1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.dfp;
|
---|
19 |
|
---|
20 | import java.util.Arrays;
|
---|
21 |
|
---|
22 | import agents.org.apache.commons.math.FieldElement;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * Decimal floating point library for Java
|
---|
26 | *
|
---|
27 | * <p>Another floating point class. This one is built using radix 10000
|
---|
28 | * which is 10<sup>4</sup>, so its almost decimal.</p>
|
---|
29 | *
|
---|
30 | * <p>The design goals here are:
|
---|
31 | * <ol>
|
---|
32 | * <li>Decimal math, or close to it</li>
|
---|
33 | * <li>Settable precision (but no mix between numbers using different settings)</li>
|
---|
34 | * <li>Portability. Code should be keep as portable as possible.</li>
|
---|
35 | * <li>Performance</li>
|
---|
36 | * <li>Accuracy - Results should always be +/- 1 ULP for basic
|
---|
37 | * algebraic operation</li>
|
---|
38 | * <li>Comply with IEEE 854-1987 as much as possible.
|
---|
39 | * (See IEEE 854-1987 notes below)</li>
|
---|
40 | * </ol></p>
|
---|
41 | *
|
---|
42 | * <p>Trade offs:
|
---|
43 | * <ol>
|
---|
44 | * <li>Memory foot print. I'm using more memory than necessary to
|
---|
45 | * represent numbers to get better performance.</li>
|
---|
46 | * <li>Digits are bigger, so rounding is a greater loss. So, if you
|
---|
47 | * really need 12 decimal digits, better use 4 base 10000 digits
|
---|
48 | * there can be one partially filled.</li>
|
---|
49 | * </ol></p>
|
---|
50 | *
|
---|
51 | * <p>Numbers are represented in the following form:
|
---|
52 | * <pre>
|
---|
53 | * n = sign × mant × (radix)<sup>exp</sup>;</p>
|
---|
54 | * </pre>
|
---|
55 | * where sign is ±1, mantissa represents a fractional number between
|
---|
56 | * zero and one. mant[0] is the least significant digit.
|
---|
57 | * exp is in the range of -32767 to 32768</p>
|
---|
58 | *
|
---|
59 | * <p>IEEE 854-1987 Notes and differences</p>
|
---|
60 | *
|
---|
61 | * <p>IEEE 854 requires the radix to be either 2 or 10. The radix here is
|
---|
62 | * 10000, so that requirement is not met, but it is possible that a
|
---|
63 | * subclassed can be made to make it behave as a radix 10
|
---|
64 | * number. It is my opinion that if it looks and behaves as a radix
|
---|
65 | * 10 number then it is one and that requirement would be met.</p>
|
---|
66 | *
|
---|
67 | * <p>The radix of 10000 was chosen because it should be faster to operate
|
---|
68 | * on 4 decimal digits at once instead of one at a time. Radix 10 behavior
|
---|
69 | * can be realized by add an additional rounding step to ensure that
|
---|
70 | * the number of decimal digits represented is constant.</p>
|
---|
71 | *
|
---|
72 | * <p>The IEEE standard specifically leaves out internal data encoding,
|
---|
73 | * so it is reasonable to conclude that such a subclass of this radix
|
---|
74 | * 10000 system is merely an encoding of a radix 10 system.</p>
|
---|
75 | *
|
---|
76 | * <p>IEEE 854 also specifies the existence of "sub-normal" numbers. This
|
---|
77 | * class does not contain any such entities. The most significant radix
|
---|
78 | * 10000 digit is always non-zero. Instead, we support "gradual underflow"
|
---|
79 | * by raising the underflow flag for numbers less with exponent less than
|
---|
80 | * expMin, but don't flush to zero until the exponent reaches MIN_EXP-digits.
|
---|
81 | * Thus the smallest number we can represent would be:
|
---|
82 | * 1E(-(MIN_EXP-digits-1)*4), eg, for digits=5, MIN_EXP=-32767, that would
|
---|
83 | * be 1e-131092.</p>
|
---|
84 | *
|
---|
85 | * <p>IEEE 854 defines that the implied radix point lies just to the right
|
---|
86 | * of the most significant digit and to the left of the remaining digits.
|
---|
87 | * This implementation puts the implied radix point to the left of all
|
---|
88 | * digits including the most significant one. The most significant digit
|
---|
89 | * here is the one just to the right of the radix point. This is a fine
|
---|
90 | * detail and is really only a matter of definition. Any side effects of
|
---|
91 | * this can be rendered invisible by a subclass.</p>
|
---|
92 | * @see DfpField
|
---|
93 | * @version $Revision: 1003889 $ $Date: 2010-10-02 23:11:55 +0200 (sam. 02 oct. 2010) $
|
---|
94 | * @since 2.2
|
---|
95 | */
|
---|
96 | public class Dfp implements FieldElement<Dfp> {
|
---|
97 |
|
---|
98 | /** The radix, or base of this system. Set to 10000 */
|
---|
99 | public static final int RADIX = 10000;
|
---|
100 |
|
---|
101 | /** The minimum exponent before underflow is signaled. Flush to zero
|
---|
102 | * occurs at minExp-DIGITS */
|
---|
103 | public static final int MIN_EXP = -32767;
|
---|
104 |
|
---|
105 | /** The maximum exponent before overflow is signaled and results flushed
|
---|
106 | * to infinity */
|
---|
107 | public static final int MAX_EXP = 32768;
|
---|
108 |
|
---|
109 | /** The amount under/overflows are scaled by before going to trap handler */
|
---|
110 | public static final int ERR_SCALE = 32760;
|
---|
111 |
|
---|
112 | /** Indicator value for normal finite numbers. */
|
---|
113 | public static final byte FINITE = 0;
|
---|
114 |
|
---|
115 | /** Indicator value for Infinity. */
|
---|
116 | public static final byte INFINITE = 1;
|
---|
117 |
|
---|
118 | /** Indicator value for signaling NaN. */
|
---|
119 | public static final byte SNAN = 2;
|
---|
120 |
|
---|
121 | /** Indicator value for quiet NaN. */
|
---|
122 | public static final byte QNAN = 3;
|
---|
123 |
|
---|
124 | /** String for NaN representation. */
|
---|
125 | private static final String NAN_STRING = "NaN";
|
---|
126 |
|
---|
127 | /** String for positive infinity representation. */
|
---|
128 | private static final String POS_INFINITY_STRING = "Infinity";
|
---|
129 |
|
---|
130 | /** String for negative infinity representation. */
|
---|
131 | private static final String NEG_INFINITY_STRING = "-Infinity";
|
---|
132 |
|
---|
133 | /** Name for traps triggered by addition. */
|
---|
134 | private static final String ADD_TRAP = "add";
|
---|
135 |
|
---|
136 | /** Name for traps triggered by multiplication. */
|
---|
137 | private static final String MULTIPLY_TRAP = "multiply";
|
---|
138 |
|
---|
139 | /** Name for traps triggered by division. */
|
---|
140 | private static final String DIVIDE_TRAP = "divide";
|
---|
141 |
|
---|
142 | /** Name for traps triggered by square root. */
|
---|
143 | private static final String SQRT_TRAP = "sqrt";
|
---|
144 |
|
---|
145 | /** Name for traps triggered by alignment. */
|
---|
146 | private static final String ALIGN_TRAP = "align";
|
---|
147 |
|
---|
148 | /** Name for traps triggered by truncation. */
|
---|
149 | private static final String TRUNC_TRAP = "trunc";
|
---|
150 |
|
---|
151 | /** Name for traps triggered by nextAfter. */
|
---|
152 | private static final String NEXT_AFTER_TRAP = "nextAfter";
|
---|
153 |
|
---|
154 | /** Name for traps triggered by lessThan. */
|
---|
155 | private static final String LESS_THAN_TRAP = "lessThan";
|
---|
156 |
|
---|
157 | /** Name for traps triggered by greaterThan. */
|
---|
158 | private static final String GREATER_THAN_TRAP = "greaterThan";
|
---|
159 |
|
---|
160 | /** Name for traps triggered by newInstance. */
|
---|
161 | private static final String NEW_INSTANCE_TRAP = "newInstance";
|
---|
162 |
|
---|
163 | /** Mantissa. */
|
---|
164 | protected int[] mant;
|
---|
165 |
|
---|
166 | /** Sign bit: & for positive, -1 for negative. */
|
---|
167 | protected byte sign;
|
---|
168 |
|
---|
169 | /** Exponent. */
|
---|
170 | protected int exp;
|
---|
171 |
|
---|
172 | /** Indicator for non-finite / non-number values. */
|
---|
173 | protected byte nans;
|
---|
174 |
|
---|
175 | /** Factory building similar Dfp's. */
|
---|
176 | private final DfpField field;
|
---|
177 |
|
---|
178 | /** Makes an instance with a value of zero.
|
---|
179 | * @param field field to which this instance belongs
|
---|
180 | */
|
---|
181 | protected Dfp(final DfpField field) {
|
---|
182 | mant = new int[field.getRadixDigits()];
|
---|
183 | sign = 1;
|
---|
184 | exp = 0;
|
---|
185 | nans = FINITE;
|
---|
186 | this.field = field;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /** Create an instance from a byte value.
|
---|
190 | * @param field field to which this instance belongs
|
---|
191 | * @param x value to convert to an instance
|
---|
192 | */
|
---|
193 | protected Dfp(final DfpField field, byte x) {
|
---|
194 | this(field, (long) x);
|
---|
195 | }
|
---|
196 |
|
---|
197 | /** Create an instance from an int value.
|
---|
198 | * @param field field to which this instance belongs
|
---|
199 | * @param x value to convert to an instance
|
---|
200 | */
|
---|
201 | protected Dfp(final DfpField field, int x) {
|
---|
202 | this(field, (long) x);
|
---|
203 | }
|
---|
204 |
|
---|
205 | /** Create an instance from a long value.
|
---|
206 | * @param field field to which this instance belongs
|
---|
207 | * @param x value to convert to an instance
|
---|
208 | */
|
---|
209 | protected Dfp(final DfpField field, long x) {
|
---|
210 |
|
---|
211 | // initialize as if 0
|
---|
212 | mant = new int[field.getRadixDigits()];
|
---|
213 | nans = FINITE;
|
---|
214 | this.field = field;
|
---|
215 |
|
---|
216 | boolean isLongMin = false;
|
---|
217 | if (x == Long.MIN_VALUE) {
|
---|
218 | // special case for Long.MIN_VALUE (-9223372036854775808)
|
---|
219 | // we must shift it before taking its absolute value
|
---|
220 | isLongMin = true;
|
---|
221 | ++x;
|
---|
222 | }
|
---|
223 |
|
---|
224 | // set the sign
|
---|
225 | if (x < 0) {
|
---|
226 | sign = -1;
|
---|
227 | x = -x;
|
---|
228 | } else {
|
---|
229 | sign = 1;
|
---|
230 | }
|
---|
231 |
|
---|
232 | exp = 0;
|
---|
233 | while (x != 0) {
|
---|
234 | System.arraycopy(mant, mant.length - exp, mant, mant.length - 1 - exp, exp);
|
---|
235 | mant[mant.length - 1] = (int) (x % RADIX);
|
---|
236 | x /= RADIX;
|
---|
237 | exp++;
|
---|
238 | }
|
---|
239 |
|
---|
240 | if (isLongMin) {
|
---|
241 | // remove the shift added for Long.MIN_VALUE
|
---|
242 | // we know in this case that fixing the last digit is sufficient
|
---|
243 | for (int i = 0; i < mant.length - 1; i++) {
|
---|
244 | if (mant[i] != 0) {
|
---|
245 | mant[i]++;
|
---|
246 | break;
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 | /** Create an instance from a double value.
|
---|
253 | * @param field field to which this instance belongs
|
---|
254 | * @param x value to convert to an instance
|
---|
255 | */
|
---|
256 | protected Dfp(final DfpField field, double x) {
|
---|
257 |
|
---|
258 | // initialize as if 0
|
---|
259 | mant = new int[field.getRadixDigits()];
|
---|
260 | sign = 1;
|
---|
261 | exp = 0;
|
---|
262 | nans = FINITE;
|
---|
263 | this.field = field;
|
---|
264 |
|
---|
265 | long bits = Double.doubleToLongBits(x);
|
---|
266 | long mantissa = bits & 0x000fffffffffffffL;
|
---|
267 | int exponent = (int) ((bits & 0x7ff0000000000000L) >> 52) - 1023;
|
---|
268 |
|
---|
269 | if (exponent == -1023) {
|
---|
270 | // Zero or sub-normal
|
---|
271 | if (x == 0) {
|
---|
272 | return;
|
---|
273 | }
|
---|
274 |
|
---|
275 | exponent++;
|
---|
276 |
|
---|
277 | // Normalize the subnormal number
|
---|
278 | while ( (mantissa & 0x0010000000000000L) == 0) {
|
---|
279 | exponent--;
|
---|
280 | mantissa <<= 1;
|
---|
281 | }
|
---|
282 | mantissa &= 0x000fffffffffffffL;
|
---|
283 | }
|
---|
284 |
|
---|
285 | if (exponent == 1024) {
|
---|
286 | // infinity or NAN
|
---|
287 | if (x != x) {
|
---|
288 | sign = (byte) 1;
|
---|
289 | nans = QNAN;
|
---|
290 | } else if (x < 0) {
|
---|
291 | sign = (byte) -1;
|
---|
292 | nans = INFINITE;
|
---|
293 | } else {
|
---|
294 | sign = (byte) 1;
|
---|
295 | nans = INFINITE;
|
---|
296 | }
|
---|
297 | return;
|
---|
298 | }
|
---|
299 |
|
---|
300 | Dfp xdfp = new Dfp(field, mantissa);
|
---|
301 | xdfp = xdfp.divide(new Dfp(field, 4503599627370496l)).add(field.getOne()); // Divide by 2^52, then add one
|
---|
302 | xdfp = xdfp.multiply(DfpMath.pow(field.getTwo(), exponent));
|
---|
303 |
|
---|
304 | if ((bits & 0x8000000000000000L) != 0) {
|
---|
305 | xdfp = xdfp.negate();
|
---|
306 | }
|
---|
307 |
|
---|
308 | System.arraycopy(xdfp.mant, 0, mant, 0, mant.length);
|
---|
309 | sign = xdfp.sign;
|
---|
310 | exp = xdfp.exp;
|
---|
311 | nans = xdfp.nans;
|
---|
312 |
|
---|
313 | }
|
---|
314 |
|
---|
315 | /** Copy constructor.
|
---|
316 | * @param d instance to copy
|
---|
317 | */
|
---|
318 | public Dfp(final Dfp d) {
|
---|
319 | mant = d.mant.clone();
|
---|
320 | sign = d.sign;
|
---|
321 | exp = d.exp;
|
---|
322 | nans = d.nans;
|
---|
323 | field = d.field;
|
---|
324 | }
|
---|
325 |
|
---|
326 | /** Create an instance from a String representation.
|
---|
327 | * @param field field to which this instance belongs
|
---|
328 | * @param s string representation of the instance
|
---|
329 | */
|
---|
330 | protected Dfp(final DfpField field, final String s) {
|
---|
331 |
|
---|
332 | // initialize as if 0
|
---|
333 | mant = new int[field.getRadixDigits()];
|
---|
334 | sign = 1;
|
---|
335 | exp = 0;
|
---|
336 | nans = FINITE;
|
---|
337 | this.field = field;
|
---|
338 |
|
---|
339 | boolean decimalFound = false;
|
---|
340 | final int rsize = 4; // size of radix in decimal digits
|
---|
341 | final int offset = 4; // Starting offset into Striped
|
---|
342 | final char[] striped = new char[getRadixDigits() * rsize + offset * 2];
|
---|
343 |
|
---|
344 | // Check some special cases
|
---|
345 | if (s.equals(POS_INFINITY_STRING)) {
|
---|
346 | sign = (byte) 1;
|
---|
347 | nans = INFINITE;
|
---|
348 | return;
|
---|
349 | }
|
---|
350 |
|
---|
351 | if (s.equals(NEG_INFINITY_STRING)) {
|
---|
352 | sign = (byte) -1;
|
---|
353 | nans = INFINITE;
|
---|
354 | return;
|
---|
355 | }
|
---|
356 |
|
---|
357 | if (s.equals(NAN_STRING)) {
|
---|
358 | sign = (byte) 1;
|
---|
359 | nans = QNAN;
|
---|
360 | return;
|
---|
361 | }
|
---|
362 |
|
---|
363 | // Check for scientific notation
|
---|
364 | int p = s.indexOf("e");
|
---|
365 | if (p == -1) { // try upper case?
|
---|
366 | p = s.indexOf("E");
|
---|
367 | }
|
---|
368 |
|
---|
369 | final String fpdecimal;
|
---|
370 | int sciexp = 0;
|
---|
371 | if (p != -1) {
|
---|
372 | // scientific notation
|
---|
373 | fpdecimal = s.substring(0, p);
|
---|
374 | String fpexp = s.substring(p+1);
|
---|
375 | boolean negative = false;
|
---|
376 |
|
---|
377 | for (int i=0; i<fpexp.length(); i++)
|
---|
378 | {
|
---|
379 | if (fpexp.charAt(i) == '-')
|
---|
380 | {
|
---|
381 | negative = true;
|
---|
382 | continue;
|
---|
383 | }
|
---|
384 | if (fpexp.charAt(i) >= '0' && fpexp.charAt(i) <= '9')
|
---|
385 | sciexp = sciexp * 10 + fpexp.charAt(i) - '0';
|
---|
386 | }
|
---|
387 |
|
---|
388 | if (negative) {
|
---|
389 | sciexp = -sciexp;
|
---|
390 | }
|
---|
391 | } else {
|
---|
392 | // normal case
|
---|
393 | fpdecimal = s;
|
---|
394 | }
|
---|
395 |
|
---|
396 | // If there is a minus sign in the number then it is negative
|
---|
397 | if (fpdecimal.indexOf("-") != -1) {
|
---|
398 | sign = -1;
|
---|
399 | }
|
---|
400 |
|
---|
401 | // First off, find all of the leading zeros, trailing zeros, and significant digits
|
---|
402 | p = 0;
|
---|
403 |
|
---|
404 | // Move p to first significant digit
|
---|
405 | int decimalPos = 0;
|
---|
406 | for (;;) {
|
---|
407 | if (fpdecimal.charAt(p) >= '1' && fpdecimal.charAt(p) <= '9') {
|
---|
408 | break;
|
---|
409 | }
|
---|
410 |
|
---|
411 | if (decimalFound && fpdecimal.charAt(p) == '0') {
|
---|
412 | decimalPos--;
|
---|
413 | }
|
---|
414 |
|
---|
415 | if (fpdecimal.charAt(p) == '.') {
|
---|
416 | decimalFound = true;
|
---|
417 | }
|
---|
418 |
|
---|
419 | p++;
|
---|
420 |
|
---|
421 | if (p == fpdecimal.length()) {
|
---|
422 | break;
|
---|
423 | }
|
---|
424 | }
|
---|
425 |
|
---|
426 | // Copy the string onto Stripped
|
---|
427 | int q = offset;
|
---|
428 | striped[0] = '0';
|
---|
429 | striped[1] = '0';
|
---|
430 | striped[2] = '0';
|
---|
431 | striped[3] = '0';
|
---|
432 | int significantDigits=0;
|
---|
433 | for(;;) {
|
---|
434 | if (p == (fpdecimal.length())) {
|
---|
435 | break;
|
---|
436 | }
|
---|
437 |
|
---|
438 | // Don't want to run pass the end of the array
|
---|
439 | if (q == mant.length*rsize+offset+1) {
|
---|
440 | break;
|
---|
441 | }
|
---|
442 |
|
---|
443 | if (fpdecimal.charAt(p) == '.') {
|
---|
444 | decimalFound = true;
|
---|
445 | decimalPos = significantDigits;
|
---|
446 | p++;
|
---|
447 | continue;
|
---|
448 | }
|
---|
449 |
|
---|
450 | if (fpdecimal.charAt(p) < '0' || fpdecimal.charAt(p) > '9') {
|
---|
451 | p++;
|
---|
452 | continue;
|
---|
453 | }
|
---|
454 |
|
---|
455 | striped[q] = fpdecimal.charAt(p);
|
---|
456 | q++;
|
---|
457 | p++;
|
---|
458 | significantDigits++;
|
---|
459 | }
|
---|
460 |
|
---|
461 |
|
---|
462 | // If the decimal point has been found then get rid of trailing zeros.
|
---|
463 | if (decimalFound && q != offset) {
|
---|
464 | for (;;) {
|
---|
465 | q--;
|
---|
466 | if (q == offset) {
|
---|
467 | break;
|
---|
468 | }
|
---|
469 | if (striped[q] == '0') {
|
---|
470 | significantDigits--;
|
---|
471 | } else {
|
---|
472 | break;
|
---|
473 | }
|
---|
474 | }
|
---|
475 | }
|
---|
476 |
|
---|
477 | // special case of numbers like "0.00000"
|
---|
478 | if (decimalFound && significantDigits == 0) {
|
---|
479 | decimalPos = 0;
|
---|
480 | }
|
---|
481 |
|
---|
482 | // Implicit decimal point at end of number if not present
|
---|
483 | if (!decimalFound) {
|
---|
484 | decimalPos = q-offset;
|
---|
485 | }
|
---|
486 |
|
---|
487 | // Find the number of significant trailing zeros
|
---|
488 | q = offset; // set q to point to first sig digit
|
---|
489 | p = significantDigits-1+offset;
|
---|
490 |
|
---|
491 | int trailingZeros = 0;
|
---|
492 | while (p > q) {
|
---|
493 | if (striped[p] != '0') {
|
---|
494 | break;
|
---|
495 | }
|
---|
496 | trailingZeros++;
|
---|
497 | p--;
|
---|
498 | }
|
---|
499 |
|
---|
500 | // Make sure the decimal is on a mod 10000 boundary
|
---|
501 | int i = ((rsize * 100) - decimalPos - sciexp % rsize) % rsize;
|
---|
502 | q -= i;
|
---|
503 | decimalPos += i;
|
---|
504 |
|
---|
505 | // Make the mantissa length right by adding zeros at the end if necessary
|
---|
506 | while ((p - q) < (mant.length * rsize)) {
|
---|
507 | for (i = 0; i < rsize; i++) {
|
---|
508 | striped[++p] = '0';
|
---|
509 | }
|
---|
510 | }
|
---|
511 |
|
---|
512 | // Ok, now we know how many trailing zeros there are,
|
---|
513 | // and where the least significant digit is
|
---|
514 | for (i = mant.length - 1; i >= 0; i--) {
|
---|
515 | mant[i] = (striped[q] - '0') * 1000 +
|
---|
516 | (striped[q+1] - '0') * 100 +
|
---|
517 | (striped[q+2] - '0') * 10 +
|
---|
518 | (striped[q+3] - '0');
|
---|
519 | q += 4;
|
---|
520 | }
|
---|
521 |
|
---|
522 |
|
---|
523 | exp = (decimalPos+sciexp) / rsize;
|
---|
524 |
|
---|
525 | if (q < striped.length) {
|
---|
526 | // Is there possible another digit?
|
---|
527 | round((striped[q] - '0')*1000);
|
---|
528 | }
|
---|
529 |
|
---|
530 | }
|
---|
531 |
|
---|
532 | /** Creates an instance with a non-finite value.
|
---|
533 | * @param field field to which this instance belongs
|
---|
534 | * @param sign sign of the Dfp to create
|
---|
535 | * @param nans code of the value, must be one of {@link #INFINITE},
|
---|
536 | * {@link #SNAN}, {@link #QNAN}
|
---|
537 | */
|
---|
538 | protected Dfp(final DfpField field, final byte sign, final byte nans) {
|
---|
539 | this.field = field;
|
---|
540 | this.mant = new int[field.getRadixDigits()];
|
---|
541 | this.sign = sign;
|
---|
542 | this.exp = 0;
|
---|
543 | this.nans = nans;
|
---|
544 | }
|
---|
545 |
|
---|
546 | /** Create an instance with a value of 0.
|
---|
547 | * Use this internally in preference to constructors to facilitate subclasses
|
---|
548 | * @return a new instance with a value of 0
|
---|
549 | */
|
---|
550 | public Dfp newInstance() {
|
---|
551 | return new Dfp(getField());
|
---|
552 | }
|
---|
553 |
|
---|
554 | /** Create an instance from a byte value.
|
---|
555 | * @param x value to convert to an instance
|
---|
556 | * @return a new instance with value x
|
---|
557 | */
|
---|
558 | public Dfp newInstance(final byte x) {
|
---|
559 | return new Dfp(getField(), x);
|
---|
560 | }
|
---|
561 |
|
---|
562 | /** Create an instance from an int value.
|
---|
563 | * @param x value to convert to an instance
|
---|
564 | * @return a new instance with value x
|
---|
565 | */
|
---|
566 | public Dfp newInstance(final int x) {
|
---|
567 | return new Dfp(getField(), x);
|
---|
568 | }
|
---|
569 |
|
---|
570 | /** Create an instance from a long value.
|
---|
571 | * @param x value to convert to an instance
|
---|
572 | * @return a new instance with value x
|
---|
573 | */
|
---|
574 | public Dfp newInstance(final long x) {
|
---|
575 | return new Dfp(getField(), x);
|
---|
576 | }
|
---|
577 |
|
---|
578 | /** Create an instance from a double value.
|
---|
579 | * @param x value to convert to an instance
|
---|
580 | * @return a new instance with value x
|
---|
581 | */
|
---|
582 | public Dfp newInstance(final double x) {
|
---|
583 | return new Dfp(getField(), x);
|
---|
584 | }
|
---|
585 |
|
---|
586 | /** Create an instance by copying an existing one.
|
---|
587 | * Use this internally in preference to constructors to facilitate subclasses.
|
---|
588 | * @param d instance to copy
|
---|
589 | * @return a new instance with the same value as d
|
---|
590 | */
|
---|
591 | public Dfp newInstance(final Dfp d) {
|
---|
592 |
|
---|
593 | // make sure we don't mix number with different precision
|
---|
594 | if (field.getRadixDigits() != d.field.getRadixDigits()) {
|
---|
595 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
596 | final Dfp result = newInstance(getZero());
|
---|
597 | result.nans = QNAN;
|
---|
598 | return dotrap(DfpField.FLAG_INVALID, NEW_INSTANCE_TRAP, d, result);
|
---|
599 | }
|
---|
600 |
|
---|
601 | return new Dfp(d);
|
---|
602 |
|
---|
603 | }
|
---|
604 |
|
---|
605 | /** Create an instance from a String representation.
|
---|
606 | * Use this internally in preference to constructors to facilitate subclasses.
|
---|
607 | * @param s string representation of the instance
|
---|
608 | * @return a new instance parsed from specified string
|
---|
609 | */
|
---|
610 | public Dfp newInstance(final String s) {
|
---|
611 | return new Dfp(field, s);
|
---|
612 | }
|
---|
613 |
|
---|
614 | /** Creates an instance with a non-finite value.
|
---|
615 | * @param sig sign of the Dfp to create
|
---|
616 | * @param code code of the value, must be one of {@link #INFINITE},
|
---|
617 | * {@link #SNAN}, {@link #QNAN}
|
---|
618 | * @return a new instance with a non-finite value
|
---|
619 | */
|
---|
620 | public Dfp newInstance(final byte sig, final byte code) {
|
---|
621 | return field.newDfp(sig, code);
|
---|
622 | }
|
---|
623 |
|
---|
624 | /** Get the {@link agents.org.apache.commons.math.Field Field} (really a {@link DfpField}) to which the instance belongs.
|
---|
625 | * <p>
|
---|
626 | * The field is linked to the number of digits and acts as a factory
|
---|
627 | * for {@link Dfp} instances.
|
---|
628 | * </p>
|
---|
629 | * @return {@link agents.org.apache.commons.math.Field Field} (really a {@link DfpField}) to which the instance belongs
|
---|
630 | */
|
---|
631 | public DfpField getField() {
|
---|
632 | return field;
|
---|
633 | }
|
---|
634 |
|
---|
635 | /** Get the number of radix digits of the instance.
|
---|
636 | * @return number of radix digits
|
---|
637 | */
|
---|
638 | public int getRadixDigits() {
|
---|
639 | return field.getRadixDigits();
|
---|
640 | }
|
---|
641 |
|
---|
642 | /** Get the constant 0.
|
---|
643 | * @return a Dfp with value zero
|
---|
644 | */
|
---|
645 | public Dfp getZero() {
|
---|
646 | return field.getZero();
|
---|
647 | }
|
---|
648 |
|
---|
649 | /** Get the constant 1.
|
---|
650 | * @return a Dfp with value one
|
---|
651 | */
|
---|
652 | public Dfp getOne() {
|
---|
653 | return field.getOne();
|
---|
654 | }
|
---|
655 |
|
---|
656 | /** Get the constant 2.
|
---|
657 | * @return a Dfp with value two
|
---|
658 | */
|
---|
659 | public Dfp getTwo() {
|
---|
660 | return field.getTwo();
|
---|
661 | }
|
---|
662 |
|
---|
663 | /** Shift the mantissa left, and adjust the exponent to compensate.
|
---|
664 | */
|
---|
665 | protected void shiftLeft() {
|
---|
666 | for (int i = mant.length - 1; i > 0; i--) {
|
---|
667 | mant[i] = mant[i-1];
|
---|
668 | }
|
---|
669 | mant[0] = 0;
|
---|
670 | exp--;
|
---|
671 | }
|
---|
672 |
|
---|
673 | /* Note that shiftRight() does not call round() as that round() itself
|
---|
674 | uses shiftRight() */
|
---|
675 | /** Shift the mantissa right, and adjust the exponent to compensate.
|
---|
676 | */
|
---|
677 | protected void shiftRight() {
|
---|
678 | for (int i = 0; i < mant.length - 1; i++) {
|
---|
679 | mant[i] = mant[i+1];
|
---|
680 | }
|
---|
681 | mant[mant.length - 1] = 0;
|
---|
682 | exp++;
|
---|
683 | }
|
---|
684 |
|
---|
685 | /** Make our exp equal to the supplied one, this may cause rounding.
|
---|
686 | * Also causes de-normalized numbers. These numbers are generally
|
---|
687 | * dangerous because most routines assume normalized numbers.
|
---|
688 | * Align doesn't round, so it will return the last digit destroyed
|
---|
689 | * by shifting right.
|
---|
690 | * @param e desired exponent
|
---|
691 | * @return last digit destroyed by shifting right
|
---|
692 | */
|
---|
693 | protected int align(int e) {
|
---|
694 | int lostdigit = 0;
|
---|
695 | boolean inexact = false;
|
---|
696 |
|
---|
697 | int diff = exp - e;
|
---|
698 |
|
---|
699 | int adiff = diff;
|
---|
700 | if (adiff < 0) {
|
---|
701 | adiff = -adiff;
|
---|
702 | }
|
---|
703 |
|
---|
704 | if (diff == 0) {
|
---|
705 | return 0;
|
---|
706 | }
|
---|
707 |
|
---|
708 | if (adiff > (mant.length + 1)) {
|
---|
709 | // Special case
|
---|
710 | Arrays.fill(mant, 0);
|
---|
711 | exp = e;
|
---|
712 |
|
---|
713 | field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
|
---|
714 | dotrap(DfpField.FLAG_INEXACT, ALIGN_TRAP, this, this);
|
---|
715 |
|
---|
716 | return 0;
|
---|
717 | }
|
---|
718 |
|
---|
719 | for (int i = 0; i < adiff; i++) {
|
---|
720 | if (diff < 0) {
|
---|
721 | /* Keep track of loss -- only signal inexact after losing 2 digits.
|
---|
722 | * the first lost digit is returned to add() and may be incorporated
|
---|
723 | * into the result.
|
---|
724 | */
|
---|
725 | if (lostdigit != 0) {
|
---|
726 | inexact = true;
|
---|
727 | }
|
---|
728 |
|
---|
729 | lostdigit = mant[0];
|
---|
730 |
|
---|
731 | shiftRight();
|
---|
732 | } else {
|
---|
733 | shiftLeft();
|
---|
734 | }
|
---|
735 | }
|
---|
736 |
|
---|
737 | if (inexact) {
|
---|
738 | field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
|
---|
739 | dotrap(DfpField.FLAG_INEXACT, ALIGN_TRAP, this, this);
|
---|
740 | }
|
---|
741 |
|
---|
742 | return lostdigit;
|
---|
743 |
|
---|
744 | }
|
---|
745 |
|
---|
746 | /** Check if instance is less than x.
|
---|
747 | * @param x number to check instance against
|
---|
748 | * @return true if instance is less than x and neither are NaN, false otherwise
|
---|
749 | */
|
---|
750 | public boolean lessThan(final Dfp x) {
|
---|
751 |
|
---|
752 | // make sure we don't mix number with different precision
|
---|
753 | if (field.getRadixDigits() != x.field.getRadixDigits()) {
|
---|
754 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
755 | final Dfp result = newInstance(getZero());
|
---|
756 | result.nans = QNAN;
|
---|
757 | dotrap(DfpField.FLAG_INVALID, LESS_THAN_TRAP, x, result);
|
---|
758 | return false;
|
---|
759 | }
|
---|
760 |
|
---|
761 | /* if a nan is involved, signal invalid and return false */
|
---|
762 | if (isNaN() || x.isNaN()) {
|
---|
763 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
764 | dotrap(DfpField.FLAG_INVALID, LESS_THAN_TRAP, x, newInstance(getZero()));
|
---|
765 | return false;
|
---|
766 | }
|
---|
767 |
|
---|
768 | return compare(this, x) < 0;
|
---|
769 | }
|
---|
770 |
|
---|
771 | /** Check if instance is greater than x.
|
---|
772 | * @param x number to check instance against
|
---|
773 | * @return true if instance is greater than x and neither are NaN, false otherwise
|
---|
774 | */
|
---|
775 | public boolean greaterThan(final Dfp x) {
|
---|
776 |
|
---|
777 | // make sure we don't mix number with different precision
|
---|
778 | if (field.getRadixDigits() != x.field.getRadixDigits()) {
|
---|
779 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
780 | final Dfp result = newInstance(getZero());
|
---|
781 | result.nans = QNAN;
|
---|
782 | dotrap(DfpField.FLAG_INVALID, GREATER_THAN_TRAP, x, result);
|
---|
783 | return false;
|
---|
784 | }
|
---|
785 |
|
---|
786 | /* if a nan is involved, signal invalid and return false */
|
---|
787 | if (isNaN() || x.isNaN()) {
|
---|
788 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
789 | dotrap(DfpField.FLAG_INVALID, GREATER_THAN_TRAP, x, newInstance(getZero()));
|
---|
790 | return false;
|
---|
791 | }
|
---|
792 |
|
---|
793 | return compare(this, x) > 0;
|
---|
794 | }
|
---|
795 |
|
---|
796 | /** Check if instance is infinite.
|
---|
797 | * @return true if instance is infinite
|
---|
798 | */
|
---|
799 | public boolean isInfinite() {
|
---|
800 | return nans == INFINITE;
|
---|
801 | }
|
---|
802 |
|
---|
803 | /** Check if instance is not a number.
|
---|
804 | * @return true if instance is not a number
|
---|
805 | */
|
---|
806 | public boolean isNaN() {
|
---|
807 | return (nans == QNAN) || (nans == SNAN);
|
---|
808 | }
|
---|
809 |
|
---|
810 | /** Check if instance is equal to x.
|
---|
811 | * @param other object to check instance against
|
---|
812 | * @return true if instance is equal to x and neither are NaN, false otherwise
|
---|
813 | */
|
---|
814 | @Override
|
---|
815 | public boolean equals(final Object other) {
|
---|
816 |
|
---|
817 | if (other instanceof Dfp) {
|
---|
818 | final Dfp x = (Dfp) other;
|
---|
819 | if (isNaN() || x.isNaN() || field.getRadixDigits() != x.field.getRadixDigits()) {
|
---|
820 | return false;
|
---|
821 | }
|
---|
822 |
|
---|
823 | return compare(this, x) == 0;
|
---|
824 | }
|
---|
825 |
|
---|
826 | return false;
|
---|
827 |
|
---|
828 | }
|
---|
829 |
|
---|
830 | /**
|
---|
831 | * Gets a hashCode for the instance.
|
---|
832 | * @return a hash code value for this object
|
---|
833 | */
|
---|
834 | @Override
|
---|
835 | public int hashCode() {
|
---|
836 | return 17 + (sign << 8) + (nans << 16) + exp + Arrays.hashCode(mant);
|
---|
837 | }
|
---|
838 |
|
---|
839 | /** Check if instance is not equal to x.
|
---|
840 | * @param x number to check instance against
|
---|
841 | * @return true if instance is not equal to x and neither are NaN, false otherwise
|
---|
842 | */
|
---|
843 | public boolean unequal(final Dfp x) {
|
---|
844 | if (isNaN() || x.isNaN() || field.getRadixDigits() != x.field.getRadixDigits()) {
|
---|
845 | return false;
|
---|
846 | }
|
---|
847 |
|
---|
848 | return greaterThan(x) || lessThan(x);
|
---|
849 | }
|
---|
850 |
|
---|
851 | /** Compare two instances.
|
---|
852 | * @param a first instance in comparison
|
---|
853 | * @param b second instance in comparison
|
---|
854 | * @return -1 if a<b, 1 if a>b and 0 if a==b
|
---|
855 | * Note this method does not properly handle NaNs or numbers with different precision.
|
---|
856 | */
|
---|
857 | private static int compare(final Dfp a, final Dfp b) {
|
---|
858 | // Ignore the sign of zero
|
---|
859 | if (a.mant[a.mant.length - 1] == 0 && b.mant[b.mant.length - 1] == 0 &&
|
---|
860 | a.nans == FINITE && b.nans == FINITE) {
|
---|
861 | return 0;
|
---|
862 | }
|
---|
863 |
|
---|
864 | if (a.sign != b.sign) {
|
---|
865 | if (a.sign == -1) {
|
---|
866 | return -1;
|
---|
867 | } else {
|
---|
868 | return 1;
|
---|
869 | }
|
---|
870 | }
|
---|
871 |
|
---|
872 | // deal with the infinities
|
---|
873 | if (a.nans == INFINITE && b.nans == FINITE) {
|
---|
874 | return a.sign;
|
---|
875 | }
|
---|
876 |
|
---|
877 | if (a.nans == FINITE && b.nans == INFINITE) {
|
---|
878 | return -b.sign;
|
---|
879 | }
|
---|
880 |
|
---|
881 | if (a.nans == INFINITE && b.nans == INFINITE) {
|
---|
882 | return 0;
|
---|
883 | }
|
---|
884 |
|
---|
885 | // Handle special case when a or b is zero, by ignoring the exponents
|
---|
886 | if (b.mant[b.mant.length-1] != 0 && a.mant[b.mant.length-1] != 0) {
|
---|
887 | if (a.exp < b.exp) {
|
---|
888 | return -a.sign;
|
---|
889 | }
|
---|
890 |
|
---|
891 | if (a.exp > b.exp) {
|
---|
892 | return a.sign;
|
---|
893 | }
|
---|
894 | }
|
---|
895 |
|
---|
896 | // compare the mantissas
|
---|
897 | for (int i = a.mant.length - 1; i >= 0; i--) {
|
---|
898 | if (a.mant[i] > b.mant[i]) {
|
---|
899 | return a.sign;
|
---|
900 | }
|
---|
901 |
|
---|
902 | if (a.mant[i] < b.mant[i]) {
|
---|
903 | return -a.sign;
|
---|
904 | }
|
---|
905 | }
|
---|
906 |
|
---|
907 | return 0;
|
---|
908 |
|
---|
909 | }
|
---|
910 |
|
---|
911 | /** Round to nearest integer using the round-half-even method.
|
---|
912 | * That is round to nearest integer unless both are equidistant.
|
---|
913 | * In which case round to the even one.
|
---|
914 | * @return rounded value
|
---|
915 | */
|
---|
916 | public Dfp rint() {
|
---|
917 | return trunc(DfpField.RoundingMode.ROUND_HALF_EVEN);
|
---|
918 | }
|
---|
919 |
|
---|
920 | /** Round to an integer using the round floor mode.
|
---|
921 | * That is, round toward -Infinity
|
---|
922 | * @return rounded value
|
---|
923 | */
|
---|
924 | public Dfp floor() {
|
---|
925 | return trunc(DfpField.RoundingMode.ROUND_FLOOR);
|
---|
926 | }
|
---|
927 |
|
---|
928 | /** Round to an integer using the round ceil mode.
|
---|
929 | * That is, round toward +Infinity
|
---|
930 | * @return rounded value
|
---|
931 | */
|
---|
932 | public Dfp ceil() {
|
---|
933 | return trunc(DfpField.RoundingMode.ROUND_CEIL);
|
---|
934 | }
|
---|
935 |
|
---|
936 | /** Returns the IEEE remainder.
|
---|
937 | * @param d divisor
|
---|
938 | * @return this less n × d, where n is the integer closest to this/d
|
---|
939 | */
|
---|
940 | public Dfp remainder(final Dfp d) {
|
---|
941 |
|
---|
942 | final Dfp result = this.subtract(this.divide(d).rint().multiply(d));
|
---|
943 |
|
---|
944 | // IEEE 854-1987 says that if the result is zero, then it carries the sign of this
|
---|
945 | if (result.mant[mant.length-1] == 0) {
|
---|
946 | result.sign = sign;
|
---|
947 | }
|
---|
948 |
|
---|
949 | return result;
|
---|
950 |
|
---|
951 | }
|
---|
952 |
|
---|
953 | /** Does the integer conversions with the specified rounding.
|
---|
954 | * @param rmode rounding mode to use
|
---|
955 | * @return truncated value
|
---|
956 | */
|
---|
957 | protected Dfp trunc(final DfpField.RoundingMode rmode) {
|
---|
958 | boolean changed = false;
|
---|
959 |
|
---|
960 | if (isNaN()) {
|
---|
961 | return newInstance(this);
|
---|
962 | }
|
---|
963 |
|
---|
964 | if (nans == INFINITE) {
|
---|
965 | return newInstance(this);
|
---|
966 | }
|
---|
967 |
|
---|
968 | if (mant[mant.length-1] == 0) {
|
---|
969 | // a is zero
|
---|
970 | return newInstance(this);
|
---|
971 | }
|
---|
972 |
|
---|
973 | /* If the exponent is less than zero then we can certainly
|
---|
974 | * return zero */
|
---|
975 | if (exp < 0) {
|
---|
976 | field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
|
---|
977 | Dfp result = newInstance(getZero());
|
---|
978 | result = dotrap(DfpField.FLAG_INEXACT, TRUNC_TRAP, this, result);
|
---|
979 | return result;
|
---|
980 | }
|
---|
981 |
|
---|
982 | /* If the exponent is greater than or equal to digits, then it
|
---|
983 | * must already be an integer since there is no precision left
|
---|
984 | * for any fractional part */
|
---|
985 |
|
---|
986 | if (exp >= mant.length) {
|
---|
987 | return newInstance(this);
|
---|
988 | }
|
---|
989 |
|
---|
990 | /* General case: create another dfp, result, that contains the
|
---|
991 | * a with the fractional part lopped off. */
|
---|
992 |
|
---|
993 | Dfp result = newInstance(this);
|
---|
994 | for (int i = 0; i < mant.length-result.exp; i++) {
|
---|
995 | changed |= result.mant[i] != 0;
|
---|
996 | result.mant[i] = 0;
|
---|
997 | }
|
---|
998 |
|
---|
999 | if (changed) {
|
---|
1000 | switch (rmode) {
|
---|
1001 | case ROUND_FLOOR:
|
---|
1002 | if (result.sign == -1) {
|
---|
1003 | // then we must increment the mantissa by one
|
---|
1004 | result = result.add(newInstance(-1));
|
---|
1005 | }
|
---|
1006 | break;
|
---|
1007 |
|
---|
1008 | case ROUND_CEIL:
|
---|
1009 | if (result.sign == 1) {
|
---|
1010 | // then we must increment the mantissa by one
|
---|
1011 | result = result.add(getOne());
|
---|
1012 | }
|
---|
1013 | break;
|
---|
1014 |
|
---|
1015 | case ROUND_HALF_EVEN:
|
---|
1016 | default:
|
---|
1017 | final Dfp half = newInstance("0.5");
|
---|
1018 | Dfp a = subtract(result); // difference between this and result
|
---|
1019 | a.sign = 1; // force positive (take abs)
|
---|
1020 | if (a.greaterThan(half)) {
|
---|
1021 | a = newInstance(getOne());
|
---|
1022 | a.sign = sign;
|
---|
1023 | result = result.add(a);
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | /** If exactly equal to 1/2 and odd then increment */
|
---|
1027 | if (a.equals(half) && result.exp > 0 && (result.mant[mant.length-result.exp]&1) != 0) {
|
---|
1028 | a = newInstance(getOne());
|
---|
1029 | a.sign = sign;
|
---|
1030 | result = result.add(a);
|
---|
1031 | }
|
---|
1032 | break;
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | field.setIEEEFlagsBits(DfpField.FLAG_INEXACT); // signal inexact
|
---|
1036 | result = dotrap(DfpField.FLAG_INEXACT, TRUNC_TRAP, this, result);
|
---|
1037 | return result;
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 | return result;
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | /** Convert this to an integer.
|
---|
1044 | * If greater than 2147483647, it returns 2147483647. If less than -2147483648 it returns -2147483648.
|
---|
1045 | * @return converted number
|
---|
1046 | */
|
---|
1047 | public int intValue() {
|
---|
1048 | Dfp rounded;
|
---|
1049 | int result = 0;
|
---|
1050 |
|
---|
1051 | rounded = rint();
|
---|
1052 |
|
---|
1053 | if (rounded.greaterThan(newInstance(2147483647))) {
|
---|
1054 | return 2147483647;
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | if (rounded.lessThan(newInstance(-2147483648))) {
|
---|
1058 | return -2147483648;
|
---|
1059 | }
|
---|
1060 |
|
---|
1061 | for (int i = mant.length - 1; i >= mant.length - rounded.exp; i--) {
|
---|
1062 | result = result * RADIX + rounded.mant[i];
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 | if (rounded.sign == -1) {
|
---|
1066 | result = -result;
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | return result;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | /** Get the exponent of the greatest power of 10000 that is
|
---|
1073 | * less than or equal to the absolute value of this. I.E. if
|
---|
1074 | * this is 10<sup>6</sup> then log10K would return 1.
|
---|
1075 | * @return integer base 10000 logarithm
|
---|
1076 | */
|
---|
1077 | public int log10K() {
|
---|
1078 | return exp - 1;
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | /** Get the specified power of 10000.
|
---|
1082 | * @param e desired power
|
---|
1083 | * @return 10000<sup>e</sup>
|
---|
1084 | */
|
---|
1085 | public Dfp power10K(final int e) {
|
---|
1086 | Dfp d = newInstance(getOne());
|
---|
1087 | d.exp = e + 1;
|
---|
1088 | return d;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | /** Get the exponent of the greatest power of 10 that is less than or equal to abs(this).
|
---|
1092 | * @return integer base 10 logarithm
|
---|
1093 | */
|
---|
1094 | public int log10() {
|
---|
1095 | if (mant[mant.length-1] > 1000) {
|
---|
1096 | return exp * 4 - 1;
|
---|
1097 | }
|
---|
1098 | if (mant[mant.length-1] > 100) {
|
---|
1099 | return exp * 4 - 2;
|
---|
1100 | }
|
---|
1101 | if (mant[mant.length-1] > 10) {
|
---|
1102 | return exp * 4 - 3;
|
---|
1103 | }
|
---|
1104 | return exp * 4 - 4;
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | /** Return the specified power of 10.
|
---|
1108 | * @param e desired power
|
---|
1109 | * @return 10<sup>e</sup>
|
---|
1110 | */
|
---|
1111 | public Dfp power10(final int e) {
|
---|
1112 | Dfp d = newInstance(getOne());
|
---|
1113 |
|
---|
1114 | if (e >= 0) {
|
---|
1115 | d.exp = e / 4 + 1;
|
---|
1116 | } else {
|
---|
1117 | d.exp = (e + 1) / 4;
|
---|
1118 | }
|
---|
1119 |
|
---|
1120 | switch ((e % 4 + 4) % 4) {
|
---|
1121 | case 0:
|
---|
1122 | break;
|
---|
1123 | case 1:
|
---|
1124 | d = d.multiply(10);
|
---|
1125 | break;
|
---|
1126 | case 2:
|
---|
1127 | d = d.multiply(100);
|
---|
1128 | break;
|
---|
1129 | default:
|
---|
1130 | d = d.multiply(1000);
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 | return d;
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 | /** Negate the mantissa of this by computing the complement.
|
---|
1137 | * Leaves the sign bit unchanged, used internally by add.
|
---|
1138 | * Denormalized numbers are handled properly here.
|
---|
1139 | * @param extra ???
|
---|
1140 | * @return ???
|
---|
1141 | */
|
---|
1142 | protected int complement(int extra) {
|
---|
1143 |
|
---|
1144 | extra = RADIX-extra;
|
---|
1145 | for (int i = 0; i < mant.length; i++) {
|
---|
1146 | mant[i] = RADIX-mant[i]-1;
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | int rh = extra / RADIX;
|
---|
1150 | extra = extra - rh * RADIX;
|
---|
1151 | for (int i = 0; i < mant.length; i++) {
|
---|
1152 | final int r = mant[i] + rh;
|
---|
1153 | rh = r / RADIX;
|
---|
1154 | mant[i] = r - rh * RADIX;
|
---|
1155 | }
|
---|
1156 |
|
---|
1157 | return extra;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | /** Add x to this.
|
---|
1161 | * @param x number to add
|
---|
1162 | * @return sum of this and x
|
---|
1163 | */
|
---|
1164 | public Dfp add(final Dfp x) {
|
---|
1165 |
|
---|
1166 | // make sure we don't mix number with different precision
|
---|
1167 | if (field.getRadixDigits() != x.field.getRadixDigits()) {
|
---|
1168 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1169 | final Dfp result = newInstance(getZero());
|
---|
1170 | result.nans = QNAN;
|
---|
1171 | return dotrap(DfpField.FLAG_INVALID, ADD_TRAP, x, result);
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | /* handle special cases */
|
---|
1175 | if (nans != FINITE || x.nans != FINITE) {
|
---|
1176 | if (isNaN()) {
|
---|
1177 | return this;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | if (x.isNaN()) {
|
---|
1181 | return x;
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 | if (nans == INFINITE && x.nans == FINITE) {
|
---|
1185 | return this;
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | if (x.nans == INFINITE && nans == FINITE) {
|
---|
1189 | return x;
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | if (x.nans == INFINITE && nans == INFINITE && sign == x.sign) {
|
---|
1193 | return x;
|
---|
1194 | }
|
---|
1195 |
|
---|
1196 | if (x.nans == INFINITE && nans == INFINITE && sign != x.sign) {
|
---|
1197 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1198 | Dfp result = newInstance(getZero());
|
---|
1199 | result.nans = QNAN;
|
---|
1200 | result = dotrap(DfpField.FLAG_INVALID, ADD_TRAP, x, result);
|
---|
1201 | return result;
|
---|
1202 | }
|
---|
1203 | }
|
---|
1204 |
|
---|
1205 | /* copy this and the arg */
|
---|
1206 | Dfp a = newInstance(this);
|
---|
1207 | Dfp b = newInstance(x);
|
---|
1208 |
|
---|
1209 | /* initialize the result object */
|
---|
1210 | Dfp result = newInstance(getZero());
|
---|
1211 |
|
---|
1212 | /* Make all numbers positive, but remember their sign */
|
---|
1213 | final byte asign = a.sign;
|
---|
1214 | final byte bsign = b.sign;
|
---|
1215 |
|
---|
1216 | a.sign = 1;
|
---|
1217 | b.sign = 1;
|
---|
1218 |
|
---|
1219 | /* The result will be signed like the arg with greatest magnitude */
|
---|
1220 | byte rsign = bsign;
|
---|
1221 | if (compare(a, b) > 0) {
|
---|
1222 | rsign = asign;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | /* Handle special case when a or b is zero, by setting the exponent
|
---|
1226 | of the zero number equal to the other one. This avoids an alignment
|
---|
1227 | which would cause catastropic loss of precision */
|
---|
1228 | if (b.mant[mant.length-1] == 0) {
|
---|
1229 | b.exp = a.exp;
|
---|
1230 | }
|
---|
1231 |
|
---|
1232 | if (a.mant[mant.length-1] == 0) {
|
---|
1233 | a.exp = b.exp;
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | /* align number with the smaller exponent */
|
---|
1237 | int aextradigit = 0;
|
---|
1238 | int bextradigit = 0;
|
---|
1239 | if (a.exp < b.exp) {
|
---|
1240 | aextradigit = a.align(b.exp);
|
---|
1241 | } else {
|
---|
1242 | bextradigit = b.align(a.exp);
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | /* complement the smaller of the two if the signs are different */
|
---|
1246 | if (asign != bsign) {
|
---|
1247 | if (asign == rsign) {
|
---|
1248 | bextradigit = b.complement(bextradigit);
|
---|
1249 | } else {
|
---|
1250 | aextradigit = a.complement(aextradigit);
|
---|
1251 | }
|
---|
1252 | }
|
---|
1253 |
|
---|
1254 | /* add the mantissas */
|
---|
1255 | int rh = 0; /* acts as a carry */
|
---|
1256 | for (int i = 0; i < mant.length; i++) {
|
---|
1257 | final int r = a.mant[i]+b.mant[i]+rh;
|
---|
1258 | rh = r / RADIX;
|
---|
1259 | result.mant[i] = r - rh * RADIX;
|
---|
1260 | }
|
---|
1261 | result.exp = a.exp;
|
---|
1262 | result.sign = rsign;
|
---|
1263 |
|
---|
1264 | /* handle overflow -- note, when asign!=bsign an overflow is
|
---|
1265 | * normal and should be ignored. */
|
---|
1266 |
|
---|
1267 | if (rh != 0 && (asign == bsign)) {
|
---|
1268 | final int lostdigit = result.mant[0];
|
---|
1269 | result.shiftRight();
|
---|
1270 | result.mant[mant.length-1] = rh;
|
---|
1271 | final int excp = result.round(lostdigit);
|
---|
1272 | if (excp != 0) {
|
---|
1273 | result = dotrap(excp, ADD_TRAP, x, result);
|
---|
1274 | }
|
---|
1275 | }
|
---|
1276 |
|
---|
1277 | /* normalize the result */
|
---|
1278 | for (int i = 0; i < mant.length; i++) {
|
---|
1279 | if (result.mant[mant.length-1] != 0) {
|
---|
1280 | break;
|
---|
1281 | }
|
---|
1282 | result.shiftLeft();
|
---|
1283 | if (i == 0) {
|
---|
1284 | result.mant[0] = aextradigit+bextradigit;
|
---|
1285 | aextradigit = 0;
|
---|
1286 | bextradigit = 0;
|
---|
1287 | }
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 | /* result is zero if after normalization the most sig. digit is zero */
|
---|
1291 | if (result.mant[mant.length-1] == 0) {
|
---|
1292 | result.exp = 0;
|
---|
1293 |
|
---|
1294 | if (asign != bsign) {
|
---|
1295 | // Unless adding 2 negative zeros, sign is positive
|
---|
1296 | result.sign = 1; // Per IEEE 854-1987 Section 6.3
|
---|
1297 | }
|
---|
1298 | }
|
---|
1299 |
|
---|
1300 | /* Call round to test for over/under flows */
|
---|
1301 | final int excp = result.round(aextradigit + bextradigit);
|
---|
1302 | if (excp != 0) {
|
---|
1303 | result = dotrap(excp, ADD_TRAP, x, result);
|
---|
1304 | }
|
---|
1305 |
|
---|
1306 | return result;
|
---|
1307 | }
|
---|
1308 |
|
---|
1309 | /** Returns a number that is this number with the sign bit reversed.
|
---|
1310 | * @return the opposite of this
|
---|
1311 | */
|
---|
1312 | public Dfp negate() {
|
---|
1313 | Dfp result = newInstance(this);
|
---|
1314 | result.sign = (byte) - result.sign;
|
---|
1315 | return result;
|
---|
1316 | }
|
---|
1317 |
|
---|
1318 | /** Subtract x from this.
|
---|
1319 | * @param x number to subtract
|
---|
1320 | * @return difference of this and a
|
---|
1321 | */
|
---|
1322 | public Dfp subtract(final Dfp x) {
|
---|
1323 | return add(x.negate());
|
---|
1324 | }
|
---|
1325 |
|
---|
1326 | /** Round this given the next digit n using the current rounding mode.
|
---|
1327 | * @param n ???
|
---|
1328 | * @return the IEEE flag if an exception occurred
|
---|
1329 | */
|
---|
1330 | protected int round(int n) {
|
---|
1331 | boolean inc = false;
|
---|
1332 | switch (field.getRoundingMode()) {
|
---|
1333 | case ROUND_DOWN:
|
---|
1334 | inc = false;
|
---|
1335 | break;
|
---|
1336 |
|
---|
1337 | case ROUND_UP:
|
---|
1338 | inc = n != 0; // round up if n!=0
|
---|
1339 | break;
|
---|
1340 |
|
---|
1341 | case ROUND_HALF_UP:
|
---|
1342 | inc = n >= 5000; // round half up
|
---|
1343 | break;
|
---|
1344 |
|
---|
1345 | case ROUND_HALF_DOWN:
|
---|
1346 | inc = n > 5000; // round half down
|
---|
1347 | break;
|
---|
1348 |
|
---|
1349 | case ROUND_HALF_EVEN:
|
---|
1350 | inc = n > 5000 || (n == 5000 && (mant[0] & 1) == 1); // round half-even
|
---|
1351 | break;
|
---|
1352 |
|
---|
1353 | case ROUND_HALF_ODD:
|
---|
1354 | inc = n > 5000 || (n == 5000 && (mant[0] & 1) == 0); // round half-odd
|
---|
1355 | break;
|
---|
1356 |
|
---|
1357 | case ROUND_CEIL:
|
---|
1358 | inc = sign == 1 && n != 0; // round ceil
|
---|
1359 | break;
|
---|
1360 |
|
---|
1361 | case ROUND_FLOOR:
|
---|
1362 | default:
|
---|
1363 | inc = sign == -1 && n != 0; // round floor
|
---|
1364 | break;
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 | if (inc) {
|
---|
1368 | // increment if necessary
|
---|
1369 | int rh = 1;
|
---|
1370 | for (int i = 0; i < mant.length; i++) {
|
---|
1371 | final int r = mant[i] + rh;
|
---|
1372 | rh = r / RADIX;
|
---|
1373 | mant[i] = r - rh * RADIX;
|
---|
1374 | }
|
---|
1375 |
|
---|
1376 | if (rh != 0) {
|
---|
1377 | shiftRight();
|
---|
1378 | mant[mant.length-1] = rh;
|
---|
1379 | }
|
---|
1380 | }
|
---|
1381 |
|
---|
1382 | // check for exceptional cases and raise signals if necessary
|
---|
1383 | if (exp < MIN_EXP) {
|
---|
1384 | // Gradual Underflow
|
---|
1385 | field.setIEEEFlagsBits(DfpField.FLAG_UNDERFLOW);
|
---|
1386 | return DfpField.FLAG_UNDERFLOW;
|
---|
1387 | }
|
---|
1388 |
|
---|
1389 | if (exp > MAX_EXP) {
|
---|
1390 | // Overflow
|
---|
1391 | field.setIEEEFlagsBits(DfpField.FLAG_OVERFLOW);
|
---|
1392 | return DfpField.FLAG_OVERFLOW;
|
---|
1393 | }
|
---|
1394 |
|
---|
1395 | if (n != 0) {
|
---|
1396 | // Inexact
|
---|
1397 | field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
|
---|
1398 | return DfpField.FLAG_INEXACT;
|
---|
1399 | }
|
---|
1400 |
|
---|
1401 | return 0;
|
---|
1402 |
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 | /** Multiply this by x.
|
---|
1406 | * @param x multiplicand
|
---|
1407 | * @return product of this and x
|
---|
1408 | */
|
---|
1409 | public Dfp multiply(final Dfp x) {
|
---|
1410 |
|
---|
1411 | // make sure we don't mix number with different precision
|
---|
1412 | if (field.getRadixDigits() != x.field.getRadixDigits()) {
|
---|
1413 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1414 | final Dfp result = newInstance(getZero());
|
---|
1415 | result.nans = QNAN;
|
---|
1416 | return dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, x, result);
|
---|
1417 | }
|
---|
1418 |
|
---|
1419 | Dfp result = newInstance(getZero());
|
---|
1420 |
|
---|
1421 | /* handle special cases */
|
---|
1422 | if (nans != FINITE || x.nans != FINITE) {
|
---|
1423 | if (isNaN()) {
|
---|
1424 | return this;
|
---|
1425 | }
|
---|
1426 |
|
---|
1427 | if (x.isNaN()) {
|
---|
1428 | return x;
|
---|
1429 | }
|
---|
1430 |
|
---|
1431 | if (nans == INFINITE && x.nans == FINITE && x.mant[mant.length-1] != 0) {
|
---|
1432 | result = newInstance(this);
|
---|
1433 | result.sign = (byte) (sign * x.sign);
|
---|
1434 | return result;
|
---|
1435 | }
|
---|
1436 |
|
---|
1437 | if (x.nans == INFINITE && nans == FINITE && mant[mant.length-1] != 0) {
|
---|
1438 | result = newInstance(x);
|
---|
1439 | result.sign = (byte) (sign * x.sign);
|
---|
1440 | return result;
|
---|
1441 | }
|
---|
1442 |
|
---|
1443 | if (x.nans == INFINITE && nans == INFINITE) {
|
---|
1444 | result = newInstance(this);
|
---|
1445 | result.sign = (byte) (sign * x.sign);
|
---|
1446 | return result;
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | if ( (x.nans == INFINITE && nans == FINITE && mant[mant.length-1] == 0) ||
|
---|
1450 | (nans == INFINITE && x.nans == FINITE && x.mant[mant.length-1] == 0) ) {
|
---|
1451 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1452 | result = newInstance(getZero());
|
---|
1453 | result.nans = QNAN;
|
---|
1454 | result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, x, result);
|
---|
1455 | return result;
|
---|
1456 | }
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | int[] product = new int[mant.length*2]; // Big enough to hold even the largest result
|
---|
1460 |
|
---|
1461 | for (int i = 0; i < mant.length; i++) {
|
---|
1462 | int rh = 0; // acts as a carry
|
---|
1463 | for (int j=0; j<mant.length; j++) {
|
---|
1464 | int r = mant[i] * x.mant[j]; // multiply the 2 digits
|
---|
1465 | r = r + product[i+j] + rh; // add to the product digit with carry in
|
---|
1466 |
|
---|
1467 | rh = r / RADIX;
|
---|
1468 | product[i+j] = r - rh * RADIX;
|
---|
1469 | }
|
---|
1470 | product[i+mant.length] = rh;
|
---|
1471 | }
|
---|
1472 |
|
---|
1473 | // Find the most sig digit
|
---|
1474 | int md = mant.length * 2 - 1; // default, in case result is zero
|
---|
1475 | for (int i = mant.length * 2 - 1; i >= 0; i--) {
|
---|
1476 | if (product[i] != 0) {
|
---|
1477 | md = i;
|
---|
1478 | break;
|
---|
1479 | }
|
---|
1480 | }
|
---|
1481 |
|
---|
1482 | // Copy the digits into the result
|
---|
1483 | for (int i = 0; i < mant.length; i++) {
|
---|
1484 | result.mant[mant.length - i - 1] = product[md - i];
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | // Fixup the exponent.
|
---|
1488 | result.exp = exp + x.exp + md - 2 * mant.length + 1;
|
---|
1489 | result.sign = (byte)((sign == x.sign)?1:-1);
|
---|
1490 |
|
---|
1491 | if (result.mant[mant.length-1] == 0) {
|
---|
1492 | // if result is zero, set exp to zero
|
---|
1493 | result.exp = 0;
|
---|
1494 | }
|
---|
1495 |
|
---|
1496 | final int excp;
|
---|
1497 | if (md > (mant.length-1)) {
|
---|
1498 | excp = result.round(product[md-mant.length]);
|
---|
1499 | } else {
|
---|
1500 | excp = result.round(0); // has no effect except to check status
|
---|
1501 | }
|
---|
1502 |
|
---|
1503 | if (excp != 0) {
|
---|
1504 | result = dotrap(excp, MULTIPLY_TRAP, x, result);
|
---|
1505 | }
|
---|
1506 |
|
---|
1507 | return result;
|
---|
1508 |
|
---|
1509 | }
|
---|
1510 |
|
---|
1511 | /** Multiply this by a single digit 0<=x<radix.
|
---|
1512 | * There are speed advantages in this special case
|
---|
1513 | * @param x multiplicand
|
---|
1514 | * @return product of this and x
|
---|
1515 | */
|
---|
1516 | public Dfp multiply(final int x) {
|
---|
1517 | Dfp result = newInstance(this);
|
---|
1518 |
|
---|
1519 | /* handle special cases */
|
---|
1520 | if (nans != FINITE) {
|
---|
1521 | if (isNaN()) {
|
---|
1522 | return this;
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | if (nans == INFINITE && x != 0) {
|
---|
1526 | result = newInstance(this);
|
---|
1527 | return result;
|
---|
1528 | }
|
---|
1529 |
|
---|
1530 | if (nans == INFINITE && x == 0) {
|
---|
1531 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1532 | result = newInstance(getZero());
|
---|
1533 | result.nans = QNAN;
|
---|
1534 | result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, newInstance(getZero()), result);
|
---|
1535 | return result;
|
---|
1536 | }
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | /* range check x */
|
---|
1540 | if (x < 0 || x >= RADIX) {
|
---|
1541 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1542 | result = newInstance(getZero());
|
---|
1543 | result.nans = QNAN;
|
---|
1544 | result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, result, result);
|
---|
1545 | return result;
|
---|
1546 | }
|
---|
1547 |
|
---|
1548 | int rh = 0;
|
---|
1549 | for (int i = 0; i < mant.length; i++) {
|
---|
1550 | final int r = mant[i] * x + rh;
|
---|
1551 | rh = r / RADIX;
|
---|
1552 | result.mant[i] = r - rh * RADIX;
|
---|
1553 | }
|
---|
1554 |
|
---|
1555 | int lostdigit = 0;
|
---|
1556 | if (rh != 0) {
|
---|
1557 | lostdigit = result.mant[0];
|
---|
1558 | result.shiftRight();
|
---|
1559 | result.mant[mant.length-1] = rh;
|
---|
1560 | }
|
---|
1561 |
|
---|
1562 | if (result.mant[mant.length-1] == 0) { // if result is zero, set exp to zero
|
---|
1563 | result.exp = 0;
|
---|
1564 | }
|
---|
1565 |
|
---|
1566 | final int excp = result.round(lostdigit);
|
---|
1567 | if (excp != 0) {
|
---|
1568 | result = dotrap(excp, MULTIPLY_TRAP, result, result);
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 | return result;
|
---|
1572 | }
|
---|
1573 |
|
---|
1574 | /** Divide this by divisor.
|
---|
1575 | * @param divisor divisor
|
---|
1576 | * @return quotient of this by divisor
|
---|
1577 | */
|
---|
1578 | public Dfp divide(Dfp divisor) {
|
---|
1579 | int dividend[]; // current status of the dividend
|
---|
1580 | int quotient[]; // quotient
|
---|
1581 | int remainder[];// remainder
|
---|
1582 | int qd; // current quotient digit we're working with
|
---|
1583 | int nsqd; // number of significant quotient digits we have
|
---|
1584 | int trial=0; // trial quotient digit
|
---|
1585 | int minadj; // minimum adjustment
|
---|
1586 | boolean trialgood; // Flag to indicate a good trail digit
|
---|
1587 | int md=0; // most sig digit in result
|
---|
1588 | int excp; // exceptions
|
---|
1589 |
|
---|
1590 | // make sure we don't mix number with different precision
|
---|
1591 | if (field.getRadixDigits() != divisor.field.getRadixDigits()) {
|
---|
1592 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1593 | final Dfp result = newInstance(getZero());
|
---|
1594 | result.nans = QNAN;
|
---|
1595 | return dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, divisor, result);
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 | Dfp result = newInstance(getZero());
|
---|
1599 |
|
---|
1600 | /* handle special cases */
|
---|
1601 | if (nans != FINITE || divisor.nans != FINITE) {
|
---|
1602 | if (isNaN()) {
|
---|
1603 | return this;
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 | if (divisor.isNaN()) {
|
---|
1607 | return divisor;
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | if (nans == INFINITE && divisor.nans == FINITE) {
|
---|
1611 | result = newInstance(this);
|
---|
1612 | result.sign = (byte) (sign * divisor.sign);
|
---|
1613 | return result;
|
---|
1614 | }
|
---|
1615 |
|
---|
1616 | if (divisor.nans == INFINITE && nans == FINITE) {
|
---|
1617 | result = newInstance(getZero());
|
---|
1618 | result.sign = (byte) (sign * divisor.sign);
|
---|
1619 | return result;
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | if (divisor.nans == INFINITE && nans == INFINITE) {
|
---|
1623 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1624 | result = newInstance(getZero());
|
---|
1625 | result.nans = QNAN;
|
---|
1626 | result = dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, divisor, result);
|
---|
1627 | return result;
|
---|
1628 | }
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | /* Test for divide by zero */
|
---|
1632 | if (divisor.mant[mant.length-1] == 0) {
|
---|
1633 | field.setIEEEFlagsBits(DfpField.FLAG_DIV_ZERO);
|
---|
1634 | result = newInstance(getZero());
|
---|
1635 | result.sign = (byte) (sign * divisor.sign);
|
---|
1636 | result.nans = INFINITE;
|
---|
1637 | result = dotrap(DfpField.FLAG_DIV_ZERO, DIVIDE_TRAP, divisor, result);
|
---|
1638 | return result;
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 | dividend = new int[mant.length+1]; // one extra digit needed
|
---|
1642 | quotient = new int[mant.length+2]; // two extra digits needed 1 for overflow, 1 for rounding
|
---|
1643 | remainder = new int[mant.length+1]; // one extra digit needed
|
---|
1644 |
|
---|
1645 | /* Initialize our most significant digits to zero */
|
---|
1646 |
|
---|
1647 | dividend[mant.length] = 0;
|
---|
1648 | quotient[mant.length] = 0;
|
---|
1649 | quotient[mant.length+1] = 0;
|
---|
1650 | remainder[mant.length] = 0;
|
---|
1651 |
|
---|
1652 | /* copy our mantissa into the dividend, initialize the
|
---|
1653 | quotient while we are at it */
|
---|
1654 |
|
---|
1655 | for (int i = 0; i < mant.length; i++) {
|
---|
1656 | dividend[i] = mant[i];
|
---|
1657 | quotient[i] = 0;
|
---|
1658 | remainder[i] = 0;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | /* outer loop. Once per quotient digit */
|
---|
1662 | nsqd = 0;
|
---|
1663 | for (qd = mant.length+1; qd >= 0; qd--) {
|
---|
1664 | /* Determine outer limits of our quotient digit */
|
---|
1665 |
|
---|
1666 | // r = most sig 2 digits of dividend
|
---|
1667 | final int divMsb = dividend[mant.length]*RADIX+dividend[mant.length-1];
|
---|
1668 | int min = divMsb / (divisor.mant[mant.length-1]+1);
|
---|
1669 | int max = (divMsb + 1) / divisor.mant[mant.length-1];
|
---|
1670 |
|
---|
1671 | trialgood = false;
|
---|
1672 | while (!trialgood) {
|
---|
1673 | // try the mean
|
---|
1674 | trial = (min+max)/2;
|
---|
1675 |
|
---|
1676 | /* Multiply by divisor and store as remainder */
|
---|
1677 | int rh = 0;
|
---|
1678 | for (int i = 0; i < mant.length + 1; i++) {
|
---|
1679 | int dm = (i<mant.length)?divisor.mant[i]:0;
|
---|
1680 | final int r = (dm * trial) + rh;
|
---|
1681 | rh = r / RADIX;
|
---|
1682 | remainder[i] = r - rh * RADIX;
|
---|
1683 | }
|
---|
1684 |
|
---|
1685 | /* subtract the remainder from the dividend */
|
---|
1686 | rh = 1; // carry in to aid the subtraction
|
---|
1687 | for (int i = 0; i < mant.length + 1; i++) {
|
---|
1688 | final int r = ((RADIX-1) - remainder[i]) + dividend[i] + rh;
|
---|
1689 | rh = r / RADIX;
|
---|
1690 | remainder[i] = r - rh * RADIX;
|
---|
1691 | }
|
---|
1692 |
|
---|
1693 | /* Lets analyze what we have here */
|
---|
1694 | if (rh == 0) {
|
---|
1695 | // trial is too big -- negative remainder
|
---|
1696 | max = trial-1;
|
---|
1697 | continue;
|
---|
1698 | }
|
---|
1699 |
|
---|
1700 | /* find out how far off the remainder is telling us we are */
|
---|
1701 | minadj = (remainder[mant.length] * RADIX)+remainder[mant.length-1];
|
---|
1702 | minadj = minadj / (divisor.mant[mant.length-1]+1);
|
---|
1703 |
|
---|
1704 | if (minadj >= 2) {
|
---|
1705 | min = trial+minadj; // update the minimum
|
---|
1706 | continue;
|
---|
1707 | }
|
---|
1708 |
|
---|
1709 | /* May have a good one here, check more thoroughly. Basically
|
---|
1710 | its a good one if it is less than the divisor */
|
---|
1711 | trialgood = false; // assume false
|
---|
1712 | for (int i = mant.length - 1; i >= 0; i--) {
|
---|
1713 | if (divisor.mant[i] > remainder[i]) {
|
---|
1714 | trialgood = true;
|
---|
1715 | }
|
---|
1716 | if (divisor.mant[i] < remainder[i]) {
|
---|
1717 | break;
|
---|
1718 | }
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 | if (remainder[mant.length] != 0) {
|
---|
1722 | trialgood = false;
|
---|
1723 | }
|
---|
1724 |
|
---|
1725 | if (trialgood == false) {
|
---|
1726 | min = trial+1;
|
---|
1727 | }
|
---|
1728 | }
|
---|
1729 |
|
---|
1730 | /* Great we have a digit! */
|
---|
1731 | quotient[qd] = trial;
|
---|
1732 | if (trial != 0 || nsqd != 0) {
|
---|
1733 | nsqd++;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 | if (field.getRoundingMode() == DfpField.RoundingMode.ROUND_DOWN && nsqd == mant.length) {
|
---|
1737 | // We have enough for this mode
|
---|
1738 | break;
|
---|
1739 | }
|
---|
1740 |
|
---|
1741 | if (nsqd > mant.length) {
|
---|
1742 | // We have enough digits
|
---|
1743 | break;
|
---|
1744 | }
|
---|
1745 |
|
---|
1746 | /* move the remainder into the dividend while left shifting */
|
---|
1747 | dividend[0] = 0;
|
---|
1748 | for (int i = 0; i < mant.length; i++) {
|
---|
1749 | dividend[i + 1] = remainder[i];
|
---|
1750 | }
|
---|
1751 | }
|
---|
1752 |
|
---|
1753 | /* Find the most sig digit */
|
---|
1754 | md = mant.length; // default
|
---|
1755 | for (int i = mant.length + 1; i >= 0; i--) {
|
---|
1756 | if (quotient[i] != 0) {
|
---|
1757 | md = i;
|
---|
1758 | break;
|
---|
1759 | }
|
---|
1760 | }
|
---|
1761 |
|
---|
1762 | /* Copy the digits into the result */
|
---|
1763 | for (int i=0; i<mant.length; i++) {
|
---|
1764 | result.mant[mant.length-i-1] = quotient[md-i];
|
---|
1765 | }
|
---|
1766 |
|
---|
1767 | /* Fixup the exponent. */
|
---|
1768 | result.exp = exp - divisor.exp + md - mant.length;
|
---|
1769 | result.sign = (byte) ((sign == divisor.sign) ? 1 : -1);
|
---|
1770 |
|
---|
1771 | if (result.mant[mant.length-1] == 0) { // if result is zero, set exp to zero
|
---|
1772 | result.exp = 0;
|
---|
1773 | }
|
---|
1774 |
|
---|
1775 | if (md > (mant.length-1)) {
|
---|
1776 | excp = result.round(quotient[md-mant.length]);
|
---|
1777 | } else {
|
---|
1778 | excp = result.round(0);
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | if (excp != 0) {
|
---|
1782 | result = dotrap(excp, DIVIDE_TRAP, divisor, result);
|
---|
1783 | }
|
---|
1784 |
|
---|
1785 | return result;
|
---|
1786 | }
|
---|
1787 |
|
---|
1788 | /** Divide by a single digit less than radix.
|
---|
1789 | * Special case, so there are speed advantages. 0 <= divisor < radix
|
---|
1790 | * @param divisor divisor
|
---|
1791 | * @return quotient of this by divisor
|
---|
1792 | */
|
---|
1793 | public Dfp divide(int divisor) {
|
---|
1794 |
|
---|
1795 | // Handle special cases
|
---|
1796 | if (nans != FINITE) {
|
---|
1797 | if (isNaN()) {
|
---|
1798 | return this;
|
---|
1799 | }
|
---|
1800 |
|
---|
1801 | if (nans == INFINITE) {
|
---|
1802 | return newInstance(this);
|
---|
1803 | }
|
---|
1804 | }
|
---|
1805 |
|
---|
1806 | // Test for divide by zero
|
---|
1807 | if (divisor == 0) {
|
---|
1808 | field.setIEEEFlagsBits(DfpField.FLAG_DIV_ZERO);
|
---|
1809 | Dfp result = newInstance(getZero());
|
---|
1810 | result.sign = sign;
|
---|
1811 | result.nans = INFINITE;
|
---|
1812 | result = dotrap(DfpField.FLAG_DIV_ZERO, DIVIDE_TRAP, getZero(), result);
|
---|
1813 | return result;
|
---|
1814 | }
|
---|
1815 |
|
---|
1816 | // range check divisor
|
---|
1817 | if (divisor < 0 || divisor >= RADIX) {
|
---|
1818 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1819 | Dfp result = newInstance(getZero());
|
---|
1820 | result.nans = QNAN;
|
---|
1821 | result = dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, result, result);
|
---|
1822 | return result;
|
---|
1823 | }
|
---|
1824 |
|
---|
1825 | Dfp result = newInstance(this);
|
---|
1826 |
|
---|
1827 | int rl = 0;
|
---|
1828 | for (int i = mant.length-1; i >= 0; i--) {
|
---|
1829 | final int r = rl*RADIX + result.mant[i];
|
---|
1830 | final int rh = r / divisor;
|
---|
1831 | rl = r - rh * divisor;
|
---|
1832 | result.mant[i] = rh;
|
---|
1833 | }
|
---|
1834 |
|
---|
1835 | if (result.mant[mant.length-1] == 0) {
|
---|
1836 | // normalize
|
---|
1837 | result.shiftLeft();
|
---|
1838 | final int r = rl * RADIX; // compute the next digit and put it in
|
---|
1839 | final int rh = r / divisor;
|
---|
1840 | rl = r - rh * divisor;
|
---|
1841 | result.mant[0] = rh;
|
---|
1842 | }
|
---|
1843 |
|
---|
1844 | final int excp = result.round(rl * RADIX / divisor); // do the rounding
|
---|
1845 | if (excp != 0) {
|
---|
1846 | result = dotrap(excp, DIVIDE_TRAP, result, result);
|
---|
1847 | }
|
---|
1848 |
|
---|
1849 | return result;
|
---|
1850 |
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | /** Compute the square root.
|
---|
1854 | * @return square root of the instance
|
---|
1855 | */
|
---|
1856 | public Dfp sqrt() {
|
---|
1857 |
|
---|
1858 | // check for unusual cases
|
---|
1859 | if (nans == FINITE && mant[mant.length-1] == 0) {
|
---|
1860 | // if zero
|
---|
1861 | return newInstance(this);
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | if (nans != FINITE) {
|
---|
1865 | if (nans == INFINITE && sign == 1) {
|
---|
1866 | // if positive infinity
|
---|
1867 | return newInstance(this);
|
---|
1868 | }
|
---|
1869 |
|
---|
1870 | if (nans == QNAN) {
|
---|
1871 | return newInstance(this);
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 | if (nans == SNAN) {
|
---|
1875 | Dfp result;
|
---|
1876 |
|
---|
1877 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1878 | result = newInstance(this);
|
---|
1879 | result = dotrap(DfpField.FLAG_INVALID, SQRT_TRAP, null, result);
|
---|
1880 | return result;
|
---|
1881 | }
|
---|
1882 | }
|
---|
1883 |
|
---|
1884 | if (sign == -1) {
|
---|
1885 | // if negative
|
---|
1886 | Dfp result;
|
---|
1887 |
|
---|
1888 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
1889 | result = newInstance(this);
|
---|
1890 | result.nans = QNAN;
|
---|
1891 | result = dotrap(DfpField.FLAG_INVALID, SQRT_TRAP, null, result);
|
---|
1892 | return result;
|
---|
1893 | }
|
---|
1894 |
|
---|
1895 | Dfp x = newInstance(this);
|
---|
1896 |
|
---|
1897 | /* Lets make a reasonable guess as to the size of the square root */
|
---|
1898 | if (x.exp < -1 || x.exp > 1) {
|
---|
1899 | x.exp = this.exp / 2;
|
---|
1900 | }
|
---|
1901 |
|
---|
1902 | /* Coarsely estimate the mantissa */
|
---|
1903 | switch (x.mant[mant.length-1] / 2000) {
|
---|
1904 | case 0:
|
---|
1905 | x.mant[mant.length-1] = x.mant[mant.length-1]/2+1;
|
---|
1906 | break;
|
---|
1907 | case 2:
|
---|
1908 | x.mant[mant.length-1] = 1500;
|
---|
1909 | break;
|
---|
1910 | case 3:
|
---|
1911 | x.mant[mant.length-1] = 2200;
|
---|
1912 | break;
|
---|
1913 | default:
|
---|
1914 | x.mant[mant.length-1] = 3000;
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | Dfp dx = newInstance(x);
|
---|
1918 |
|
---|
1919 | /* Now that we have the first pass estimate, compute the rest
|
---|
1920 | by the formula dx = (y - x*x) / (2x); */
|
---|
1921 |
|
---|
1922 | Dfp px = getZero();
|
---|
1923 | Dfp ppx = getZero();
|
---|
1924 | while (x.unequal(px)) {
|
---|
1925 | dx = newInstance(x);
|
---|
1926 | dx.sign = -1;
|
---|
1927 | dx = dx.add(this.divide(x));
|
---|
1928 | dx = dx.divide(2);
|
---|
1929 | ppx = px;
|
---|
1930 | px = x;
|
---|
1931 | x = x.add(dx);
|
---|
1932 |
|
---|
1933 | if (x.equals(ppx)) {
|
---|
1934 | // alternating between two values
|
---|
1935 | break;
|
---|
1936 | }
|
---|
1937 |
|
---|
1938 | // if dx is zero, break. Note testing the most sig digit
|
---|
1939 | // is a sufficient test since dx is normalized
|
---|
1940 | if (dx.mant[mant.length-1] == 0) {
|
---|
1941 | break;
|
---|
1942 | }
|
---|
1943 | }
|
---|
1944 |
|
---|
1945 | return x;
|
---|
1946 |
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | /** Get a string representation of the instance.
|
---|
1950 | * @return string representation of the instance
|
---|
1951 | */
|
---|
1952 | @Override
|
---|
1953 | public String toString() {
|
---|
1954 | if (nans != FINITE) {
|
---|
1955 | // if non-finite exceptional cases
|
---|
1956 | if (nans == INFINITE) {
|
---|
1957 | return (sign < 0) ? NEG_INFINITY_STRING : POS_INFINITY_STRING;
|
---|
1958 | } else {
|
---|
1959 | return NAN_STRING;
|
---|
1960 | }
|
---|
1961 | }
|
---|
1962 |
|
---|
1963 | if (exp > mant.length || exp < -1) {
|
---|
1964 | return dfp2sci();
|
---|
1965 | }
|
---|
1966 |
|
---|
1967 | return dfp2string();
|
---|
1968 |
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 | /** Convert an instance to a string using scientific notation.
|
---|
1972 | * @return string representation of the instance in scientific notation
|
---|
1973 | */
|
---|
1974 | protected String dfp2sci() {
|
---|
1975 | char rawdigits[] = new char[mant.length * 4];
|
---|
1976 | char outputbuffer[] = new char[mant.length * 4 + 20];
|
---|
1977 | int p;
|
---|
1978 | int q;
|
---|
1979 | int e;
|
---|
1980 | int ae;
|
---|
1981 | int shf;
|
---|
1982 |
|
---|
1983 | // Get all the digits
|
---|
1984 | p = 0;
|
---|
1985 | for (int i = mant.length - 1; i >= 0; i--) {
|
---|
1986 | rawdigits[p++] = (char) ((mant[i] / 1000) + '0');
|
---|
1987 | rawdigits[p++] = (char) (((mant[i] / 100) %10) + '0');
|
---|
1988 | rawdigits[p++] = (char) (((mant[i] / 10) % 10) + '0');
|
---|
1989 | rawdigits[p++] = (char) (((mant[i]) % 10) + '0');
|
---|
1990 | }
|
---|
1991 |
|
---|
1992 | // Find the first non-zero one
|
---|
1993 | for (p = 0; p < rawdigits.length; p++) {
|
---|
1994 | if (rawdigits[p] != '0') {
|
---|
1995 | break;
|
---|
1996 | }
|
---|
1997 | }
|
---|
1998 | shf = p;
|
---|
1999 |
|
---|
2000 | // Now do the conversion
|
---|
2001 | q = 0;
|
---|
2002 | if (sign == -1) {
|
---|
2003 | outputbuffer[q++] = '-';
|
---|
2004 | }
|
---|
2005 |
|
---|
2006 | if (p != rawdigits.length) {
|
---|
2007 | // there are non zero digits...
|
---|
2008 | outputbuffer[q++] = rawdigits[p++];
|
---|
2009 | outputbuffer[q++] = '.';
|
---|
2010 |
|
---|
2011 | while (p<rawdigits.length) {
|
---|
2012 | outputbuffer[q++] = rawdigits[p++];
|
---|
2013 | }
|
---|
2014 | } else {
|
---|
2015 | outputbuffer[q++] = '0';
|
---|
2016 | outputbuffer[q++] = '.';
|
---|
2017 | outputbuffer[q++] = '0';
|
---|
2018 | outputbuffer[q++] = 'e';
|
---|
2019 | outputbuffer[q++] = '0';
|
---|
2020 | return new String(outputbuffer, 0, 5);
|
---|
2021 | }
|
---|
2022 |
|
---|
2023 | outputbuffer[q++] = 'e';
|
---|
2024 |
|
---|
2025 | // Find the msd of the exponent
|
---|
2026 |
|
---|
2027 | e = exp * 4 - shf - 1;
|
---|
2028 | ae = e;
|
---|
2029 | if (e < 0) {
|
---|
2030 | ae = -e;
|
---|
2031 | }
|
---|
2032 |
|
---|
2033 | // Find the largest p such that p < e
|
---|
2034 | for (p = 1000000000; p > ae; p /= 10) {
|
---|
2035 | // nothing to do
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 | if (e < 0) {
|
---|
2039 | outputbuffer[q++] = '-';
|
---|
2040 | }
|
---|
2041 |
|
---|
2042 | while (p > 0) {
|
---|
2043 | outputbuffer[q++] = (char)(ae / p + '0');
|
---|
2044 | ae = ae % p;
|
---|
2045 | p = p / 10;
|
---|
2046 | }
|
---|
2047 |
|
---|
2048 | return new String(outputbuffer, 0, q);
|
---|
2049 |
|
---|
2050 | }
|
---|
2051 |
|
---|
2052 | /** Convert an instance to a string using normal notation.
|
---|
2053 | * @return string representation of the instance in normal notation
|
---|
2054 | */
|
---|
2055 | protected String dfp2string() {
|
---|
2056 | char buffer[] = new char[mant.length*4 + 20];
|
---|
2057 | int p = 1;
|
---|
2058 | int q;
|
---|
2059 | int e = exp;
|
---|
2060 | boolean pointInserted = false;
|
---|
2061 |
|
---|
2062 | buffer[0] = ' ';
|
---|
2063 |
|
---|
2064 | if (e <= 0) {
|
---|
2065 | buffer[p++] = '0';
|
---|
2066 | buffer[p++] = '.';
|
---|
2067 | pointInserted = true;
|
---|
2068 | }
|
---|
2069 |
|
---|
2070 | while (e < 0) {
|
---|
2071 | buffer[p++] = '0';
|
---|
2072 | buffer[p++] = '0';
|
---|
2073 | buffer[p++] = '0';
|
---|
2074 | buffer[p++] = '0';
|
---|
2075 | e++;
|
---|
2076 | }
|
---|
2077 |
|
---|
2078 | for (int i = mant.length - 1; i >= 0; i--) {
|
---|
2079 | buffer[p++] = (char) ((mant[i] / 1000) + '0');
|
---|
2080 | buffer[p++] = (char) (((mant[i] / 100) % 10) + '0');
|
---|
2081 | buffer[p++] = (char) (((mant[i] / 10) % 10) + '0');
|
---|
2082 | buffer[p++] = (char) (((mant[i]) % 10) + '0');
|
---|
2083 | if (--e == 0) {
|
---|
2084 | buffer[p++] = '.';
|
---|
2085 | pointInserted = true;
|
---|
2086 | }
|
---|
2087 | }
|
---|
2088 |
|
---|
2089 | while (e > 0) {
|
---|
2090 | buffer[p++] = '0';
|
---|
2091 | buffer[p++] = '0';
|
---|
2092 | buffer[p++] = '0';
|
---|
2093 | buffer[p++] = '0';
|
---|
2094 | e--;
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 | if (!pointInserted) {
|
---|
2098 | // Ensure we have a radix point!
|
---|
2099 | buffer[p++] = '.';
|
---|
2100 | }
|
---|
2101 |
|
---|
2102 | // Suppress leading zeros
|
---|
2103 | q = 1;
|
---|
2104 | while (buffer[q] == '0') {
|
---|
2105 | q++;
|
---|
2106 | }
|
---|
2107 | if (buffer[q] == '.') {
|
---|
2108 | q--;
|
---|
2109 | }
|
---|
2110 |
|
---|
2111 | // Suppress trailing zeros
|
---|
2112 | while (buffer[p-1] == '0') {
|
---|
2113 | p--;
|
---|
2114 | }
|
---|
2115 |
|
---|
2116 | // Insert sign
|
---|
2117 | if (sign < 0) {
|
---|
2118 | buffer[--q] = '-';
|
---|
2119 | }
|
---|
2120 |
|
---|
2121 | return new String(buffer, q, p - q);
|
---|
2122 |
|
---|
2123 | }
|
---|
2124 |
|
---|
2125 | /** Raises a trap. This does not set the corresponding flag however.
|
---|
2126 | * @param type the trap type
|
---|
2127 | * @param what - name of routine trap occurred in
|
---|
2128 | * @param oper - input operator to function
|
---|
2129 | * @param result - the result computed prior to the trap
|
---|
2130 | * @return The suggested return value from the trap handler
|
---|
2131 | */
|
---|
2132 | public Dfp dotrap(int type, String what, Dfp oper, Dfp result) {
|
---|
2133 | Dfp def = result;
|
---|
2134 |
|
---|
2135 | switch (type) {
|
---|
2136 | case DfpField.FLAG_INVALID:
|
---|
2137 | def = newInstance(getZero());
|
---|
2138 | def.sign = result.sign;
|
---|
2139 | def.nans = QNAN;
|
---|
2140 | break;
|
---|
2141 |
|
---|
2142 | case DfpField.FLAG_DIV_ZERO:
|
---|
2143 | if (nans == FINITE && mant[mant.length-1] != 0) {
|
---|
2144 | // normal case, we are finite, non-zero
|
---|
2145 | def = newInstance(getZero());
|
---|
2146 | def.sign = (byte)(sign*oper.sign);
|
---|
2147 | def.nans = INFINITE;
|
---|
2148 | }
|
---|
2149 |
|
---|
2150 | if (nans == FINITE && mant[mant.length-1] == 0) {
|
---|
2151 | // 0/0
|
---|
2152 | def = newInstance(getZero());
|
---|
2153 | def.nans = QNAN;
|
---|
2154 | }
|
---|
2155 |
|
---|
2156 | if (nans == INFINITE || nans == QNAN) {
|
---|
2157 | def = newInstance(getZero());
|
---|
2158 | def.nans = QNAN;
|
---|
2159 | }
|
---|
2160 |
|
---|
2161 | if (nans == INFINITE || nans == SNAN) {
|
---|
2162 | def = newInstance(getZero());
|
---|
2163 | def.nans = QNAN;
|
---|
2164 | }
|
---|
2165 | break;
|
---|
2166 |
|
---|
2167 | case DfpField.FLAG_UNDERFLOW:
|
---|
2168 | if ( (result.exp+mant.length) < MIN_EXP) {
|
---|
2169 | def = newInstance(getZero());
|
---|
2170 | def.sign = result.sign;
|
---|
2171 | } else {
|
---|
2172 | def = newInstance(result); // gradual underflow
|
---|
2173 | }
|
---|
2174 | result.exp = result.exp + ERR_SCALE;
|
---|
2175 | break;
|
---|
2176 |
|
---|
2177 | case DfpField.FLAG_OVERFLOW:
|
---|
2178 | result.exp = result.exp - ERR_SCALE;
|
---|
2179 | def = newInstance(getZero());
|
---|
2180 | def.sign = result.sign;
|
---|
2181 | def.nans = INFINITE;
|
---|
2182 | break;
|
---|
2183 |
|
---|
2184 | default: def = result; break;
|
---|
2185 | }
|
---|
2186 |
|
---|
2187 | return trap(type, what, oper, def, result);
|
---|
2188 |
|
---|
2189 | }
|
---|
2190 |
|
---|
2191 | /** Trap handler. Subclasses may override this to provide trap
|
---|
2192 | * functionality per IEEE 854-1987.
|
---|
2193 | *
|
---|
2194 | * @param type The exception type - e.g. FLAG_OVERFLOW
|
---|
2195 | * @param what The name of the routine we were in e.g. divide()
|
---|
2196 | * @param oper An operand to this function if any
|
---|
2197 | * @param def The default return value if trap not enabled
|
---|
2198 | * @param result The result that is specified to be delivered per
|
---|
2199 | * IEEE 854, if any
|
---|
2200 | * @return the value that should be return by the operation triggering the trap
|
---|
2201 | */
|
---|
2202 | protected Dfp trap(int type, String what, Dfp oper, Dfp def, Dfp result) {
|
---|
2203 | return def;
|
---|
2204 | }
|
---|
2205 |
|
---|
2206 | /** Returns the type - one of FINITE, INFINITE, SNAN, QNAN.
|
---|
2207 | * @return type of the number
|
---|
2208 | */
|
---|
2209 | public int classify() {
|
---|
2210 | return nans;
|
---|
2211 | }
|
---|
2212 |
|
---|
2213 | /** Creates an instance that is the same as x except that it has the sign of y.
|
---|
2214 | * abs(x) = dfp.copysign(x, dfp.one)
|
---|
2215 | * @param x number to get the value from
|
---|
2216 | * @param y number to get the sign from
|
---|
2217 | * @return a number with the value of x and the sign of y
|
---|
2218 | */
|
---|
2219 | public static Dfp copysign(final Dfp x, final Dfp y) {
|
---|
2220 | Dfp result = x.newInstance(x);
|
---|
2221 | result.sign = y.sign;
|
---|
2222 | return result;
|
---|
2223 | }
|
---|
2224 |
|
---|
2225 | /** Returns the next number greater than this one in the direction of x.
|
---|
2226 | * If this==x then simply returns this.
|
---|
2227 | * @param x direction where to look at
|
---|
2228 | * @return closest number next to instance in the direction of x
|
---|
2229 | */
|
---|
2230 | public Dfp nextAfter(final Dfp x) {
|
---|
2231 |
|
---|
2232 | // make sure we don't mix number with different precision
|
---|
2233 | if (field.getRadixDigits() != x.field.getRadixDigits()) {
|
---|
2234 | field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
|
---|
2235 | final Dfp result = newInstance(getZero());
|
---|
2236 | result.nans = QNAN;
|
---|
2237 | return dotrap(DfpField.FLAG_INVALID, NEXT_AFTER_TRAP, x, result);
|
---|
2238 | }
|
---|
2239 |
|
---|
2240 | // if this is greater than x
|
---|
2241 | boolean up = false;
|
---|
2242 | if (this.lessThan(x)) {
|
---|
2243 | up = true;
|
---|
2244 | }
|
---|
2245 |
|
---|
2246 | if (compare(this, x) == 0) {
|
---|
2247 | return newInstance(x);
|
---|
2248 | }
|
---|
2249 |
|
---|
2250 | if (lessThan(getZero())) {
|
---|
2251 | up = !up;
|
---|
2252 | }
|
---|
2253 |
|
---|
2254 | final Dfp inc;
|
---|
2255 | Dfp result;
|
---|
2256 | if (up) {
|
---|
2257 | inc = newInstance(getOne());
|
---|
2258 | inc.exp = this.exp-mant.length+1;
|
---|
2259 | inc.sign = this.sign;
|
---|
2260 |
|
---|
2261 | if (this.equals(getZero())) {
|
---|
2262 | inc.exp = MIN_EXP-mant.length;
|
---|
2263 | }
|
---|
2264 |
|
---|
2265 | result = add(inc);
|
---|
2266 | } else {
|
---|
2267 | inc = newInstance(getOne());
|
---|
2268 | inc.exp = this.exp;
|
---|
2269 | inc.sign = this.sign;
|
---|
2270 |
|
---|
2271 | if (this.equals(inc)) {
|
---|
2272 | inc.exp = this.exp-mant.length;
|
---|
2273 | } else {
|
---|
2274 | inc.exp = this.exp-mant.length+1;
|
---|
2275 | }
|
---|
2276 |
|
---|
2277 | if (this.equals(getZero())) {
|
---|
2278 | inc.exp = MIN_EXP-mant.length;
|
---|
2279 | }
|
---|
2280 |
|
---|
2281 | result = this.subtract(inc);
|
---|
2282 | }
|
---|
2283 |
|
---|
2284 | if (result.classify() == INFINITE && this.classify() != INFINITE) {
|
---|
2285 | field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
|
---|
2286 | result = dotrap(DfpField.FLAG_INEXACT, NEXT_AFTER_TRAP, x, result);
|
---|
2287 | }
|
---|
2288 |
|
---|
2289 | if (result.equals(getZero()) && this.equals(getZero()) == false) {
|
---|
2290 | field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
|
---|
2291 | result = dotrap(DfpField.FLAG_INEXACT, NEXT_AFTER_TRAP, x, result);
|
---|
2292 | }
|
---|
2293 |
|
---|
2294 | return result;
|
---|
2295 |
|
---|
2296 | }
|
---|
2297 |
|
---|
2298 | /** Convert the instance into a double.
|
---|
2299 | * @return a double approximating the instance
|
---|
2300 | * @see #toSplitDouble()
|
---|
2301 | */
|
---|
2302 | public double toDouble() {
|
---|
2303 |
|
---|
2304 | if (isInfinite()) {
|
---|
2305 | if (lessThan(getZero())) {
|
---|
2306 | return Double.NEGATIVE_INFINITY;
|
---|
2307 | } else {
|
---|
2308 | return Double.POSITIVE_INFINITY;
|
---|
2309 | }
|
---|
2310 | }
|
---|
2311 |
|
---|
2312 | if (isNaN()) {
|
---|
2313 | return Double.NaN;
|
---|
2314 | }
|
---|
2315 |
|
---|
2316 | Dfp y = this;
|
---|
2317 | boolean negate = false;
|
---|
2318 | if (lessThan(getZero())) {
|
---|
2319 | y = negate();
|
---|
2320 | negate = true;
|
---|
2321 | }
|
---|
2322 |
|
---|
2323 | /* Find the exponent, first estimate by integer log10, then adjust.
|
---|
2324 | Should be faster than doing a natural logarithm. */
|
---|
2325 | int exponent = (int)(y.log10() * 3.32);
|
---|
2326 | if (exponent < 0) {
|
---|
2327 | exponent--;
|
---|
2328 | }
|
---|
2329 |
|
---|
2330 | Dfp tempDfp = DfpMath.pow(getTwo(), exponent);
|
---|
2331 | while (tempDfp.lessThan(y) || tempDfp.equals(y)) {
|
---|
2332 | tempDfp = tempDfp.multiply(2);
|
---|
2333 | exponent++;
|
---|
2334 | }
|
---|
2335 | exponent--;
|
---|
2336 |
|
---|
2337 | /* We have the exponent, now work on the mantissa */
|
---|
2338 |
|
---|
2339 | y = y.divide(DfpMath.pow(getTwo(), exponent));
|
---|
2340 | if (exponent > -1023) {
|
---|
2341 | y = y.subtract(getOne());
|
---|
2342 | }
|
---|
2343 |
|
---|
2344 | if (exponent < -1074) {
|
---|
2345 | return 0;
|
---|
2346 | }
|
---|
2347 |
|
---|
2348 | if (exponent > 1023) {
|
---|
2349 | return negate ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
|
---|
2350 | }
|
---|
2351 |
|
---|
2352 |
|
---|
2353 | y = y.multiply(newInstance(4503599627370496l)).rint();
|
---|
2354 | String str = y.toString();
|
---|
2355 | str = str.substring(0, str.length()-1);
|
---|
2356 | long mantissa = Long.parseLong(str);
|
---|
2357 |
|
---|
2358 | if (mantissa == 4503599627370496L) {
|
---|
2359 | // Handle special case where we round up to next power of two
|
---|
2360 | mantissa = 0;
|
---|
2361 | exponent++;
|
---|
2362 | }
|
---|
2363 |
|
---|
2364 | /* Its going to be subnormal, so make adjustments */
|
---|
2365 | if (exponent <= -1023) {
|
---|
2366 | exponent--;
|
---|
2367 | }
|
---|
2368 |
|
---|
2369 | while (exponent < -1023) {
|
---|
2370 | exponent++;
|
---|
2371 | mantissa >>>= 1;
|
---|
2372 | }
|
---|
2373 |
|
---|
2374 | long bits = mantissa | ((exponent + 1023L) << 52);
|
---|
2375 | double x = Double.longBitsToDouble(bits);
|
---|
2376 |
|
---|
2377 | if (negate) {
|
---|
2378 | x = -x;
|
---|
2379 | }
|
---|
2380 |
|
---|
2381 | return x;
|
---|
2382 |
|
---|
2383 | }
|
---|
2384 |
|
---|
2385 | /** Convert the instance into a split double.
|
---|
2386 | * @return an array of two doubles which sum represent the instance
|
---|
2387 | * @see #toDouble()
|
---|
2388 | */
|
---|
2389 | public double[] toSplitDouble() {
|
---|
2390 | double split[] = new double[2];
|
---|
2391 | long mask = 0xffffffffc0000000L;
|
---|
2392 |
|
---|
2393 | split[0] = Double.longBitsToDouble(Double.doubleToLongBits(toDouble()) & mask);
|
---|
2394 | split[1] = subtract(newInstance(split[0])).toDouble();
|
---|
2395 |
|
---|
2396 | return split;
|
---|
2397 | }
|
---|
2398 |
|
---|
2399 | }
|
---|