1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.distribution;
|
---|
18 |
|
---|
19 | import agents.org.apache.commons.math.MathException;
|
---|
20 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
21 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
22 | import agents.org.apache.commons.math.special.Beta;
|
---|
23 | import agents.org.apache.commons.math.special.Gamma;
|
---|
24 | import agents.org.apache.commons.math.util.FastMath;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * Implements the Beta distribution.
|
---|
28 | * <p>
|
---|
29 | * References:
|
---|
30 | * <ul>
|
---|
31 | * <li><a href="http://en.wikipedia.org/wiki/Beta_distribution">
|
---|
32 | * Beta distribution</a></li>
|
---|
33 | * </ul>
|
---|
34 | * </p>
|
---|
35 | * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
|
---|
36 | * @since 2.0
|
---|
37 | */
|
---|
38 | public class BetaDistributionImpl
|
---|
39 | extends AbstractContinuousDistribution implements BetaDistribution {
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Default inverse cumulative probability accuracy
|
---|
43 | * @since 2.1
|
---|
44 | */
|
---|
45 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
46 |
|
---|
47 | /** Serializable version identifier. */
|
---|
48 | private static final long serialVersionUID = -1221965979403477668L;
|
---|
49 |
|
---|
50 | /** First shape parameter. */
|
---|
51 | private double alpha;
|
---|
52 |
|
---|
53 | /** Second shape parameter. */
|
---|
54 | private double beta;
|
---|
55 |
|
---|
56 | /** Normalizing factor used in density computations.
|
---|
57 | * updated whenever alpha or beta are changed.
|
---|
58 | */
|
---|
59 | private double z;
|
---|
60 |
|
---|
61 | /** Inverse cumulative probability accuracy */
|
---|
62 | private final double solverAbsoluteAccuracy;
|
---|
63 |
|
---|
64 | /**
|
---|
65 | * Build a new instance.
|
---|
66 | * @param alpha first shape parameter (must be positive)
|
---|
67 | * @param beta second shape parameter (must be positive)
|
---|
68 | * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
|
---|
69 | * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
|
---|
70 | * @since 2.1
|
---|
71 | */
|
---|
72 | public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {
|
---|
73 | this.alpha = alpha;
|
---|
74 | this.beta = beta;
|
---|
75 | z = Double.NaN;
|
---|
76 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
77 | }
|
---|
78 |
|
---|
79 | /**
|
---|
80 | * Build a new instance.
|
---|
81 | * @param alpha first shape parameter (must be positive)
|
---|
82 | * @param beta second shape parameter (must be positive)
|
---|
83 | */
|
---|
84 | public BetaDistributionImpl(double alpha, double beta) {
|
---|
85 | this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /** {@inheritDoc}
|
---|
89 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
90 | */
|
---|
91 | @Deprecated
|
---|
92 | public void setAlpha(double alpha) {
|
---|
93 | this.alpha = alpha;
|
---|
94 | z = Double.NaN;
|
---|
95 | }
|
---|
96 |
|
---|
97 | /** {@inheritDoc} */
|
---|
98 | public double getAlpha() {
|
---|
99 | return alpha;
|
---|
100 | }
|
---|
101 |
|
---|
102 | /** {@inheritDoc}
|
---|
103 | * @deprecated as of 2.1 (class will become immutable in 3.0)
|
---|
104 | */
|
---|
105 | @Deprecated
|
---|
106 | public void setBeta(double beta) {
|
---|
107 | this.beta = beta;
|
---|
108 | z = Double.NaN;
|
---|
109 | }
|
---|
110 |
|
---|
111 | /** {@inheritDoc} */
|
---|
112 | public double getBeta() {
|
---|
113 | return beta;
|
---|
114 | }
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * Recompute the normalization factor.
|
---|
118 | */
|
---|
119 | private void recomputeZ() {
|
---|
120 | if (Double.isNaN(z)) {
|
---|
121 | z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta);
|
---|
122 | }
|
---|
123 | }
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Return the probability density for a particular point.
|
---|
127 | *
|
---|
128 | * @param x The point at which the density should be computed.
|
---|
129 | * @return The pdf at point x.
|
---|
130 | * @deprecated
|
---|
131 | */
|
---|
132 | @Deprecated
|
---|
133 | public double density(Double x) {
|
---|
134 | return density(x.doubleValue());
|
---|
135 | }
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Return the probability density for a particular point.
|
---|
139 | *
|
---|
140 | * @param x The point at which the density should be computed.
|
---|
141 | * @return The pdf at point x.
|
---|
142 | * @since 2.1
|
---|
143 | */
|
---|
144 | @Override
|
---|
145 | public double density(double x) {
|
---|
146 | recomputeZ();
|
---|
147 | if (x < 0 || x > 1) {
|
---|
148 | return 0;
|
---|
149 | } else if (x == 0) {
|
---|
150 | if (alpha < 1) {
|
---|
151 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
152 | LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA, alpha);
|
---|
153 | }
|
---|
154 | return 0;
|
---|
155 | } else if (x == 1) {
|
---|
156 | if (beta < 1) {
|
---|
157 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
158 | LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA, beta);
|
---|
159 | }
|
---|
160 | return 0;
|
---|
161 | } else {
|
---|
162 | double logX = FastMath.log(x);
|
---|
163 | double log1mX = FastMath.log1p(-x);
|
---|
164 | return FastMath.exp((alpha - 1) * logX + (beta - 1) * log1mX - z);
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | /** {@inheritDoc} */
|
---|
169 | @Override
|
---|
170 | public double inverseCumulativeProbability(double p) throws MathException {
|
---|
171 | if (p == 0) {
|
---|
172 | return 0;
|
---|
173 | } else if (p == 1) {
|
---|
174 | return 1;
|
---|
175 | } else {
|
---|
176 | return super.inverseCumulativeProbability(p);
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 | /** {@inheritDoc} */
|
---|
181 | @Override
|
---|
182 | protected double getInitialDomain(double p) {
|
---|
183 | return p;
|
---|
184 | }
|
---|
185 |
|
---|
186 | /** {@inheritDoc} */
|
---|
187 | @Override
|
---|
188 | protected double getDomainLowerBound(double p) {
|
---|
189 | return 0;
|
---|
190 | }
|
---|
191 |
|
---|
192 | /** {@inheritDoc} */
|
---|
193 | @Override
|
---|
194 | protected double getDomainUpperBound(double p) {
|
---|
195 | return 1;
|
---|
196 | }
|
---|
197 |
|
---|
198 | /** {@inheritDoc} */
|
---|
199 | public double cumulativeProbability(double x) throws MathException {
|
---|
200 | if (x <= 0) {
|
---|
201 | return 0;
|
---|
202 | } else if (x >= 1) {
|
---|
203 | return 1;
|
---|
204 | } else {
|
---|
205 | return Beta.regularizedBeta(x, alpha, beta);
|
---|
206 | }
|
---|
207 | }
|
---|
208 |
|
---|
209 | /** {@inheritDoc} */
|
---|
210 | @Override
|
---|
211 | public double cumulativeProbability(double x0, double x1) throws MathException {
|
---|
212 | return cumulativeProbability(x1) - cumulativeProbability(x0);
|
---|
213 | }
|
---|
214 |
|
---|
215 | /**
|
---|
216 | * Return the absolute accuracy setting of the solver used to estimate
|
---|
217 | * inverse cumulative probabilities.
|
---|
218 | *
|
---|
219 | * @return the solver absolute accuracy
|
---|
220 | * @since 2.1
|
---|
221 | */
|
---|
222 | @Override
|
---|
223 | protected double getSolverAbsoluteAccuracy() {
|
---|
224 | return solverAbsoluteAccuracy;
|
---|
225 | }
|
---|
226 |
|
---|
227 | /**
|
---|
228 | * Returns the lower bound of the support for this distribution.
|
---|
229 | * The support of the Beta distribution is always [0, 1], regardless
|
---|
230 | * of the parameters, so this method always returns 0.
|
---|
231 | *
|
---|
232 | * @return lower bound of the support (always 0)
|
---|
233 | * @since 2.2
|
---|
234 | */
|
---|
235 | public double getSupportLowerBound() {
|
---|
236 | return 0;
|
---|
237 | }
|
---|
238 |
|
---|
239 | /**
|
---|
240 | * Returns the upper bound of the support for this distribution.
|
---|
241 | * The support of the Beta distribution is always [0, 1], regardless
|
---|
242 | * of the parameters, so this method always returns 1.
|
---|
243 | *
|
---|
244 | * @return lower bound of the support (always 1)
|
---|
245 | * @since 2.2
|
---|
246 | */
|
---|
247 | public double getSupportUpperBound() {
|
---|
248 | return 1;
|
---|
249 | }
|
---|
250 |
|
---|
251 | /**
|
---|
252 | * Returns the mean.
|
---|
253 | *
|
---|
254 | * For first shape parameter <code>s1</code> and
|
---|
255 | * second shape parameter <code>s2</code>, the mean is
|
---|
256 | * <code>s1 / (s1 + s2)</code>
|
---|
257 | *
|
---|
258 | * @return the mean
|
---|
259 | * @since 2.2
|
---|
260 | */
|
---|
261 | public double getNumericalMean() {
|
---|
262 | final double a = getAlpha();
|
---|
263 | return a / (a + getBeta());
|
---|
264 | }
|
---|
265 |
|
---|
266 | /**
|
---|
267 | * Returns the variance.
|
---|
268 | *
|
---|
269 | * For first shape parameter <code>s1</code> and
|
---|
270 | * second shape parameter <code>s2</code>,
|
---|
271 | * the variance is
|
---|
272 | * <code>[ s1 * s2 ] / [ (s1 + s2)^2 * (s1 + s2 + 1) ]</code>
|
---|
273 | *
|
---|
274 | * @return the variance
|
---|
275 | * @since 2.2
|
---|
276 | */
|
---|
277 | public double getNumericalVariance() {
|
---|
278 | final double a = getAlpha();
|
---|
279 | final double b = getBeta();
|
---|
280 | final double alphabetasum = a + b;
|
---|
281 | return (a * b) / ((alphabetasum * alphabetasum) * (alphabetasum + 1));
|
---|
282 | }
|
---|
283 |
|
---|
284 | }
|
---|