1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.dfp;
|
---|
19 |
|
---|
20 | /** Mathematical routines for use with {@link Dfp}.
|
---|
21 | * The constants are defined in {@link DfpField}
|
---|
22 | * @version $Revision: 1042376 $ $Date: 2010-12-05 16:54:55 +0100 (dim. 05 déc. 2010) $
|
---|
23 | * @since 2.2
|
---|
24 | */
|
---|
25 | public class DfpMath {
|
---|
26 |
|
---|
27 | /** Name for traps triggered by pow. */
|
---|
28 | private static final String POW_TRAP = "pow";
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Private Constructor.
|
---|
32 | */
|
---|
33 | private DfpMath() {
|
---|
34 | }
|
---|
35 |
|
---|
36 | /** Breaks a string representation up into two dfp's.
|
---|
37 | * <p>The two dfp are such that the sum of them is equivalent
|
---|
38 | * to the input string, but has higher precision than using a
|
---|
39 | * single dfp. This is useful for improving accuracy of
|
---|
40 | * exponentiation and critical multiplies.
|
---|
41 | * @param field field to which the Dfp must belong
|
---|
42 | * @param a string representation to split
|
---|
43 | * @return an array of two {@link Dfp} which sum is a
|
---|
44 | */
|
---|
45 | protected static Dfp[] split(final DfpField field, final String a) {
|
---|
46 | Dfp result[] = new Dfp[2];
|
---|
47 | char[] buf;
|
---|
48 | boolean leading = true;
|
---|
49 | int sp = 0;
|
---|
50 | int sig = 0;
|
---|
51 |
|
---|
52 | buf = new char[a.length()];
|
---|
53 |
|
---|
54 | for (int i = 0; i < buf.length; i++) {
|
---|
55 | buf[i] = a.charAt(i);
|
---|
56 |
|
---|
57 | if (buf[i] >= '1' && buf[i] <= '9') {
|
---|
58 | leading = false;
|
---|
59 | }
|
---|
60 |
|
---|
61 | if (buf[i] == '.') {
|
---|
62 | sig += (400 - sig) % 4;
|
---|
63 | leading = false;
|
---|
64 | }
|
---|
65 |
|
---|
66 | if (sig == (field.getRadixDigits() / 2) * 4) {
|
---|
67 | sp = i;
|
---|
68 | break;
|
---|
69 | }
|
---|
70 |
|
---|
71 | if (buf[i] >= '0' && buf[i] <= '9' && !leading) {
|
---|
72 | sig ++;
|
---|
73 | }
|
---|
74 | }
|
---|
75 |
|
---|
76 | result[0] = field.newDfp(new String(buf, 0, sp));
|
---|
77 |
|
---|
78 | for (int i = 0; i < buf.length; i++) {
|
---|
79 | buf[i] = a.charAt(i);
|
---|
80 | if (buf[i] >= '0' && buf[i] <= '9' && i < sp) {
|
---|
81 | buf[i] = '0';
|
---|
82 | }
|
---|
83 | }
|
---|
84 |
|
---|
85 | result[1] = field.newDfp(new String(buf));
|
---|
86 |
|
---|
87 | return result;
|
---|
88 | }
|
---|
89 |
|
---|
90 | /** Splits a {@link Dfp} into 2 {@link Dfp}'s such that their sum is equal to the input {@link Dfp}.
|
---|
91 | * @param a number to split
|
---|
92 | * @return two elements array containing the split number
|
---|
93 | */
|
---|
94 | protected static Dfp[] split(final Dfp a) {
|
---|
95 | final Dfp[] result = new Dfp[2];
|
---|
96 | final Dfp shift = a.multiply(a.power10K(a.getRadixDigits() / 2));
|
---|
97 | result[0] = a.add(shift).subtract(shift);
|
---|
98 | result[1] = a.subtract(result[0]);
|
---|
99 | return result;
|
---|
100 | }
|
---|
101 |
|
---|
102 | /** Multiply two numbers that are split in to two pieces that are
|
---|
103 | * meant to be added together.
|
---|
104 | * Use binomial multiplication so ab = a0 b0 + a0 b1 + a1 b0 + a1 b1
|
---|
105 | * Store the first term in result0, the rest in result1
|
---|
106 | * @param a first factor of the multiplication, in split form
|
---|
107 | * @param b second factor of the multiplication, in split form
|
---|
108 | * @return a × b, in split form
|
---|
109 | */
|
---|
110 | protected static Dfp[] splitMult(final Dfp[] a, final Dfp[] b) {
|
---|
111 | final Dfp[] result = new Dfp[2];
|
---|
112 |
|
---|
113 | result[1] = a[0].getZero();
|
---|
114 | result[0] = a[0].multiply(b[0]);
|
---|
115 |
|
---|
116 | /* If result[0] is infinite or zero, don't compute result[1].
|
---|
117 | * Attempting to do so may produce NaNs.
|
---|
118 | */
|
---|
119 |
|
---|
120 | if (result[0].classify() == Dfp.INFINITE || result[0].equals(result[1])) {
|
---|
121 | return result;
|
---|
122 | }
|
---|
123 |
|
---|
124 | result[1] = a[0].multiply(b[1]).add(a[1].multiply(b[0])).add(a[1].multiply(b[1]));
|
---|
125 |
|
---|
126 | return result;
|
---|
127 | }
|
---|
128 |
|
---|
129 | /** Divide two numbers that are split in to two pieces that are meant to be added together.
|
---|
130 | * Inverse of split multiply above:
|
---|
131 | * (a+b) / (c+d) = (a/c) + ( (bc-ad)/(c**2+cd) )
|
---|
132 | * @param a dividend, in split form
|
---|
133 | * @param b divisor, in split form
|
---|
134 | * @return a / b, in split form
|
---|
135 | */
|
---|
136 | protected static Dfp[] splitDiv(final Dfp[] a, final Dfp[] b) {
|
---|
137 | final Dfp[] result;
|
---|
138 |
|
---|
139 | result = new Dfp[2];
|
---|
140 |
|
---|
141 | result[0] = a[0].divide(b[0]);
|
---|
142 | result[1] = a[1].multiply(b[0]).subtract(a[0].multiply(b[1]));
|
---|
143 | result[1] = result[1].divide(b[0].multiply(b[0]).add(b[0].multiply(b[1])));
|
---|
144 |
|
---|
145 | return result;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /** Raise a split base to the a power.
|
---|
149 | * @param base number to raise
|
---|
150 | * @param a power
|
---|
151 | * @return base<sup>a</sup>
|
---|
152 | */
|
---|
153 | protected static Dfp splitPow(final Dfp[] base, int a) {
|
---|
154 | boolean invert = false;
|
---|
155 |
|
---|
156 | Dfp[] r = new Dfp[2];
|
---|
157 |
|
---|
158 | Dfp[] result = new Dfp[2];
|
---|
159 | result[0] = base[0].getOne();
|
---|
160 | result[1] = base[0].getZero();
|
---|
161 |
|
---|
162 | if (a == 0) {
|
---|
163 | // Special case a = 0
|
---|
164 | return result[0].add(result[1]);
|
---|
165 | }
|
---|
166 |
|
---|
167 | if (a < 0) {
|
---|
168 | // If a is less than zero
|
---|
169 | invert = true;
|
---|
170 | a = -a;
|
---|
171 | }
|
---|
172 |
|
---|
173 | // Exponentiate by successive squaring
|
---|
174 | do {
|
---|
175 | r[0] = new Dfp(base[0]);
|
---|
176 | r[1] = new Dfp(base[1]);
|
---|
177 | int trial = 1;
|
---|
178 |
|
---|
179 | int prevtrial;
|
---|
180 | while (true) {
|
---|
181 | prevtrial = trial;
|
---|
182 | trial = trial * 2;
|
---|
183 | if (trial > a) {
|
---|
184 | break;
|
---|
185 | }
|
---|
186 | r = splitMult(r, r);
|
---|
187 | }
|
---|
188 |
|
---|
189 | trial = prevtrial;
|
---|
190 |
|
---|
191 | a -= trial;
|
---|
192 | result = splitMult(result, r);
|
---|
193 |
|
---|
194 | } while (a >= 1);
|
---|
195 |
|
---|
196 | result[0] = result[0].add(result[1]);
|
---|
197 |
|
---|
198 | if (invert) {
|
---|
199 | result[0] = base[0].getOne().divide(result[0]);
|
---|
200 | }
|
---|
201 |
|
---|
202 | return result[0];
|
---|
203 |
|
---|
204 | }
|
---|
205 |
|
---|
206 | /** Raises base to the power a by successive squaring.
|
---|
207 | * @param base number to raise
|
---|
208 | * @param a power
|
---|
209 | * @return base<sup>a</sup>
|
---|
210 | */
|
---|
211 | public static Dfp pow(Dfp base, int a)
|
---|
212 | {
|
---|
213 | boolean invert = false;
|
---|
214 |
|
---|
215 | Dfp result = base.getOne();
|
---|
216 |
|
---|
217 | if (a == 0) {
|
---|
218 | // Special case
|
---|
219 | return result;
|
---|
220 | }
|
---|
221 |
|
---|
222 | if (a < 0) {
|
---|
223 | invert = true;
|
---|
224 | a = -a;
|
---|
225 | }
|
---|
226 |
|
---|
227 | // Exponentiate by successive squaring
|
---|
228 | do {
|
---|
229 | Dfp r = new Dfp(base);
|
---|
230 | Dfp prevr;
|
---|
231 | int trial = 1;
|
---|
232 | int prevtrial;
|
---|
233 |
|
---|
234 | do {
|
---|
235 | prevr = new Dfp(r);
|
---|
236 | prevtrial = trial;
|
---|
237 | r = r.multiply(r);
|
---|
238 | trial = trial * 2;
|
---|
239 | } while (a>trial);
|
---|
240 |
|
---|
241 | r = prevr;
|
---|
242 | trial = prevtrial;
|
---|
243 |
|
---|
244 | a = a - trial;
|
---|
245 | result = result.multiply(r);
|
---|
246 |
|
---|
247 | } while (a >= 1);
|
---|
248 |
|
---|
249 | if (invert) {
|
---|
250 | result = base.getOne().divide(result);
|
---|
251 | }
|
---|
252 |
|
---|
253 | return base.newInstance(result);
|
---|
254 |
|
---|
255 | }
|
---|
256 |
|
---|
257 | /** Computes e to the given power.
|
---|
258 | * a is broken into two parts, such that a = n+m where n is an integer.
|
---|
259 | * We use pow() to compute e<sup>n</sup> and a Taylor series to compute
|
---|
260 | * e<sup>m</sup>. We return e*<sup>n</sup> × e<sup>m</sup>
|
---|
261 | * @param a power at which e should be raised
|
---|
262 | * @return e<sup>a</sup>
|
---|
263 | */
|
---|
264 | public static Dfp exp(final Dfp a) {
|
---|
265 |
|
---|
266 | final Dfp inta = a.rint();
|
---|
267 | final Dfp fraca = a.subtract(inta);
|
---|
268 |
|
---|
269 | final int ia = inta.intValue();
|
---|
270 | if (ia > 2147483646) {
|
---|
271 | // return +Infinity
|
---|
272 | return a.newInstance((byte)1, Dfp.INFINITE);
|
---|
273 | }
|
---|
274 |
|
---|
275 | if (ia < -2147483646) {
|
---|
276 | // return 0;
|
---|
277 | return a.newInstance();
|
---|
278 | }
|
---|
279 |
|
---|
280 | final Dfp einta = splitPow(a.getField().getESplit(), ia);
|
---|
281 | final Dfp efraca = expInternal(fraca);
|
---|
282 |
|
---|
283 | return einta.multiply(efraca);
|
---|
284 | }
|
---|
285 |
|
---|
286 | /** Computes e to the given power.
|
---|
287 | * Where -1 < a < 1. Use the classic Taylor series. 1 + x**2/2! + x**3/3! + x**4/4! ...
|
---|
288 | * @param a power at which e should be raised
|
---|
289 | * @return e<sup>a</sup>
|
---|
290 | */
|
---|
291 | protected static Dfp expInternal(final Dfp a) {
|
---|
292 | Dfp y = a.getOne();
|
---|
293 | Dfp x = a.getOne();
|
---|
294 | Dfp fact = a.getOne();
|
---|
295 | Dfp py = new Dfp(y);
|
---|
296 |
|
---|
297 | for (int i = 1; i < 90; i++) {
|
---|
298 | x = x.multiply(a);
|
---|
299 | fact = fact.divide(i);
|
---|
300 | y = y.add(x.multiply(fact));
|
---|
301 | if (y.equals(py)) {
|
---|
302 | break;
|
---|
303 | }
|
---|
304 | py = new Dfp(y);
|
---|
305 | }
|
---|
306 |
|
---|
307 | return y;
|
---|
308 | }
|
---|
309 |
|
---|
310 | /** Returns the natural logarithm of a.
|
---|
311 | * a is first split into three parts such that a = (10000^h)(2^j)k.
|
---|
312 | * ln(a) is computed by ln(a) = ln(5)*h + ln(2)*(h+j) + ln(k)
|
---|
313 | * k is in the range 2/3 < k <4/3 and is passed on to a series expansion.
|
---|
314 | * @param a number from which logarithm is requested
|
---|
315 | * @return log(a)
|
---|
316 | */
|
---|
317 | public static Dfp log(Dfp a) {
|
---|
318 | int lr;
|
---|
319 | Dfp x;
|
---|
320 | int ix;
|
---|
321 | int p2 = 0;
|
---|
322 |
|
---|
323 | // Check the arguments somewhat here
|
---|
324 | if (a.equals(a.getZero()) || a.lessThan(a.getZero()) || a.isNaN()) {
|
---|
325 | // negative, zero or NaN
|
---|
326 | a.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
327 | return a.dotrap(DfpField.FLAG_INVALID, "ln", a, a.newInstance((byte)1, Dfp.QNAN));
|
---|
328 | }
|
---|
329 |
|
---|
330 | if (a.classify() == Dfp.INFINITE) {
|
---|
331 | return a;
|
---|
332 | }
|
---|
333 |
|
---|
334 | x = new Dfp(a);
|
---|
335 | lr = x.log10K();
|
---|
336 |
|
---|
337 | x = x.divide(pow(a.newInstance(10000), lr)); /* This puts x in the range 0-10000 */
|
---|
338 | ix = x.floor().intValue();
|
---|
339 |
|
---|
340 | while (ix > 2) {
|
---|
341 | ix >>= 1;
|
---|
342 | p2++;
|
---|
343 | }
|
---|
344 |
|
---|
345 |
|
---|
346 | Dfp[] spx = split(x);
|
---|
347 | Dfp[] spy = new Dfp[2];
|
---|
348 | spy[0] = pow(a.getTwo(), p2); // use spy[0] temporarily as a divisor
|
---|
349 | spx[0] = spx[0].divide(spy[0]);
|
---|
350 | spx[1] = spx[1].divide(spy[0]);
|
---|
351 |
|
---|
352 | spy[0] = a.newInstance("1.33333"); // Use spy[0] for comparison
|
---|
353 | while (spx[0].add(spx[1]).greaterThan(spy[0])) {
|
---|
354 | spx[0] = spx[0].divide(2);
|
---|
355 | spx[1] = spx[1].divide(2);
|
---|
356 | p2++;
|
---|
357 | }
|
---|
358 |
|
---|
359 | // X is now in the range of 2/3 < x < 4/3
|
---|
360 | Dfp[] spz = logInternal(spx);
|
---|
361 |
|
---|
362 | spx[0] = a.newInstance(new StringBuilder().append(p2+4*lr).toString());
|
---|
363 | spx[1] = a.getZero();
|
---|
364 | spy = splitMult(a.getField().getLn2Split(), spx);
|
---|
365 |
|
---|
366 | spz[0] = spz[0].add(spy[0]);
|
---|
367 | spz[1] = spz[1].add(spy[1]);
|
---|
368 |
|
---|
369 | spx[0] = a.newInstance(new StringBuilder().append(4*lr).toString());
|
---|
370 | spx[1] = a.getZero();
|
---|
371 | spy = splitMult(a.getField().getLn5Split(), spx);
|
---|
372 |
|
---|
373 | spz[0] = spz[0].add(spy[0]);
|
---|
374 | spz[1] = spz[1].add(spy[1]);
|
---|
375 |
|
---|
376 | return a.newInstance(spz[0].add(spz[1]));
|
---|
377 |
|
---|
378 | }
|
---|
379 |
|
---|
380 | /** Computes the natural log of a number between 0 and 2.
|
---|
381 | * Let f(x) = ln(x),
|
---|
382 | *
|
---|
383 | * We know that f'(x) = 1/x, thus from Taylor's theorum we have:
|
---|
384 | *
|
---|
385 | * ----- n+1 n
|
---|
386 | * f(x) = \ (-1) (x - 1)
|
---|
387 | * / ---------------- for 1 <= n <= infinity
|
---|
388 | * ----- n
|
---|
389 | *
|
---|
390 | * or
|
---|
391 | * 2 3 4
|
---|
392 | * (x-1) (x-1) (x-1)
|
---|
393 | * ln(x) = (x-1) - ----- + ------ - ------ + ...
|
---|
394 | * 2 3 4
|
---|
395 | *
|
---|
396 | * alternatively,
|
---|
397 | *
|
---|
398 | * 2 3 4
|
---|
399 | * x x x
|
---|
400 | * ln(x+1) = x - - + - - - + ...
|
---|
401 | * 2 3 4
|
---|
402 | *
|
---|
403 | * This series can be used to compute ln(x), but it converges too slowly.
|
---|
404 | *
|
---|
405 | * If we substitute -x for x above, we get
|
---|
406 | *
|
---|
407 | * 2 3 4
|
---|
408 | * x x x
|
---|
409 | * ln(1-x) = -x - - - - - - + ...
|
---|
410 | * 2 3 4
|
---|
411 | *
|
---|
412 | * Note that all terms are now negative. Because the even powered ones
|
---|
413 | * absorbed the sign. Now, subtract the series above from the previous
|
---|
414 | * one to get ln(x+1) - ln(1-x). Note the even terms cancel out leaving
|
---|
415 | * only the odd ones
|
---|
416 | *
|
---|
417 | * 3 5 7
|
---|
418 | * 2x 2x 2x
|
---|
419 | * ln(x+1) - ln(x-1) = 2x + --- + --- + ---- + ...
|
---|
420 | * 3 5 7
|
---|
421 | *
|
---|
422 | * By the property of logarithms that ln(a) - ln(b) = ln (a/b) we have:
|
---|
423 | *
|
---|
424 | * 3 5 7
|
---|
425 | * x+1 / x x x \
|
---|
426 | * ln ----- = 2 * | x + ---- + ---- + ---- + ... |
|
---|
427 | * x-1 \ 3 5 7 /
|
---|
428 | *
|
---|
429 | * But now we want to find ln(a), so we need to find the value of x
|
---|
430 | * such that a = (x+1)/(x-1). This is easily solved to find that
|
---|
431 | * x = (a-1)/(a+1).
|
---|
432 | * @param a number from which logarithm is requested, in split form
|
---|
433 | * @return log(a)
|
---|
434 | */
|
---|
435 | protected static Dfp[] logInternal(final Dfp a[]) {
|
---|
436 |
|
---|
437 | /* Now we want to compute x = (a-1)/(a+1) but this is prone to
|
---|
438 | * loss of precision. So instead, compute x = (a/4 - 1/4) / (a/4 + 1/4)
|
---|
439 | */
|
---|
440 | Dfp t = a[0].divide(4).add(a[1].divide(4));
|
---|
441 | Dfp x = t.add(a[0].newInstance("-0.25")).divide(t.add(a[0].newInstance("0.25")));
|
---|
442 |
|
---|
443 | Dfp y = new Dfp(x);
|
---|
444 | Dfp num = new Dfp(x);
|
---|
445 | Dfp py = new Dfp(y);
|
---|
446 | int den = 1;
|
---|
447 | for (int i = 0; i < 10000; i++) {
|
---|
448 | num = num.multiply(x);
|
---|
449 | num = num.multiply(x);
|
---|
450 | den = den + 2;
|
---|
451 | t = num.divide(den);
|
---|
452 | y = y.add(t);
|
---|
453 | if (y.equals(py)) {
|
---|
454 | break;
|
---|
455 | }
|
---|
456 | py = new Dfp(y);
|
---|
457 | }
|
---|
458 |
|
---|
459 | y = y.multiply(a[0].getTwo());
|
---|
460 |
|
---|
461 | return split(y);
|
---|
462 |
|
---|
463 | }
|
---|
464 |
|
---|
465 | /** Computes x to the y power.<p>
|
---|
466 | *
|
---|
467 | * Uses the following method:<p>
|
---|
468 | *
|
---|
469 | * <ol>
|
---|
470 | * <li> Set u = rint(y), v = y-u
|
---|
471 | * <li> Compute a = v * ln(x)
|
---|
472 | * <li> Compute b = rint( a/ln(2) )
|
---|
473 | * <li> Compute c = a - b*ln(2)
|
---|
474 | * <li> x<sup>y</sup> = x<sup>u</sup> * 2<sup>b</sup> * e<sup>c</sup>
|
---|
475 | * </ol>
|
---|
476 | * if |y| > 1e8, then we compute by exp(y*ln(x)) <p>
|
---|
477 | *
|
---|
478 | * <b>Special Cases</b><p>
|
---|
479 | * <ul>
|
---|
480 | * <li> if y is 0.0 or -0.0 then result is 1.0
|
---|
481 | * <li> if y is 1.0 then result is x
|
---|
482 | * <li> if y is NaN then result is NaN
|
---|
483 | * <li> if x is NaN and y is not zero then result is NaN
|
---|
484 | * <li> if |x| > 1.0 and y is +Infinity then result is +Infinity
|
---|
485 | * <li> if |x| < 1.0 and y is -Infinity then result is +Infinity
|
---|
486 | * <li> if |x| > 1.0 and y is -Infinity then result is +0
|
---|
487 | * <li> if |x| < 1.0 and y is +Infinity then result is +0
|
---|
488 | * <li> if |x| = 1.0 and y is +/-Infinity then result is NaN
|
---|
489 | * <li> if x = +0 and y > 0 then result is +0
|
---|
490 | * <li> if x = +Inf and y < 0 then result is +0
|
---|
491 | * <li> if x = +0 and y < 0 then result is +Inf
|
---|
492 | * <li> if x = +Inf and y > 0 then result is +Inf
|
---|
493 | * <li> if x = -0 and y > 0, finite, not odd integer then result is +0
|
---|
494 | * <li> if x = -0 and y < 0, finite, and odd integer then result is -Inf
|
---|
495 | * <li> if x = -Inf and y > 0, finite, and odd integer then result is -Inf
|
---|
496 | * <li> if x = -0 and y < 0, not finite odd integer then result is +Inf
|
---|
497 | * <li> if x = -Inf and y > 0, not finite odd integer then result is +Inf
|
---|
498 | * <li> if x < 0 and y > 0, finite, and odd integer then result is -(|x|<sup>y</sup>)
|
---|
499 | * <li> if x < 0 and y > 0, finite, and not integer then result is NaN
|
---|
500 | * </ul>
|
---|
501 | * @param x base to be raised
|
---|
502 | * @param y power to which base should be raised
|
---|
503 | * @return x<sup>y</sup>
|
---|
504 | */
|
---|
505 | public static Dfp pow(Dfp x, final Dfp y) {
|
---|
506 |
|
---|
507 | // make sure we don't mix number with different precision
|
---|
508 | if (x.getField().getRadixDigits() != y.getField().getRadixDigits()) {
|
---|
509 | x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
510 | final Dfp result = x.newInstance(x.getZero());
|
---|
511 | result.nans = Dfp.QNAN;
|
---|
512 | return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, result);
|
---|
513 | }
|
---|
514 |
|
---|
515 | final Dfp zero = x.getZero();
|
---|
516 | final Dfp one = x.getOne();
|
---|
517 | final Dfp two = x.getTwo();
|
---|
518 | boolean invert = false;
|
---|
519 | int ui;
|
---|
520 |
|
---|
521 | /* Check for special cases */
|
---|
522 | if (y.equals(zero)) {
|
---|
523 | return x.newInstance(one);
|
---|
524 | }
|
---|
525 |
|
---|
526 | if (y.equals(one)) {
|
---|
527 | if (x.isNaN()) {
|
---|
528 | // Test for NaNs
|
---|
529 | x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
530 | return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x);
|
---|
531 | }
|
---|
532 | return x;
|
---|
533 | }
|
---|
534 |
|
---|
535 | if (x.isNaN() || y.isNaN()) {
|
---|
536 | // Test for NaNs
|
---|
537 | x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
538 | return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x.newInstance((byte)1, Dfp.QNAN));
|
---|
539 | }
|
---|
540 |
|
---|
541 | // X == 0
|
---|
542 | if (x.equals(zero)) {
|
---|
543 | if (Dfp.copysign(one, x).greaterThan(zero)) {
|
---|
544 | // X == +0
|
---|
545 | if (y.greaterThan(zero)) {
|
---|
546 | return x.newInstance(zero);
|
---|
547 | } else {
|
---|
548 | return x.newInstance(x.newInstance((byte)1, Dfp.INFINITE));
|
---|
549 | }
|
---|
550 | } else {
|
---|
551 | // X == -0
|
---|
552 | if (y.classify() == Dfp.FINITE && y.rint().equals(y) && !y.remainder(two).equals(zero)) {
|
---|
553 | // If y is odd integer
|
---|
554 | if (y.greaterThan(zero)) {
|
---|
555 | return x.newInstance(zero.negate());
|
---|
556 | } else {
|
---|
557 | return x.newInstance(x.newInstance((byte)-1, Dfp.INFINITE));
|
---|
558 | }
|
---|
559 | } else {
|
---|
560 | // Y is not odd integer
|
---|
561 | if (y.greaterThan(zero)) {
|
---|
562 | return x.newInstance(zero);
|
---|
563 | } else {
|
---|
564 | return x.newInstance(x.newInstance((byte)1, Dfp.INFINITE));
|
---|
565 | }
|
---|
566 | }
|
---|
567 | }
|
---|
568 | }
|
---|
569 |
|
---|
570 | if (x.lessThan(zero)) {
|
---|
571 | // Make x positive, but keep track of it
|
---|
572 | x = x.negate();
|
---|
573 | invert = true;
|
---|
574 | }
|
---|
575 |
|
---|
576 | if (x.greaterThan(one) && y.classify() == Dfp.INFINITE) {
|
---|
577 | if (y.greaterThan(zero)) {
|
---|
578 | return y;
|
---|
579 | } else {
|
---|
580 | return x.newInstance(zero);
|
---|
581 | }
|
---|
582 | }
|
---|
583 |
|
---|
584 | if (x.lessThan(one) && y.classify() == Dfp.INFINITE) {
|
---|
585 | if (y.greaterThan(zero)) {
|
---|
586 | return x.newInstance(zero);
|
---|
587 | } else {
|
---|
588 | return x.newInstance(Dfp.copysign(y, one));
|
---|
589 | }
|
---|
590 | }
|
---|
591 |
|
---|
592 | if (x.equals(one) && y.classify() == Dfp.INFINITE) {
|
---|
593 | x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
594 | return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x.newInstance((byte)1, Dfp.QNAN));
|
---|
595 | }
|
---|
596 |
|
---|
597 | if (x.classify() == Dfp.INFINITE) {
|
---|
598 | // x = +/- inf
|
---|
599 | if (invert) {
|
---|
600 | // negative infinity
|
---|
601 | if (y.classify() == Dfp.FINITE && y.rint().equals(y) && !y.remainder(two).equals(zero)) {
|
---|
602 | // If y is odd integer
|
---|
603 | if (y.greaterThan(zero)) {
|
---|
604 | return x.newInstance(x.newInstance((byte)-1, Dfp.INFINITE));
|
---|
605 | } else {
|
---|
606 | return x.newInstance(zero.negate());
|
---|
607 | }
|
---|
608 | } else {
|
---|
609 | // Y is not odd integer
|
---|
610 | if (y.greaterThan(zero)) {
|
---|
611 | return x.newInstance(x.newInstance((byte)1, Dfp.INFINITE));
|
---|
612 | } else {
|
---|
613 | return x.newInstance(zero);
|
---|
614 | }
|
---|
615 | }
|
---|
616 | } else {
|
---|
617 | // positive infinity
|
---|
618 | if (y.greaterThan(zero)) {
|
---|
619 | return x;
|
---|
620 | } else {
|
---|
621 | return x.newInstance(zero);
|
---|
622 | }
|
---|
623 | }
|
---|
624 | }
|
---|
625 |
|
---|
626 | if (invert && !y.rint().equals(y)) {
|
---|
627 | x.getField().setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
628 | return x.dotrap(DfpField.FLAG_INVALID, POW_TRAP, x, x.newInstance((byte)1, Dfp.QNAN));
|
---|
629 | }
|
---|
630 |
|
---|
631 | // End special cases
|
---|
632 |
|
---|
633 | Dfp r;
|
---|
634 | if (y.lessThan(x.newInstance(100000000)) && y.greaterThan(x.newInstance(-100000000))) {
|
---|
635 | final Dfp u = y.rint();
|
---|
636 | ui = u.intValue();
|
---|
637 |
|
---|
638 | final Dfp v = y.subtract(u);
|
---|
639 |
|
---|
640 | if (v.unequal(zero)) {
|
---|
641 | final Dfp a = v.multiply(log(x));
|
---|
642 | final Dfp b = a.divide(x.getField().getLn2()).rint();
|
---|
643 |
|
---|
644 | final Dfp c = a.subtract(b.multiply(x.getField().getLn2()));
|
---|
645 | r = splitPow(split(x), ui);
|
---|
646 | r = r.multiply(pow(two, b.intValue()));
|
---|
647 | r = r.multiply(exp(c));
|
---|
648 | } else {
|
---|
649 | r = splitPow(split(x), ui);
|
---|
650 | }
|
---|
651 | } else {
|
---|
652 | // very large exponent. |y| > 1e8
|
---|
653 | r = exp(log(x).multiply(y));
|
---|
654 | }
|
---|
655 |
|
---|
656 | if (invert) {
|
---|
657 | // if y is odd integer
|
---|
658 | if (y.rint().equals(y) && !y.remainder(two).equals(zero)) {
|
---|
659 | r = r.negate();
|
---|
660 | }
|
---|
661 | }
|
---|
662 |
|
---|
663 | return x.newInstance(r);
|
---|
664 |
|
---|
665 | }
|
---|
666 |
|
---|
667 | /** Computes sin(a) Used when 0 < a < pi/4.
|
---|
668 | * Uses the classic Taylor series. x - x**3/3! + x**5/5! ...
|
---|
669 | * @param a number from which sine is desired, in split form
|
---|
670 | * @return sin(a)
|
---|
671 | */
|
---|
672 | protected static Dfp sinInternal(Dfp a[]) {
|
---|
673 |
|
---|
674 | Dfp c = a[0].add(a[1]);
|
---|
675 | Dfp y = c;
|
---|
676 | c = c.multiply(c);
|
---|
677 | Dfp x = y;
|
---|
678 | Dfp fact = a[0].getOne();
|
---|
679 | Dfp py = new Dfp(y);
|
---|
680 |
|
---|
681 | for (int i = 3; i < 90; i += 2) {
|
---|
682 | x = x.multiply(c);
|
---|
683 | x = x.negate();
|
---|
684 |
|
---|
685 | fact = fact.divide((i-1)*i); // 1 over fact
|
---|
686 | y = y.add(x.multiply(fact));
|
---|
687 | if (y.equals(py))
|
---|
688 | break;
|
---|
689 | py = new Dfp(y);
|
---|
690 | }
|
---|
691 |
|
---|
692 | return y;
|
---|
693 |
|
---|
694 | }
|
---|
695 |
|
---|
696 | /** Computes cos(a) Used when 0 < a < pi/4.
|
---|
697 | * Uses the classic Taylor series for cosine. 1 - x**2/2! + x**4/4! ...
|
---|
698 | * @param a number from which cosine is desired, in split form
|
---|
699 | * @return cos(a)
|
---|
700 | */
|
---|
701 | protected static Dfp cosInternal(Dfp a[]) {
|
---|
702 | final Dfp one = a[0].getOne();
|
---|
703 |
|
---|
704 |
|
---|
705 | Dfp x = one;
|
---|
706 | Dfp y = one;
|
---|
707 | Dfp c = a[0].add(a[1]);
|
---|
708 | c = c.multiply(c);
|
---|
709 |
|
---|
710 | Dfp fact = one;
|
---|
711 | Dfp py = new Dfp(y);
|
---|
712 |
|
---|
713 | for (int i = 2; i < 90; i += 2) {
|
---|
714 | x = x.multiply(c);
|
---|
715 | x = x.negate();
|
---|
716 |
|
---|
717 | fact = fact.divide((i - 1) * i); // 1 over fact
|
---|
718 |
|
---|
719 | y = y.add(x.multiply(fact));
|
---|
720 | if (y.equals(py)) {
|
---|
721 | break;
|
---|
722 | }
|
---|
723 | py = new Dfp(y);
|
---|
724 | }
|
---|
725 |
|
---|
726 | return y;
|
---|
727 |
|
---|
728 | }
|
---|
729 |
|
---|
730 | /** computes the sine of the argument.
|
---|
731 | * @param a number from which sine is desired
|
---|
732 | * @return sin(a)
|
---|
733 | */
|
---|
734 | public static Dfp sin(final Dfp a) {
|
---|
735 | final Dfp pi = a.getField().getPi();
|
---|
736 | final Dfp zero = a.getField().getZero();
|
---|
737 | boolean neg = false;
|
---|
738 |
|
---|
739 | /* First reduce the argument to the range of +/- PI */
|
---|
740 | Dfp x = a.remainder(pi.multiply(2));
|
---|
741 |
|
---|
742 | /* if x < 0 then apply identity sin(-x) = -sin(x) */
|
---|
743 | /* This puts x in the range 0 < x < PI */
|
---|
744 | if (x.lessThan(zero)) {
|
---|
745 | x = x.negate();
|
---|
746 | neg = true;
|
---|
747 | }
|
---|
748 |
|
---|
749 | /* Since sine(x) = sine(pi - x) we can reduce the range to
|
---|
750 | * 0 < x < pi/2
|
---|
751 | */
|
---|
752 |
|
---|
753 | if (x.greaterThan(pi.divide(2))) {
|
---|
754 | x = pi.subtract(x);
|
---|
755 | }
|
---|
756 |
|
---|
757 | Dfp y;
|
---|
758 | if (x.lessThan(pi.divide(4))) {
|
---|
759 | Dfp c[] = new Dfp[2];
|
---|
760 | c[0] = x;
|
---|
761 | c[1] = zero;
|
---|
762 |
|
---|
763 | //y = sinInternal(c);
|
---|
764 | y = sinInternal(split(x));
|
---|
765 | } else {
|
---|
766 | final Dfp c[] = new Dfp[2];
|
---|
767 | final Dfp[] piSplit = a.getField().getPiSplit();
|
---|
768 | c[0] = piSplit[0].divide(2).subtract(x);
|
---|
769 | c[1] = piSplit[1].divide(2);
|
---|
770 | y = cosInternal(c);
|
---|
771 | }
|
---|
772 |
|
---|
773 | if (neg) {
|
---|
774 | y = y.negate();
|
---|
775 | }
|
---|
776 |
|
---|
777 | return a.newInstance(y);
|
---|
778 |
|
---|
779 | }
|
---|
780 |
|
---|
781 | /** computes the cosine of the argument.
|
---|
782 | * @param a number from which cosine is desired
|
---|
783 | * @return cos(a)
|
---|
784 | */
|
---|
785 | public static Dfp cos(Dfp a) {
|
---|
786 | final Dfp pi = a.getField().getPi();
|
---|
787 | final Dfp zero = a.getField().getZero();
|
---|
788 | boolean neg = false;
|
---|
789 |
|
---|
790 | /* First reduce the argument to the range of +/- PI */
|
---|
791 | Dfp x = a.remainder(pi.multiply(2));
|
---|
792 |
|
---|
793 | /* if x < 0 then apply identity cos(-x) = cos(x) */
|
---|
794 | /* This puts x in the range 0 < x < PI */
|
---|
795 | if (x.lessThan(zero)) {
|
---|
796 | x = x.negate();
|
---|
797 | }
|
---|
798 |
|
---|
799 | /* Since cos(x) = -cos(pi - x) we can reduce the range to
|
---|
800 | * 0 < x < pi/2
|
---|
801 | */
|
---|
802 |
|
---|
803 | if (x.greaterThan(pi.divide(2))) {
|
---|
804 | x = pi.subtract(x);
|
---|
805 | neg = true;
|
---|
806 | }
|
---|
807 |
|
---|
808 | Dfp y;
|
---|
809 | if (x.lessThan(pi.divide(4))) {
|
---|
810 | Dfp c[] = new Dfp[2];
|
---|
811 | c[0] = x;
|
---|
812 | c[1] = zero;
|
---|
813 |
|
---|
814 | y = cosInternal(c);
|
---|
815 | } else {
|
---|
816 | final Dfp c[] = new Dfp[2];
|
---|
817 | final Dfp[] piSplit = a.getField().getPiSplit();
|
---|
818 | c[0] = piSplit[0].divide(2).subtract(x);
|
---|
819 | c[1] = piSplit[1].divide(2);
|
---|
820 | y = sinInternal(c);
|
---|
821 | }
|
---|
822 |
|
---|
823 | if (neg) {
|
---|
824 | y = y.negate();
|
---|
825 | }
|
---|
826 |
|
---|
827 | return a.newInstance(y);
|
---|
828 |
|
---|
829 | }
|
---|
830 |
|
---|
831 | /** computes the tangent of the argument.
|
---|
832 | * @param a number from which tangent is desired
|
---|
833 | * @return tan(a)
|
---|
834 | */
|
---|
835 | public static Dfp tan(final Dfp a) {
|
---|
836 | return sin(a).divide(cos(a));
|
---|
837 | }
|
---|
838 |
|
---|
839 | /** computes the arc-tangent of the argument.
|
---|
840 | * @param a number from which arc-tangent is desired
|
---|
841 | * @return atan(a)
|
---|
842 | */
|
---|
843 | protected static Dfp atanInternal(final Dfp a) {
|
---|
844 |
|
---|
845 | Dfp y = new Dfp(a);
|
---|
846 | Dfp x = new Dfp(y);
|
---|
847 | Dfp py = new Dfp(y);
|
---|
848 |
|
---|
849 | for (int i = 3; i < 90; i += 2) {
|
---|
850 | x = x.multiply(a);
|
---|
851 | x = x.multiply(a);
|
---|
852 | x = x.negate();
|
---|
853 | y = y.add(x.divide(i));
|
---|
854 | if (y.equals(py)) {
|
---|
855 | break;
|
---|
856 | }
|
---|
857 | py = new Dfp(y);
|
---|
858 | }
|
---|
859 |
|
---|
860 | return y;
|
---|
861 |
|
---|
862 | }
|
---|
863 |
|
---|
864 | /** computes the arc tangent of the argument
|
---|
865 | *
|
---|
866 | * Uses the typical taylor series
|
---|
867 | *
|
---|
868 | * but may reduce arguments using the following identity
|
---|
869 | * tan(x+y) = (tan(x) + tan(y)) / (1 - tan(x)*tan(y))
|
---|
870 | *
|
---|
871 | * since tan(PI/8) = sqrt(2)-1,
|
---|
872 | *
|
---|
873 | * atan(x) = atan( (x - sqrt(2) + 1) / (1+x*sqrt(2) - x) + PI/8.0
|
---|
874 | * @param a number from which arc-tangent is desired
|
---|
875 | * @return atan(a)
|
---|
876 | */
|
---|
877 | public static Dfp atan(final Dfp a) {
|
---|
878 | final Dfp zero = a.getField().getZero();
|
---|
879 | final Dfp one = a.getField().getOne();
|
---|
880 | final Dfp[] sqr2Split = a.getField().getSqr2Split();
|
---|
881 | final Dfp[] piSplit = a.getField().getPiSplit();
|
---|
882 | boolean recp = false;
|
---|
883 | boolean neg = false;
|
---|
884 | boolean sub = false;
|
---|
885 |
|
---|
886 | final Dfp ty = sqr2Split[0].subtract(one).add(sqr2Split[1]);
|
---|
887 |
|
---|
888 | Dfp x = new Dfp(a);
|
---|
889 | if (x.lessThan(zero)) {
|
---|
890 | neg = true;
|
---|
891 | x = x.negate();
|
---|
892 | }
|
---|
893 |
|
---|
894 | if (x.greaterThan(one)) {
|
---|
895 | recp = true;
|
---|
896 | x = one.divide(x);
|
---|
897 | }
|
---|
898 |
|
---|
899 | if (x.greaterThan(ty)) {
|
---|
900 | Dfp sty[] = new Dfp[2];
|
---|
901 | sub = true;
|
---|
902 |
|
---|
903 | sty[0] = sqr2Split[0].subtract(one);
|
---|
904 | sty[1] = sqr2Split[1];
|
---|
905 |
|
---|
906 | Dfp[] xs = split(x);
|
---|
907 |
|
---|
908 | Dfp[] ds = splitMult(xs, sty);
|
---|
909 | ds[0] = ds[0].add(one);
|
---|
910 |
|
---|
911 | xs[0] = xs[0].subtract(sty[0]);
|
---|
912 | xs[1] = xs[1].subtract(sty[1]);
|
---|
913 |
|
---|
914 | xs = splitDiv(xs, ds);
|
---|
915 | x = xs[0].add(xs[1]);
|
---|
916 |
|
---|
917 | //x = x.subtract(ty).divide(dfp.one.add(x.multiply(ty)));
|
---|
918 | }
|
---|
919 |
|
---|
920 | Dfp y = atanInternal(x);
|
---|
921 |
|
---|
922 | if (sub) {
|
---|
923 | y = y.add(piSplit[0].divide(8)).add(piSplit[1].divide(8));
|
---|
924 | }
|
---|
925 |
|
---|
926 | if (recp) {
|
---|
927 | y = piSplit[0].divide(2).subtract(y).add(piSplit[1].divide(2));
|
---|
928 | }
|
---|
929 |
|
---|
930 | if (neg) {
|
---|
931 | y = y.negate();
|
---|
932 | }
|
---|
933 |
|
---|
934 | return a.newInstance(y);
|
---|
935 |
|
---|
936 | }
|
---|
937 |
|
---|
938 | /** computes the arc-sine of the argument.
|
---|
939 | * @param a number from which arc-sine is desired
|
---|
940 | * @return asin(a)
|
---|
941 | */
|
---|
942 | public static Dfp asin(final Dfp a) {
|
---|
943 | return atan(a.divide(a.getOne().subtract(a.multiply(a)).sqrt()));
|
---|
944 | }
|
---|
945 |
|
---|
946 | /** computes the arc-cosine of the argument.
|
---|
947 | * @param a number from which arc-cosine is desired
|
---|
948 | * @return acos(a)
|
---|
949 | */
|
---|
950 | public static Dfp acos(Dfp a) {
|
---|
951 | Dfp result;
|
---|
952 | boolean negative = false;
|
---|
953 |
|
---|
954 | if (a.lessThan(a.getZero())) {
|
---|
955 | negative = true;
|
---|
956 | }
|
---|
957 |
|
---|
958 | a = Dfp.copysign(a, a.getOne()); // absolute value
|
---|
959 |
|
---|
960 | result = atan(a.getOne().subtract(a.multiply(a)).sqrt().divide(a));
|
---|
961 |
|
---|
962 | if (negative) {
|
---|
963 | result = a.getField().getPi().subtract(result);
|
---|
964 | }
|
---|
965 |
|
---|
966 | return a.newInstance(result);
|
---|
967 | }
|
---|
968 |
|
---|
969 | }
|
---|