
|
---|
181 | protected double getDomainLowerBound(double p) {
|
---|
182 | return Double.MIN_VALUE * gamma.getBeta();
|
---|
183 | }
|
---|
184 |
|
---|
185 | /**
|
---|
186 | * Access the domain value upper bound, based on <code>p</code>, used to
|
---|
187 | * bracket a CDF root. This method is used by
|
---|
188 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
189 | *
|
---|
190 | * @param p the desired probability for the critical value
|
---|
191 | * @return domain value upper bound, i.e.
|
---|
192 | * P(X < <i>upper bound</i>) > <code>p</code>
|
---|
193 | */
|
---|
194 | @Override
|
---|
195 | protected double getDomainUpperBound(double p) {
|
---|
196 | // NOTE: chi squared is skewed to the left
|
---|
197 | // NOTE: therefore, P(X < μ) > .5
|
---|
198 |
|
---|
199 | double ret;
|
---|
200 |
|
---|
201 | if (p < .5) {
|
---|
202 | // use mean
|
---|
203 | ret = getDegreesOfFreedom();
|
---|
204 | } else {
|
---|
205 | // use max
|
---|
206 | ret = Double.MAX_VALUE;
|
---|
207 | }
|
---|
208 |
|
---|
209 | return ret;
|
---|
210 | }
|
---|
211 |
|
---|
212 | /**
|
---|
213 | * Access the initial domain value, based on <code>p</code>, used to
|
---|
214 | * bracket a CDF root. This method is used by
|
---|
215 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
216 | *
|
---|
217 | * @param p the desired probability for the critical value
|
---|
218 | * @return initial domain value
|
---|
219 | */
|
---|
220 | @Override
|
---|
221 | protected double getInitialDomain(double p) {
|
---|
222 | // NOTE: chi squared is skewed to the left
|
---|
223 | // NOTE: therefore, P(X < μ) > .5
|
---|
224 |
|
---|
225 | double ret;
|
---|
226 |
|
---|
227 | if (p < .5) {
|
---|
228 | // use 1/2 mean
|
---|
229 | ret = getDegreesOfFreedom() * .5;
|
---|
230 | } else {
|
---|
231 | // use mean
|
---|
232 | ret = getDegreesOfFreedom();
|
---|
233 | }
|
---|
234 |
|
---|
235 | return ret;
|
---|
236 | }
|
---|
237 |
|
---|
238 | /**
|
---|
239 | * Modify the underlying gamma distribution. The caller is responsible for
|
---|
240 | * insuring the gamma distribution has the proper parameter settings.
|
---|
241 | * @param g the new distribution.
|
---|
242 | * @since 1.2 made public
|
---|
243 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
244 | */
|
---|
245 | @Deprecated
|
---|
246 | public void setGamma(GammaDistribution g) {
|
---|
247 | setGammaInternal(g);
|
---|
248 | }
|
---|
249 | /**
|
---|
250 | * Modify the underlying gamma distribution. The caller is responsible for
|
---|
251 | * insuring the gamma distribution has the proper parameter settings.
|
---|
252 | * @param g the new distribution.
|
---|
253 | * @since 1.2 made public
|
---|
254 | */
|
---|
255 | private void setGammaInternal(GammaDistribution g) {
|
---|
256 | this.gamma = g;
|
---|
257 |
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | /**
|
---|
262 | * Return the absolute accuracy setting of the solver used to estimate
|
---|
263 | * inverse cumulative probabilities.
|
---|
264 | *
|
---|
265 | * @return the solver absolute accuracy
|
---|
266 | * @since 2.1
|
---|
267 | */
|
---|
268 | @Override
|
---|
269 | protected double getSolverAbsoluteAccuracy() {
|
---|
270 | return solverAbsoluteAccuracy;
|
---|
271 | }
|
---|
272 |
|
---|
273 | /**
|
---|
274 | * Returns the lower bound of the support for the distribution.
|
---|
275 | *
|
---|
276 | * The lower bound of the support is always 0 no matter the
|
---|
277 | * degrees of freedom.
|
---|
278 | *
|
---|
279 | * @return lower bound of the support (always 0)
|
---|
280 | * @since 2.2
|
---|
281 | */
|
---|
282 | public double getSupportLowerBound() {
|
---|
283 | return 0;
|
---|
284 | }
|
---|
285 |
|
---|
286 | /**
|
---|
287 | * Returns the upper bound for the support for the distribution.
|
---|
288 | *
|
---|
289 | * The upper bound of the support is always positive infinity no matter the
|
---|
290 | * degrees of freedom.
|
---|
291 | *
|
---|
292 | * @return upper bound of the support (always Double.POSITIVE_INFINITY)
|
---|
293 | * @since 2.2
|
---|
294 | */
|
---|
295 | public double getSupportUpperBound() {
|
---|
296 | return Double.POSITIVE_INFINITY;
|
---|
297 | }
|
---|
298 |
|
---|
299 | /**
|
---|
300 | * Returns the mean of the distribution.
|
---|
301 | *
|
---|
302 | * For <code>k</code> degrees of freedom, the mean is
|
---|
303 | * <code>k</code>
|
---|
304 | *
|
---|
305 | * @return the mean
|
---|
306 | * @since 2.2
|
---|
307 | */
|
---|
308 | public double getNumericalMean() {
|
---|
309 | return getDegreesOfFreedom();
|
---|
310 | }
|
---|
311 |
|
---|
312 | /**
|
---|
313 | * Returns the variance of the distribution.
|
---|
314 | *
|
---|
315 | * For <code>k</code> degrees of freedom, the variance is
|
---|
316 | * <code>2 * k</code>
|
---|
317 | *
|
---|
318 | * @return the variance
|
---|
319 | * @since 2.2
|
---|
320 | */
|
---|
321 | public double getNumericalVariance() {
|
---|
322 | return 2*getDegreesOfFreedom();
|
---|
323 | }
|
---|
324 | }
|
---|