1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.org.apache.commons.math.distribution;
|
---|
18 |
|
---|
19 | import java.io.Serializable;
|
---|
20 |
|
---|
21 | import agents.org.apache.commons.math.ConvergenceException;
|
---|
22 | import agents.org.apache.commons.math.FunctionEvaluationException;
|
---|
23 | import agents.org.apache.commons.math.MathException;
|
---|
24 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
25 | import agents.org.apache.commons.math.analysis.UnivariateRealFunction;
|
---|
26 | import agents.org.apache.commons.math.analysis.solvers.BrentSolver;
|
---|
27 | import agents.org.apache.commons.math.analysis.solvers.UnivariateRealSolverUtils;
|
---|
28 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
29 | import agents.org.apache.commons.math.random.RandomDataImpl;
|
---|
30 | import agents.org.apache.commons.math.util.FastMath;
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Base class for continuous distributions. Default implementations are
|
---|
34 | * provided for some of the methods that do not vary from distribution to
|
---|
35 | * distribution.
|
---|
36 | *
|
---|
37 | * @version $Revision: 1073498 $ $Date: 2011-02-22 21:57:26 +0100 (mar. 22 févr. 2011) $
|
---|
38 | */
|
---|
39 | public abstract class AbstractContinuousDistribution
|
---|
40 | extends AbstractDistribution
|
---|
41 | implements ContinuousDistribution, Serializable {
|
---|
42 |
|
---|
43 | /** Serializable version identifier */
|
---|
44 | private static final long serialVersionUID = -38038050983108802L;
|
---|
45 |
|
---|
46 | /**
|
---|
47 | * RandomData instance used to generate samples from the distribution
|
---|
48 | * @since 2.2
|
---|
49 | */
|
---|
50 | protected final RandomDataImpl randomData = new RandomDataImpl();
|
---|
51 |
|
---|
52 | /**
|
---|
53 | * Solver absolute accuracy for inverse cumulative computation
|
---|
54 | * @since 2.1
|
---|
55 | */
|
---|
56 | private double solverAbsoluteAccuracy = BrentSolver.DEFAULT_ABSOLUTE_ACCURACY;
|
---|
57 |
|
---|
58 | /**
|
---|
59 | * Default constructor.
|
---|
60 | */
|
---|
61 | protected AbstractContinuousDistribution() {
|
---|
62 | super();
|
---|
63 | }
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * Return the probability density for a particular point.
|
---|
67 | * @param x The point at which the density should be computed.
|
---|
68 | * @return The pdf at point x.
|
---|
69 | * @throws MathRuntimeException if the specialized class hasn't implemented this function
|
---|
70 | * @since 2.1
|
---|
71 | */
|
---|
72 | public double density(double x) throws MathRuntimeException {
|
---|
73 | throw new MathRuntimeException(new UnsupportedOperationException(),
|
---|
74 | LocalizedFormats.NO_DENSITY_FOR_THIS_DISTRIBUTION);
|
---|
75 | }
|
---|
76 |
|
---|
77 | /**
|
---|
78 | * For this distribution, X, this method returns the critical point x, such
|
---|
79 | * that P(X < x) = <code>p</code>.
|
---|
80 | *
|
---|
81 | * @param p the desired probability
|
---|
82 | * @return x, such that P(X < x) = <code>p</code>
|
---|
83 | * @throws MathException if the inverse cumulative probability can not be
|
---|
84 | * computed due to convergence or other numerical errors.
|
---|
85 | * @throws IllegalArgumentException if <code>p</code> is not a valid
|
---|
86 | * probability.
|
---|
87 | */
|
---|
88 | public double inverseCumulativeProbability(final double p)
|
---|
89 | throws MathException {
|
---|
90 | if (p < 0.0 || p > 1.0) {
|
---|
91 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
92 | LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
|
---|
93 | }
|
---|
94 |
|
---|
95 | // by default, do simple root finding using bracketing and default solver.
|
---|
96 | // subclasses can override if there is a better method.
|
---|
97 | UnivariateRealFunction rootFindingFunction =
|
---|
98 | new UnivariateRealFunction() {
|
---|
99 | public double value(double x) throws FunctionEvaluationException {
|
---|
100 | double ret = Double.NaN;
|
---|
101 | try {
|
---|
102 | ret = cumulativeProbability(x) - p;
|
---|
103 | } catch (MathException ex) {
|
---|
104 | throw new FunctionEvaluationException(x, ex.getSpecificPattern(), ex.getGeneralPattern(), ex.getArguments());
|
---|
105 | }
|
---|
106 | if (Double.isNaN(ret)) {
|
---|
107 | throw new FunctionEvaluationException(x, LocalizedFormats.CUMULATIVE_PROBABILITY_RETURNED_NAN, x, p);
|
---|
108 | }
|
---|
109 | return ret;
|
---|
110 | }
|
---|
111 | };
|
---|
112 |
|
---|
113 | // Try to bracket root, test domain endpoints if this fails
|
---|
114 | double lowerBound = getDomainLowerBound(p);
|
---|
115 | double upperBound = getDomainUpperBound(p);
|
---|
116 | double[] bracket = null;
|
---|
117 | try {
|
---|
118 | bracket = UnivariateRealSolverUtils.bracket(
|
---|
119 | rootFindingFunction, getInitialDomain(p),
|
---|
120 | lowerBound, upperBound);
|
---|
121 | } catch (ConvergenceException ex) {
|
---|
122 | /*
|
---|
123 | * Check domain endpoints to see if one gives value that is within
|
---|
124 | * the default solver's defaultAbsoluteAccuracy of 0 (will be the
|
---|
125 | * case if density has bounded support and p is 0 or 1).
|
---|
126 | */
|
---|
127 | if (FastMath.abs(rootFindingFunction.value(lowerBound)) < getSolverAbsoluteAccuracy()) {
|
---|
128 | return lowerBound;
|
---|
129 | }
|
---|
130 | if (FastMath.abs(rootFindingFunction.value(upperBound)) < getSolverAbsoluteAccuracy()) {
|
---|
131 | return upperBound;
|
---|
132 | }
|
---|
133 | // Failed bracket convergence was not because of corner solution
|
---|
134 | throw new MathException(ex);
|
---|
135 | }
|
---|
136 |
|
---|
137 | // find root
|
---|
138 | double root = UnivariateRealSolverUtils.solve(rootFindingFunction,
|
---|
139 | // override getSolverAbsoluteAccuracy() to use a Brent solver with
|
---|
140 | // absolute accuracy different from BrentSolver default
|
---|
141 | bracket[0],bracket[1], getSolverAbsoluteAccuracy());
|
---|
142 | return root;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /**
|
---|
146 | * Reseeds the random generator used to generate samples.
|
---|
147 | *
|
---|
148 | * @param seed the new seed
|
---|
149 | * @since 2.2
|
---|
150 | */
|
---|
151 | public void reseedRandomGenerator(long seed) {
|
---|
152 | randomData.reSeed(seed);
|
---|
153 | }
|
---|
154 |
|
---|
155 | /**
|
---|
156 | * Generates a random value sampled from this distribution. The default
|
---|
157 | * implementation uses the
|
---|
158 | * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
|
---|
159 | *
|
---|
160 | * @return random value
|
---|
161 | * @since 2.2
|
---|
162 | * @throws MathException if an error occurs generating the random value
|
---|
163 | */
|
---|
164 | public double sample() throws MathException {
|
---|
165 | return randomData.nextInversionDeviate(this);
|
---|
166 | }
|
---|
167 |
|
---|
168 | /**
|
---|
169 | * Generates a random sample from the distribution. The default implementation
|
---|
170 | * generates the sample by calling {@link #sample()} in a loop.
|
---|
171 | *
|
---|
172 | * @param sampleSize number of random values to generate
|
---|
173 | * @since 2.2
|
---|
174 | * @return an array representing the random sample
|
---|
175 | * @throws MathException if an error occurs generating the sample
|
---|
176 | * @throws IllegalArgumentException if sampleSize is not positive
|
---|
177 | */
|
---|
178 | public double[] sample(int sampleSize) throws MathException {
|
---|
179 | if (sampleSize <= 0) {
|
---|
180 | MathRuntimeException.createIllegalArgumentException(LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, sampleSize);
|
---|
181 | }
|
---|
182 | double[] out = new double[sampleSize];
|
---|
183 | for (int i = 0; i < sampleSize; i++) {
|
---|
184 | out[i] = sample();
|
---|
185 | }
|
---|
186 | return out;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /**
|
---|
190 | * Access the initial domain value, based on <code>p</code>, used to
|
---|
191 | * bracket a CDF root. This method is used by
|
---|
192 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
193 | *
|
---|
194 | * @param p the desired probability for the critical value
|
---|
195 | * @return initial domain value
|
---|
196 | */
|
---|
197 | protected abstract double getInitialDomain(double p);
|
---|
198 |
|
---|
199 | /**
|
---|
200 | * Access the domain value lower bound, based on <code>p</code>, used to
|
---|
201 | * bracket a CDF root. This method is used by
|
---|
202 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
203 | *
|
---|
204 | * @param p the desired probability for the critical value
|
---|
205 | * @return domain value lower bound, i.e.
|
---|
206 | * P(X < <i>lower bound</i>) < <code>p</code>
|
---|
207 | */
|
---|
208 | protected abstract double getDomainLowerBound(double p);
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * Access the domain value upper bound, based on <code>p</code>, used to
|
---|
212 | * bracket a CDF root. This method is used by
|
---|
213 | * {@link #inverseCumulativeProbability(double)} to find critical values.
|
---|
214 | *
|
---|
215 | * @param p the desired probability for the critical value
|
---|
216 | * @return domain value upper bound, i.e.
|
---|
217 | * P(X < <i>upper bound</i>) > <code>p</code>
|
---|
218 | */
|
---|
219 | protected abstract double getDomainUpperBound(double p);
|
---|
220 |
|
---|
221 | /**
|
---|
222 | * Returns the solver absolute accuracy for inverse cumulative computation.
|
---|
223 | *
|
---|
224 | * @return the maximum absolute error in inverse cumulative probability estimates
|
---|
225 | * @since 2.1
|
---|
226 | */
|
---|
227 | protected double getSolverAbsoluteAccuracy() {
|
---|
228 | return solverAbsoluteAccuracy;
|
---|
229 | }
|
---|
230 |
|
---|
231 | }
|
---|