1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.org.apache.commons.math.complex;
|
---|
19 |
|
---|
20 | import java.io.Serializable;
|
---|
21 | import java.util.ArrayList;
|
---|
22 | import java.util.List;
|
---|
23 |
|
---|
24 | import agents.org.apache.commons.math.FieldElement;
|
---|
25 | import agents.org.apache.commons.math.MathRuntimeException;
|
---|
26 | import agents.org.apache.commons.math.exception.util.LocalizedFormats;
|
---|
27 | import agents.org.apache.commons.math.util.FastMath;
|
---|
28 | import agents.org.apache.commons.math.util.MathUtils;
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Representation of a Complex number - a number which has both a
|
---|
32 | * real and imaginary part.
|
---|
33 | * <p>
|
---|
34 | * Implementations of arithmetic operations handle <code>NaN</code> and
|
---|
35 | * infinite values according to the rules for {@link java.lang.Double}
|
---|
36 | * arithmetic, applying definitional formulas and returning <code>NaN</code> or
|
---|
37 | * infinite values in real or imaginary parts as these arise in computation.
|
---|
38 | * See individual method javadocs for details.</p>
|
---|
39 | * <p>
|
---|
40 | * {@link #equals} identifies all values with <code>NaN</code> in either real
|
---|
41 | * or imaginary part - e.g., <pre>
|
---|
42 | * <code>1 + NaNi == NaN + i == NaN + NaNi.</code></pre></p>
|
---|
43 | *
|
---|
44 | * implements Serializable since 2.0
|
---|
45 | *
|
---|
46 | * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
|
---|
47 | */
|
---|
48 | public class Complex implements FieldElement<Complex>, Serializable {
|
---|
49 |
|
---|
50 | /** The square root of -1. A number representing "0.0 + 1.0i" */
|
---|
51 | public static final Complex I = new Complex(0.0, 1.0);
|
---|
52 |
|
---|
53 | // CHECKSTYLE: stop ConstantName
|
---|
54 | /** A complex number representing "NaN + NaNi" */
|
---|
55 | public static final Complex NaN = new Complex(Double.NaN, Double.NaN);
|
---|
56 | // CHECKSTYLE: resume ConstantName
|
---|
57 |
|
---|
58 | /** A complex number representing "+INF + INFi" */
|
---|
59 | public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
|
---|
60 |
|
---|
61 | /** A complex number representing "1.0 + 0.0i" */
|
---|
62 | public static final Complex ONE = new Complex(1.0, 0.0);
|
---|
63 |
|
---|
64 | /** A complex number representing "0.0 + 0.0i" */
|
---|
65 | public static final Complex ZERO = new Complex(0.0, 0.0);
|
---|
66 |
|
---|
67 | /** Serializable version identifier */
|
---|
68 | private static final long serialVersionUID = -6195664516687396620L;
|
---|
69 |
|
---|
70 | /** The imaginary part. */
|
---|
71 | private final double imaginary;
|
---|
72 |
|
---|
73 | /** The real part. */
|
---|
74 | private final double real;
|
---|
75 |
|
---|
76 | /** Record whether this complex number is equal to NaN. */
|
---|
77 | private final transient boolean isNaN;
|
---|
78 |
|
---|
79 | /** Record whether this complex number is infinite. */
|
---|
80 | private final transient boolean isInfinite;
|
---|
81 |
|
---|
82 | /**
|
---|
83 | * Create a complex number given the real and imaginary parts.
|
---|
84 | *
|
---|
85 | * @param real the real part
|
---|
86 | * @param imaginary the imaginary part
|
---|
87 | */
|
---|
88 | public Complex(double real, double imaginary) {
|
---|
89 | super();
|
---|
90 | this.real = real;
|
---|
91 | this.imaginary = imaginary;
|
---|
92 |
|
---|
93 | isNaN = Double.isNaN(real) || Double.isNaN(imaginary);
|
---|
94 | isInfinite = !isNaN &&
|
---|
95 | (Double.isInfinite(real) || Double.isInfinite(imaginary));
|
---|
96 | }
|
---|
97 |
|
---|
98 | /**
|
---|
99 | * Return the absolute value of this complex number.
|
---|
100 | * <p>
|
---|
101 | * Returns <code>NaN</code> if either real or imaginary part is
|
---|
102 | * <code>NaN</code> and <code>Double.POSITIVE_INFINITY</code> if
|
---|
103 | * neither part is <code>NaN</code>, but at least one part takes an infinite
|
---|
104 | * value.</p>
|
---|
105 | *
|
---|
106 | * @return the absolute value
|
---|
107 | */
|
---|
108 | public double abs() {
|
---|
109 | if (isNaN()) {
|
---|
110 | return Double.NaN;
|
---|
111 | }
|
---|
112 |
|
---|
113 | if (isInfinite()) {
|
---|
114 | return Double.POSITIVE_INFINITY;
|
---|
115 | }
|
---|
116 |
|
---|
117 | if (FastMath.abs(real) < FastMath.abs(imaginary)) {
|
---|
118 | if (imaginary == 0.0) {
|
---|
119 | return FastMath.abs(real);
|
---|
120 | }
|
---|
121 | double q = real / imaginary;
|
---|
122 | return FastMath.abs(imaginary) * FastMath.sqrt(1 + q * q);
|
---|
123 | } else {
|
---|
124 | if (real == 0.0) {
|
---|
125 | return FastMath.abs(imaginary);
|
---|
126 | }
|
---|
127 | double q = imaginary / real;
|
---|
128 | return FastMath.abs(real) * FastMath.sqrt(1 + q * q);
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | /**
|
---|
133 | * Return the sum of this complex number and the given complex number.
|
---|
134 | * <p>
|
---|
135 | * Uses the definitional formula
|
---|
136 | * <pre>
|
---|
137 | * (a + bi) + (c + di) = (a+c) + (b+d)i
|
---|
138 | * </pre></p>
|
---|
139 | * <p>
|
---|
140 | * If either this or <code>rhs</code> has a NaN value in either part,
|
---|
141 | * {@link #NaN} is returned; otherwise Inifinite and NaN values are
|
---|
142 | * returned in the parts of the result according to the rules for
|
---|
143 | * {@link java.lang.Double} arithmetic.</p>
|
---|
144 | *
|
---|
145 | * @param rhs the other complex number
|
---|
146 | * @return the complex number sum
|
---|
147 | * @throws NullPointerException if <code>rhs</code> is null
|
---|
148 | */
|
---|
149 | public Complex add(Complex rhs) {
|
---|
150 | return createComplex(real + rhs.getReal(),
|
---|
151 | imaginary + rhs.getImaginary());
|
---|
152 | }
|
---|
153 |
|
---|
154 | /**
|
---|
155 | * Return the conjugate of this complex number. The conjugate of
|
---|
156 | * "A + Bi" is "A - Bi".
|
---|
157 | * <p>
|
---|
158 | * {@link #NaN} is returned if either the real or imaginary
|
---|
159 | * part of this Complex number equals <code>Double.NaN</code>.</p>
|
---|
160 | * <p>
|
---|
161 | * If the imaginary part is infinite, and the real part is not NaN,
|
---|
162 | * the returned value has infinite imaginary part of the opposite
|
---|
163 | * sign - e.g. the conjugate of <code>1 + POSITIVE_INFINITY i</code>
|
---|
164 | * is <code>1 - NEGATIVE_INFINITY i</code></p>
|
---|
165 | *
|
---|
166 | * @return the conjugate of this Complex object
|
---|
167 | */
|
---|
168 | public Complex conjugate() {
|
---|
169 | if (isNaN()) {
|
---|
170 | return NaN;
|
---|
171 | }
|
---|
172 | return createComplex(real, -imaginary);
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Return the quotient of this complex number and the given complex number.
|
---|
177 | * <p>
|
---|
178 | * Implements the definitional formula
|
---|
179 | * <pre><code>
|
---|
180 | * a + bi ac + bd + (bc - ad)i
|
---|
181 | * ----------- = -------------------------
|
---|
182 | * c + di c<sup>2</sup> + d<sup>2</sup>
|
---|
183 | * </code></pre>
|
---|
184 | * but uses
|
---|
185 | * <a href="http://doi.acm.org/10.1145/1039813.1039814">
|
---|
186 | * prescaling of operands</a> to limit the effects of overflows and
|
---|
187 | * underflows in the computation.</p>
|
---|
188 | * <p>
|
---|
189 | * Infinite and NaN values are handled / returned according to the
|
---|
190 | * following rules, applied in the order presented:
|
---|
191 | * <ul>
|
---|
192 | * <li>If either this or <code>rhs</code> has a NaN value in either part,
|
---|
193 | * {@link #NaN} is returned.</li>
|
---|
194 | * <li>If <code>rhs</code> equals {@link #ZERO}, {@link #NaN} is returned.
|
---|
195 | * </li>
|
---|
196 | * <li>If this and <code>rhs</code> are both infinite,
|
---|
197 | * {@link #NaN} is returned.</li>
|
---|
198 | * <li>If this is finite (i.e., has no infinite or NaN parts) and
|
---|
199 | * <code>rhs</code> is infinite (one or both parts infinite),
|
---|
200 | * {@link #ZERO} is returned.</li>
|
---|
201 | * <li>If this is infinite and <code>rhs</code> is finite, NaN values are
|
---|
202 | * returned in the parts of the result if the {@link java.lang.Double}
|
---|
203 | * rules applied to the definitional formula force NaN results.</li>
|
---|
204 | * </ul></p>
|
---|
205 | *
|
---|
206 | * @param rhs the other complex number
|
---|
207 | * @return the complex number quotient
|
---|
208 | * @throws NullPointerException if <code>rhs</code> is null
|
---|
209 | */
|
---|
210 | public Complex divide(Complex rhs) {
|
---|
211 | if (isNaN() || rhs.isNaN()) {
|
---|
212 | return NaN;
|
---|
213 | }
|
---|
214 |
|
---|
215 | double c = rhs.getReal();
|
---|
216 | double d = rhs.getImaginary();
|
---|
217 | if (c == 0.0 && d == 0.0) {
|
---|
218 | return NaN;
|
---|
219 | }
|
---|
220 |
|
---|
221 | if (rhs.isInfinite() && !isInfinite()) {
|
---|
222 | return ZERO;
|
---|
223 | }
|
---|
224 |
|
---|
225 | if (FastMath.abs(c) < FastMath.abs(d)) {
|
---|
226 | double q = c / d;
|
---|
227 | double denominator = c * q + d;
|
---|
228 | return createComplex((real * q + imaginary) / denominator,
|
---|
229 | (imaginary * q - real) / denominator);
|
---|
230 | } else {
|
---|
231 | double q = d / c;
|
---|
232 | double denominator = d * q + c;
|
---|
233 | return createComplex((imaginary * q + real) / denominator,
|
---|
234 | (imaginary - real * q) / denominator);
|
---|
235 | }
|
---|
236 | }
|
---|
237 |
|
---|
238 | /**
|
---|
239 | * Test for the equality of two Complex objects.
|
---|
240 | * <p>
|
---|
241 | * If both the real and imaginary parts of two Complex numbers
|
---|
242 | * are exactly the same, and neither is <code>Double.NaN</code>, the two
|
---|
243 | * Complex objects are considered to be equal.</p>
|
---|
244 | * <p>
|
---|
245 | * All <code>NaN</code> values are considered to be equal - i.e, if either
|
---|
246 | * (or both) real and imaginary parts of the complex number are equal
|
---|
247 | * to <code>Double.NaN</code>, the complex number is equal to
|
---|
248 | * <code>Complex.NaN</code>.</p>
|
---|
249 | *
|
---|
250 | * @param other Object to test for equality to this
|
---|
251 | * @return true if two Complex objects are equal, false if
|
---|
252 | * object is null, not an instance of Complex, or
|
---|
253 | * not equal to this Complex instance
|
---|
254 | *
|
---|
255 | */
|
---|
256 | @Override
|
---|
257 | public boolean equals(Object other) {
|
---|
258 | if (this == other) {
|
---|
259 | return true;
|
---|
260 | }
|
---|
261 | if (other instanceof Complex){
|
---|
262 | Complex rhs = (Complex)other;
|
---|
263 | if (rhs.isNaN()) {
|
---|
264 | return this.isNaN();
|
---|
265 | } else {
|
---|
266 | return (real == rhs.real) && (imaginary == rhs.imaginary);
|
---|
267 | }
|
---|
268 | }
|
---|
269 | return false;
|
---|
270 | }
|
---|
271 |
|
---|
272 | /**
|
---|
273 | * Get a hashCode for the complex number.
|
---|
274 | * <p>
|
---|
275 | * All NaN values have the same hash code.</p>
|
---|
276 | *
|
---|
277 | * @return a hash code value for this object
|
---|
278 | */
|
---|
279 | @Override
|
---|
280 | public int hashCode() {
|
---|
281 | if (isNaN()) {
|
---|
282 | return 7;
|
---|
283 | }
|
---|
284 | return 37 * (17 * MathUtils.hash(imaginary) +
|
---|
285 | MathUtils.hash(real));
|
---|
286 | }
|
---|
287 |
|
---|
288 | /**
|
---|
289 | * Access the imaginary part.
|
---|
290 | *
|
---|
291 | * @return the imaginary part
|
---|
292 | */
|
---|
293 | public double getImaginary() {
|
---|
294 | return imaginary;
|
---|
295 | }
|
---|
296 |
|
---|
297 | /**
|
---|
298 | * Access the real part.
|
---|
299 | *
|
---|
300 | * @return the real part
|
---|
301 | */
|
---|
302 | public double getReal() {
|
---|
303 | return real;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /**
|
---|
307 | * Returns true if either or both parts of this complex number is NaN;
|
---|
308 | * false otherwise
|
---|
309 | *
|
---|
310 | * @return true if either or both parts of this complex number is NaN;
|
---|
311 | * false otherwise
|
---|
312 | */
|
---|
313 | public boolean isNaN() {
|
---|
314 | return isNaN;
|
---|
315 | }
|
---|
316 |
|
---|
317 | /**
|
---|
318 | * Returns true if either the real or imaginary part of this complex number
|
---|
319 | * takes an infinite value (either <code>Double.POSITIVE_INFINITY</code> or
|
---|
320 | * <code>Double.NEGATIVE_INFINITY</code>) and neither part
|
---|
321 | * is <code>NaN</code>.
|
---|
322 | *
|
---|
323 | * @return true if one or both parts of this complex number are infinite
|
---|
324 | * and neither part is <code>NaN</code>
|
---|
325 | */
|
---|
326 | public boolean isInfinite() {
|
---|
327 | return isInfinite;
|
---|
328 | }
|
---|
329 |
|
---|
330 | /**
|
---|
331 | * Return the product of this complex number and the given complex number.
|
---|
332 | * <p>
|
---|
333 | * Implements preliminary checks for NaN and infinity followed by
|
---|
334 | * the definitional formula:
|
---|
335 | * <pre><code>
|
---|
336 | * (a + bi)(c + di) = (ac - bd) + (ad + bc)i
|
---|
337 | * </code></pre>
|
---|
338 | * </p>
|
---|
339 | * <p>
|
---|
340 | * Returns {@link #NaN} if either this or <code>rhs</code> has one or more
|
---|
341 | * NaN parts.
|
---|
342 | * </p>
|
---|
343 | * Returns {@link #INF} if neither this nor <code>rhs</code> has one or more
|
---|
344 | * NaN parts and if either this or <code>rhs</code> has one or more
|
---|
345 | * infinite parts (same result is returned regardless of the sign of the
|
---|
346 | * components).
|
---|
347 | * </p>
|
---|
348 | * <p>
|
---|
349 | * Returns finite values in components of the result per the
|
---|
350 | * definitional formula in all remaining cases.
|
---|
351 | * </p>
|
---|
352 | *
|
---|
353 | * @param rhs the other complex number
|
---|
354 | * @return the complex number product
|
---|
355 | * @throws NullPointerException if <code>rhs</code> is null
|
---|
356 | */
|
---|
357 | public Complex multiply(Complex rhs) {
|
---|
358 | if (isNaN() || rhs.isNaN()) {
|
---|
359 | return NaN;
|
---|
360 | }
|
---|
361 | if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
|
---|
362 | Double.isInfinite(rhs.real)|| Double.isInfinite(rhs.imaginary)) {
|
---|
363 | // we don't use Complex.isInfinite() to avoid testing for NaN again
|
---|
364 | return INF;
|
---|
365 | }
|
---|
366 | return createComplex(real * rhs.real - imaginary * rhs.imaginary,
|
---|
367 | real * rhs.imaginary + imaginary * rhs.real);
|
---|
368 | }
|
---|
369 |
|
---|
370 | /**
|
---|
371 | * Return the product of this complex number and the given scalar number.
|
---|
372 | * <p>
|
---|
373 | * Implements preliminary checks for NaN and infinity followed by
|
---|
374 | * the definitional formula:
|
---|
375 | * <pre><code>
|
---|
376 | * c(a + bi) = (ca) + (cb)i
|
---|
377 | * </code></pre>
|
---|
378 | * </p>
|
---|
379 | * <p>
|
---|
380 | * Returns {@link #NaN} if either this or <code>rhs</code> has one or more
|
---|
381 | * NaN parts.
|
---|
382 | * </p>
|
---|
383 | * Returns {@link #INF} if neither this nor <code>rhs</code> has one or more
|
---|
384 | * NaN parts and if either this or <code>rhs</code> has one or more
|
---|
385 | * infinite parts (same result is returned regardless of the sign of the
|
---|
386 | * components).
|
---|
387 | * </p>
|
---|
388 | * <p>
|
---|
389 | * Returns finite values in components of the result per the
|
---|
390 | * definitional formula in all remaining cases.
|
---|
391 | * </p>
|
---|
392 | *
|
---|
393 | * @param rhs the scalar number
|
---|
394 | * @return the complex number product
|
---|
395 | */
|
---|
396 | public Complex multiply(double rhs) {
|
---|
397 | if (isNaN() || Double.isNaN(rhs)) {
|
---|
398 | return NaN;
|
---|
399 | }
|
---|
400 | if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
|
---|
401 | Double.isInfinite(rhs)) {
|
---|
402 | // we don't use Complex.isInfinite() to avoid testing for NaN again
|
---|
403 | return INF;
|
---|
404 | }
|
---|
405 | return createComplex(real * rhs, imaginary * rhs);
|
---|
406 | }
|
---|
407 |
|
---|
408 | /**
|
---|
409 | * Return the additive inverse of this complex number.
|
---|
410 | * <p>
|
---|
411 | * Returns <code>Complex.NaN</code> if either real or imaginary
|
---|
412 | * part of this Complex number equals <code>Double.NaN</code>.</p>
|
---|
413 | *
|
---|
414 | * @return the negation of this complex number
|
---|
415 | */
|
---|
416 | public Complex negate() {
|
---|
417 | if (isNaN()) {
|
---|
418 | return NaN;
|
---|
419 | }
|
---|
420 |
|
---|
421 | return createComplex(-real, -imaginary);
|
---|
422 | }
|
---|
423 |
|
---|
424 | /**
|
---|
425 | * Return the difference between this complex number and the given complex
|
---|
426 | * number.
|
---|
427 | * <p>
|
---|
428 | * Uses the definitional formula
|
---|
429 | * <pre>
|
---|
430 | * (a + bi) - (c + di) = (a-c) + (b-d)i
|
---|
431 | * </pre></p>
|
---|
432 | * <p>
|
---|
433 | * If either this or <code>rhs</code> has a NaN value in either part,
|
---|
434 | * {@link #NaN} is returned; otherwise inifinite and NaN values are
|
---|
435 | * returned in the parts of the result according to the rules for
|
---|
436 | * {@link java.lang.Double} arithmetic. </p>
|
---|
437 | *
|
---|
438 | * @param rhs the other complex number
|
---|
439 | * @return the complex number difference
|
---|
440 | * @throws NullPointerException if <code>rhs</code> is null
|
---|
441 | */
|
---|
442 | public Complex subtract(Complex rhs) {
|
---|
443 | if (isNaN() || rhs.isNaN()) {
|
---|
444 | return NaN;
|
---|
445 | }
|
---|
446 |
|
---|
447 | return createComplex(real - rhs.getReal(),
|
---|
448 | imaginary - rhs.getImaginary());
|
---|
449 | }
|
---|
450 |
|
---|
451 | /**
|
---|
452 | * Compute the
|
---|
453 | * <a href="http://mathworld.wolfram.com/InverseCosine.html" TARGET="_top">
|
---|
454 | * inverse cosine</a> of this complex number.
|
---|
455 | * <p>
|
---|
456 | * Implements the formula: <pre>
|
---|
457 | * <code> acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))</code></pre></p>
|
---|
458 | * <p>
|
---|
459 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
460 | * input argument is <code>NaN</code> or infinite.</p>
|
---|
461 | *
|
---|
462 | * @return the inverse cosine of this complex number
|
---|
463 | * @since 1.2
|
---|
464 | */
|
---|
465 | public Complex acos() {
|
---|
466 | if (isNaN()) {
|
---|
467 | return Complex.NaN;
|
---|
468 | }
|
---|
469 |
|
---|
470 | return this.add(this.sqrt1z().multiply(Complex.I)).log()
|
---|
471 | .multiply(Complex.I.negate());
|
---|
472 | }
|
---|
473 |
|
---|
474 | /**
|
---|
475 | * Compute the
|
---|
476 | * <a href="http://mathworld.wolfram.com/InverseSine.html" TARGET="_top">
|
---|
477 | * inverse sine</a> of this complex number.
|
---|
478 | * <p>
|
---|
479 | * Implements the formula: <pre>
|
---|
480 | * <code> asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz)) </code></pre></p>
|
---|
481 | * <p>
|
---|
482 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
483 | * input argument is <code>NaN</code> or infinite.</p>
|
---|
484 | *
|
---|
485 | * @return the inverse sine of this complex number.
|
---|
486 | * @since 1.2
|
---|
487 | */
|
---|
488 | public Complex asin() {
|
---|
489 | if (isNaN()) {
|
---|
490 | return Complex.NaN;
|
---|
491 | }
|
---|
492 |
|
---|
493 | return sqrt1z().add(this.multiply(Complex.I)).log()
|
---|
494 | .multiply(Complex.I.negate());
|
---|
495 | }
|
---|
496 |
|
---|
497 | /**
|
---|
498 | * Compute the
|
---|
499 | * <a href="http://mathworld.wolfram.com/InverseTangent.html" TARGET="_top">
|
---|
500 | * inverse tangent</a> of this complex number.
|
---|
501 | * <p>
|
---|
502 | * Implements the formula: <pre>
|
---|
503 | * <code> atan(z) = (i/2) log((i + z)/(i - z)) </code></pre></p>
|
---|
504 | * <p>
|
---|
505 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
506 | * input argument is <code>NaN</code> or infinite.</p>
|
---|
507 | *
|
---|
508 | * @return the inverse tangent of this complex number
|
---|
509 | * @since 1.2
|
---|
510 | */
|
---|
511 | public Complex atan() {
|
---|
512 | if (isNaN()) {
|
---|
513 | return Complex.NaN;
|
---|
514 | }
|
---|
515 |
|
---|
516 | return this.add(Complex.I).divide(Complex.I.subtract(this)).log()
|
---|
517 | .multiply(Complex.I.divide(createComplex(2.0, 0.0)));
|
---|
518 | }
|
---|
519 |
|
---|
520 | /**
|
---|
521 | * Compute the
|
---|
522 | * <a href="http://mathworld.wolfram.com/Cosine.html" TARGET="_top">
|
---|
523 | * cosine</a>
|
---|
524 | * of this complex number.
|
---|
525 | * <p>
|
---|
526 | * Implements the formula: <pre>
|
---|
527 | * <code> cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i</code></pre>
|
---|
528 | * where the (real) functions on the right-hand side are
|
---|
529 | * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
|
---|
530 | * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
|
---|
531 | * <p>
|
---|
532 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
533 | * input argument is <code>NaN</code>.</p>
|
---|
534 | * <p>
|
---|
535 | * Infinite values in real or imaginary parts of the input may result in
|
---|
536 | * infinite or NaN values returned in parts of the result.<pre>
|
---|
537 | * Examples:
|
---|
538 | * <code>
|
---|
539 | * cos(1 ± INFINITY i) = 1 ∓ INFINITY i
|
---|
540 | * cos(±INFINITY + i) = NaN + NaN i
|
---|
541 | * cos(±INFINITY ± INFINITY i) = NaN + NaN i</code></pre></p>
|
---|
542 | *
|
---|
543 | * @return the cosine of this complex number
|
---|
544 | * @since 1.2
|
---|
545 | */
|
---|
546 | public Complex cos() {
|
---|
547 | if (isNaN()) {
|
---|
548 | return Complex.NaN;
|
---|
549 | }
|
---|
550 |
|
---|
551 | return createComplex(FastMath.cos(real) * MathUtils.cosh(imaginary),
|
---|
552 | -FastMath.sin(real) * MathUtils.sinh(imaginary));
|
---|
553 | }
|
---|
554 |
|
---|
555 | /**
|
---|
556 | * Compute the
|
---|
557 | * <a href="http://mathworld.wolfram.com/HyperbolicCosine.html" TARGET="_top">
|
---|
558 | * hyperbolic cosine</a> of this complex number.
|
---|
559 | * <p>
|
---|
560 | * Implements the formula: <pre>
|
---|
561 | * <code> cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i</code></pre>
|
---|
562 | * where the (real) functions on the right-hand side are
|
---|
563 | * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
|
---|
564 | * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
|
---|
565 | * <p>
|
---|
566 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
567 | * input argument is <code>NaN</code>.</p>
|
---|
568 | * <p>
|
---|
569 | * Infinite values in real or imaginary parts of the input may result in
|
---|
570 | * infinite or NaN values returned in parts of the result.<pre>
|
---|
571 | * Examples:
|
---|
572 | * <code>
|
---|
573 | * cosh(1 ± INFINITY i) = NaN + NaN i
|
---|
574 | * cosh(±INFINITY + i) = INFINITY ± INFINITY i
|
---|
575 | * cosh(±INFINITY ± INFINITY i) = NaN + NaN i</code></pre></p>
|
---|
576 | *
|
---|
577 | * @return the hyperbolic cosine of this complex number.
|
---|
578 | * @since 1.2
|
---|
579 | */
|
---|
580 | public Complex cosh() {
|
---|
581 | if (isNaN()) {
|
---|
582 | return Complex.NaN;
|
---|
583 | }
|
---|
584 |
|
---|
585 | return createComplex(MathUtils.cosh(real) * FastMath.cos(imaginary),
|
---|
586 | MathUtils.sinh(real) * FastMath.sin(imaginary));
|
---|
587 | }
|
---|
588 |
|
---|
589 | /**
|
---|
590 | * Compute the
|
---|
591 | * <a href="http://mathworld.wolfram.com/ExponentialFunction.html" TARGET="_top">
|
---|
592 | * exponential function</a> of this complex number.
|
---|
593 | * <p>
|
---|
594 | * Implements the formula: <pre>
|
---|
595 | * <code> exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i</code></pre>
|
---|
596 | * where the (real) functions on the right-hand side are
|
---|
597 | * {@link java.lang.Math#exp}, {@link java.lang.Math#cos}, and
|
---|
598 | * {@link java.lang.Math#sin}.</p>
|
---|
599 | * <p>
|
---|
600 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
601 | * input argument is <code>NaN</code>.</p>
|
---|
602 | * <p>
|
---|
603 | * Infinite values in real or imaginary parts of the input may result in
|
---|
604 | * infinite or NaN values returned in parts of the result.<pre>
|
---|
605 | * Examples:
|
---|
606 | * <code>
|
---|
607 | * exp(1 ± INFINITY i) = NaN + NaN i
|
---|
608 | * exp(INFINITY + i) = INFINITY + INFINITY i
|
---|
609 | * exp(-INFINITY + i) = 0 + 0i
|
---|
610 | * exp(±INFINITY ± INFINITY i) = NaN + NaN i</code></pre></p>
|
---|
611 | *
|
---|
612 | * @return <i>e</i><sup><code>this</code></sup>
|
---|
613 | * @since 1.2
|
---|
614 | */
|
---|
615 | public Complex exp() {
|
---|
616 | if (isNaN()) {
|
---|
617 | return Complex.NaN;
|
---|
618 | }
|
---|
619 |
|
---|
620 | double expReal = FastMath.exp(real);
|
---|
621 | return createComplex(expReal * FastMath.cos(imaginary), expReal * FastMath.sin(imaginary));
|
---|
622 | }
|
---|
623 |
|
---|
624 | /**
|
---|
625 | * Compute the
|
---|
626 | * <a href="http://mathworld.wolfram.com/NaturalLogarithm.html" TARGET="_top">
|
---|
627 | * natural logarithm</a> of this complex number.
|
---|
628 | * <p>
|
---|
629 | * Implements the formula: <pre>
|
---|
630 | * <code> log(a + bi) = ln(|a + bi|) + arg(a + bi)i</code></pre>
|
---|
631 | * where ln on the right hand side is {@link java.lang.Math#log},
|
---|
632 | * <code>|a + bi|</code> is the modulus, {@link Complex#abs}, and
|
---|
633 | * <code>arg(a + bi) = {@link java.lang.Math#atan2}(b, a)</code></p>
|
---|
634 | * <p>
|
---|
635 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
636 | * input argument is <code>NaN</code>.</p>
|
---|
637 | * <p>
|
---|
638 | * Infinite (or critical) values in real or imaginary parts of the input may
|
---|
639 | * result in infinite or NaN values returned in parts of the result.<pre>
|
---|
640 | * Examples:
|
---|
641 | * <code>
|
---|
642 | * log(1 ± INFINITY i) = INFINITY ± (π/2)i
|
---|
643 | * log(INFINITY + i) = INFINITY + 0i
|
---|
644 | * log(-INFINITY + i) = INFINITY + πi
|
---|
645 | * log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i
|
---|
646 | * log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i
|
---|
647 | * log(0 + 0i) = -INFINITY + 0i
|
---|
648 | * </code></pre></p>
|
---|
649 | *
|
---|
650 | * @return ln of this complex number.
|
---|
651 | * @since 1.2
|
---|
652 | */
|
---|
653 | public Complex log() {
|
---|
654 | if (isNaN()) {
|
---|
655 | return Complex.NaN;
|
---|
656 | }
|
---|
657 |
|
---|
658 | return createComplex(FastMath.log(abs()),
|
---|
659 | FastMath.atan2(imaginary, real));
|
---|
660 | }
|
---|
661 |
|
---|
662 | /**
|
---|
663 | * Returns of value of this complex number raised to the power of <code>x</code>.
|
---|
664 | * <p>
|
---|
665 | * Implements the formula: <pre>
|
---|
666 | * <code> y<sup>x</sup> = exp(x·log(y))</code></pre>
|
---|
667 | * where <code>exp</code> and <code>log</code> are {@link #exp} and
|
---|
668 | * {@link #log}, respectively.</p>
|
---|
669 | * <p>
|
---|
670 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
671 | * input argument is <code>NaN</code> or infinite, or if <code>y</code>
|
---|
672 | * equals {@link Complex#ZERO}.</p>
|
---|
673 | *
|
---|
674 | * @param x the exponent.
|
---|
675 | * @return <code>this</code><sup><code>x</code></sup>
|
---|
676 | * @throws NullPointerException if x is null
|
---|
677 | * @since 1.2
|
---|
678 | */
|
---|
679 | public Complex pow(Complex x) {
|
---|
680 | if (x == null) {
|
---|
681 | throw new NullPointerException();
|
---|
682 | }
|
---|
683 | return this.log().multiply(x).exp();
|
---|
684 | }
|
---|
685 |
|
---|
686 | /**
|
---|
687 | * Compute the
|
---|
688 | * <a href="http://mathworld.wolfram.com/Sine.html" TARGET="_top">
|
---|
689 | * sine</a>
|
---|
690 | * of this complex number.
|
---|
691 | * <p>
|
---|
692 | * Implements the formula: <pre>
|
---|
693 | * <code> sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i</code></pre>
|
---|
694 | * where the (real) functions on the right-hand side are
|
---|
695 | * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
|
---|
696 | * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
|
---|
697 | * <p>
|
---|
698 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
699 | * input argument is <code>NaN</code>.</p>
|
---|
700 | * <p>
|
---|
701 | * Infinite values in real or imaginary parts of the input may result in
|
---|
702 | * infinite or NaN values returned in parts of the result.<pre>
|
---|
703 | * Examples:
|
---|
704 | * <code>
|
---|
705 | * sin(1 ± INFINITY i) = 1 ± INFINITY i
|
---|
706 | * sin(±INFINITY + i) = NaN + NaN i
|
---|
707 | * sin(±INFINITY ± INFINITY i) = NaN + NaN i</code></pre></p>
|
---|
708 | *
|
---|
709 | * @return the sine of this complex number.
|
---|
710 | * @since 1.2
|
---|
711 | */
|
---|
712 | public Complex sin() {
|
---|
713 | if (isNaN()) {
|
---|
714 | return Complex.NaN;
|
---|
715 | }
|
---|
716 |
|
---|
717 | return createComplex(FastMath.sin(real) * MathUtils.cosh(imaginary),
|
---|
718 | FastMath.cos(real) * MathUtils.sinh(imaginary));
|
---|
719 | }
|
---|
720 |
|
---|
721 | /**
|
---|
722 | * Compute the
|
---|
723 | * <a href="http://mathworld.wolfram.com/HyperbolicSine.html" TARGET="_top">
|
---|
724 | * hyperbolic sine</a> of this complex number.
|
---|
725 | * <p>
|
---|
726 | * Implements the formula: <pre>
|
---|
727 | * <code> sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i</code></pre>
|
---|
728 | * where the (real) functions on the right-hand side are
|
---|
729 | * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
|
---|
730 | * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
|
---|
731 | * <p>
|
---|
732 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
733 | * input argument is <code>NaN</code>.</p>
|
---|
734 | * <p>
|
---|
735 | * Infinite values in real or imaginary parts of the input may result in
|
---|
736 | * infinite or NaN values returned in parts of the result.<pre>
|
---|
737 | * Examples:
|
---|
738 | * <code>
|
---|
739 | * sinh(1 ± INFINITY i) = NaN + NaN i
|
---|
740 | * sinh(±INFINITY + i) = ± INFINITY + INFINITY i
|
---|
741 | * sinh(±INFINITY ± INFINITY i) = NaN + NaN i</code></pre></p>
|
---|
742 | *
|
---|
743 | * @return the hyperbolic sine of this complex number
|
---|
744 | * @since 1.2
|
---|
745 | */
|
---|
746 | public Complex sinh() {
|
---|
747 | if (isNaN()) {
|
---|
748 | return Complex.NaN;
|
---|
749 | }
|
---|
750 |
|
---|
751 | return createComplex(MathUtils.sinh(real) * FastMath.cos(imaginary),
|
---|
752 | MathUtils.cosh(real) * FastMath.sin(imaginary));
|
---|
753 | }
|
---|
754 |
|
---|
755 | /**
|
---|
756 | * Compute the
|
---|
757 | * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
|
---|
758 | * square root</a> of this complex number.
|
---|
759 | * <p>
|
---|
760 | * Implements the following algorithm to compute <code>sqrt(a + bi)</code>:
|
---|
761 | * <ol><li>Let <code>t = sqrt((|a| + |a + bi|) / 2)</code></li>
|
---|
762 | * <li><pre>if <code> a ≥ 0</code> return <code>t + (b/2t)i</code>
|
---|
763 | * else return <code>|b|/2t + sign(b)t i </code></pre></li>
|
---|
764 | * </ol>
|
---|
765 | * where <ul>
|
---|
766 | * <li><code>|a| = {@link Math#abs}(a)</code></li>
|
---|
767 | * <li><code>|a + bi| = {@link Complex#abs}(a + bi) </code></li>
|
---|
768 | * <li><code>sign(b) = {@link MathUtils#indicator}(b) </code>
|
---|
769 | * </ul></p>
|
---|
770 | * <p>
|
---|
771 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
772 | * input argument is <code>NaN</code>.</p>
|
---|
773 | * <p>
|
---|
774 | * Infinite values in real or imaginary parts of the input may result in
|
---|
775 | * infinite or NaN values returned in parts of the result.<pre>
|
---|
776 | * Examples:
|
---|
777 | * <code>
|
---|
778 | * sqrt(1 ± INFINITY i) = INFINITY + NaN i
|
---|
779 | * sqrt(INFINITY + i) = INFINITY + 0i
|
---|
780 | * sqrt(-INFINITY + i) = 0 + INFINITY i
|
---|
781 | * sqrt(INFINITY ± INFINITY i) = INFINITY + NaN i
|
---|
782 | * sqrt(-INFINITY ± INFINITY i) = NaN ± INFINITY i
|
---|
783 | * </code></pre></p>
|
---|
784 | *
|
---|
785 | * @return the square root of this complex number
|
---|
786 | * @since 1.2
|
---|
787 | */
|
---|
788 | public Complex sqrt() {
|
---|
789 | if (isNaN()) {
|
---|
790 | return Complex.NaN;
|
---|
791 | }
|
---|
792 |
|
---|
793 | if (real == 0.0 && imaginary == 0.0) {
|
---|
794 | return createComplex(0.0, 0.0);
|
---|
795 | }
|
---|
796 |
|
---|
797 | double t = FastMath.sqrt((FastMath.abs(real) + abs()) / 2.0);
|
---|
798 | if (real >= 0.0) {
|
---|
799 | return createComplex(t, imaginary / (2.0 * t));
|
---|
800 | } else {
|
---|
801 | return createComplex(FastMath.abs(imaginary) / (2.0 * t),
|
---|
802 | MathUtils.indicator(imaginary) * t);
|
---|
803 | }
|
---|
804 | }
|
---|
805 |
|
---|
806 | /**
|
---|
807 | * Compute the
|
---|
808 | * <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
|
---|
809 | * square root</a> of 1 - <code>this</code><sup>2</sup> for this complex
|
---|
810 | * number.
|
---|
811 | * <p>
|
---|
812 | * Computes the result directly as
|
---|
813 | * <code>sqrt(Complex.ONE.subtract(z.multiply(z)))</code>.</p>
|
---|
814 | * <p>
|
---|
815 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
816 | * input argument is <code>NaN</code>.</p>
|
---|
817 | * <p>
|
---|
818 | * Infinite values in real or imaginary parts of the input may result in
|
---|
819 | * infinite or NaN values returned in parts of the result.</p>
|
---|
820 | *
|
---|
821 | * @return the square root of 1 - <code>this</code><sup>2</sup>
|
---|
822 | * @since 1.2
|
---|
823 | */
|
---|
824 | public Complex sqrt1z() {
|
---|
825 | return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt();
|
---|
826 | }
|
---|
827 |
|
---|
828 | /**
|
---|
829 | * Compute the
|
---|
830 | * <a href="http://mathworld.wolfram.com/Tangent.html" TARGET="_top">
|
---|
831 | * tangent</a> of this complex number.
|
---|
832 | * <p>
|
---|
833 | * Implements the formula: <pre>
|
---|
834 | * <code>tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i</code></pre>
|
---|
835 | * where the (real) functions on the right-hand side are
|
---|
836 | * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
|
---|
837 | * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
|
---|
838 | * <p>
|
---|
839 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
840 | * input argument is <code>NaN</code>.</p>
|
---|
841 | * <p>
|
---|
842 | * Infinite (or critical) values in real or imaginary parts of the input may
|
---|
843 | * result in infinite or NaN values returned in parts of the result.<pre>
|
---|
844 | * Examples:
|
---|
845 | * <code>
|
---|
846 | * tan(1 ± INFINITY i) = 0 + NaN i
|
---|
847 | * tan(±INFINITY + i) = NaN + NaN i
|
---|
848 | * tan(±INFINITY ± INFINITY i) = NaN + NaN i
|
---|
849 | * tan(±π/2 + 0 i) = ±INFINITY + NaN i</code></pre></p>
|
---|
850 | *
|
---|
851 | * @return the tangent of this complex number
|
---|
852 | * @since 1.2
|
---|
853 | */
|
---|
854 | public Complex tan() {
|
---|
855 | if (isNaN()) {
|
---|
856 | return Complex.NaN;
|
---|
857 | }
|
---|
858 |
|
---|
859 | double real2 = 2.0 * real;
|
---|
860 | double imaginary2 = 2.0 * imaginary;
|
---|
861 | double d = FastMath.cos(real2) + MathUtils.cosh(imaginary2);
|
---|
862 |
|
---|
863 | return createComplex(FastMath.sin(real2) / d, MathUtils.sinh(imaginary2) / d);
|
---|
864 | }
|
---|
865 |
|
---|
866 | /**
|
---|
867 | * Compute the
|
---|
868 | * <a href="http://mathworld.wolfram.com/HyperbolicTangent.html" TARGET="_top">
|
---|
869 | * hyperbolic tangent</a> of this complex number.
|
---|
870 | * <p>
|
---|
871 | * Implements the formula: <pre>
|
---|
872 | * <code>tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i</code></pre>
|
---|
873 | * where the (real) functions on the right-hand side are
|
---|
874 | * {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
|
---|
875 | * {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
|
---|
876 | * <p>
|
---|
877 | * Returns {@link Complex#NaN} if either real or imaginary part of the
|
---|
878 | * input argument is <code>NaN</code>.</p>
|
---|
879 | * <p>
|
---|
880 | * Infinite values in real or imaginary parts of the input may result in
|
---|
881 | * infinite or NaN values returned in parts of the result.<pre>
|
---|
882 | * Examples:
|
---|
883 | * <code>
|
---|
884 | * tanh(1 ± INFINITY i) = NaN + NaN i
|
---|
885 | * tanh(±INFINITY + i) = NaN + 0 i
|
---|
886 | * tanh(±INFINITY ± INFINITY i) = NaN + NaN i
|
---|
887 | * tanh(0 + (π/2)i) = NaN + INFINITY i</code></pre></p>
|
---|
888 | *
|
---|
889 | * @return the hyperbolic tangent of this complex number
|
---|
890 | * @since 1.2
|
---|
891 | */
|
---|
892 | public Complex tanh() {
|
---|
893 | if (isNaN()) {
|
---|
894 | return Complex.NaN;
|
---|
895 | }
|
---|
896 |
|
---|
897 | double real2 = 2.0 * real;
|
---|
898 | double imaginary2 = 2.0 * imaginary;
|
---|
899 | double d = MathUtils.cosh(real2) + FastMath.cos(imaginary2);
|
---|
900 |
|
---|
901 | return createComplex(MathUtils.sinh(real2) / d, FastMath.sin(imaginary2) / d);
|
---|
902 | }
|
---|
903 |
|
---|
904 |
|
---|
905 |
|
---|
906 | /**
|
---|
907 | * <p>Compute the argument of this complex number.
|
---|
908 | * </p>
|
---|
909 | * <p>The argument is the angle phi between the positive real axis and the point
|
---|
910 | * representing this number in the complex plane. The value returned is between -PI (not inclusive)
|
---|
911 | * and PI (inclusive), with negative values returned for numbers with negative imaginary parts.
|
---|
912 | * </p>
|
---|
913 | * <p>If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are handled
|
---|
914 | * as java.Math.atan2 handles them, essentially treating finite parts as zero in the presence of
|
---|
915 | * an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite
|
---|
916 | * parts. See the javadoc for java.Math.atan2 for full details.</p>
|
---|
917 | *
|
---|
918 | * @return the argument of this complex number
|
---|
919 | */
|
---|
920 | public double getArgument() {
|
---|
921 | return FastMath.atan2(getImaginary(), getReal());
|
---|
922 | }
|
---|
923 |
|
---|
924 | /**
|
---|
925 | * <p>Computes the n-th roots of this complex number.
|
---|
926 | * </p>
|
---|
927 | * <p>The nth roots are defined by the formula: <pre>
|
---|
928 | * <code> z<sub>k</sub> = abs<sup> 1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))</code></pre>
|
---|
929 | * for <i><code>k=0, 1, ..., n-1</code></i>, where <code>abs</code> and <code>phi</code> are
|
---|
930 | * respectively the {@link #abs() modulus} and {@link #getArgument() argument} of this complex number.
|
---|
931 | * </p>
|
---|
932 | * <p>If one or both parts of this complex number is NaN, a list with just one element,
|
---|
933 | * {@link #NaN} is returned.</p>
|
---|
934 | * <p>if neither part is NaN, but at least one part is infinite, the result is a one-element
|
---|
935 | * list containing {@link #INF}.</p>
|
---|
936 | *
|
---|
937 | * @param n degree of root
|
---|
938 | * @return List<Complex> all nth roots of this complex number
|
---|
939 | * @throws IllegalArgumentException if parameter n is less than or equal to 0
|
---|
940 | * @since 2.0
|
---|
941 | */
|
---|
942 | public List<Complex> nthRoot(int n) throws IllegalArgumentException {
|
---|
943 |
|
---|
944 | if (n <= 0) {
|
---|
945 | throw MathRuntimeException.createIllegalArgumentException(
|
---|
946 | LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N,
|
---|
947 | n);
|
---|
948 | }
|
---|
949 |
|
---|
950 | List<Complex> result = new ArrayList<Complex>();
|
---|
951 |
|
---|
952 | if (isNaN()) {
|
---|
953 | result.add(Complex.NaN);
|
---|
954 | return result;
|
---|
955 | }
|
---|
956 |
|
---|
957 | if (isInfinite()) {
|
---|
958 | result.add(Complex.INF);
|
---|
959 | return result;
|
---|
960 | }
|
---|
961 |
|
---|
962 | // nth root of abs -- faster / more accurate to use a solver here?
|
---|
963 | final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n);
|
---|
964 |
|
---|
965 | // Compute nth roots of complex number with k = 0, 1, ... n-1
|
---|
966 | final double nthPhi = getArgument()/n;
|
---|
967 | final double slice = 2 * FastMath.PI / n;
|
---|
968 | double innerPart = nthPhi;
|
---|
969 | for (int k = 0; k < n ; k++) {
|
---|
970 | // inner part
|
---|
971 | final double realPart = nthRootOfAbs * FastMath.cos(innerPart);
|
---|
972 | final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart);
|
---|
973 | result.add(createComplex(realPart, imaginaryPart));
|
---|
974 | innerPart += slice;
|
---|
975 | }
|
---|
976 |
|
---|
977 | return result;
|
---|
978 | }
|
---|
979 |
|
---|
980 | /**
|
---|
981 | * Create a complex number given the real and imaginary parts.
|
---|
982 | *
|
---|
983 | * @param realPart the real part
|
---|
984 | * @param imaginaryPart the imaginary part
|
---|
985 | * @return a new complex number instance
|
---|
986 | * @since 1.2
|
---|
987 | */
|
---|
988 | protected Complex createComplex(double realPart, double imaginaryPart) {
|
---|
989 | return new Complex(realPart, imaginaryPart);
|
---|
990 | }
|
---|
991 |
|
---|
992 | /**
|
---|
993 | * <p>Resolve the transient fields in a deserialized Complex Object.</p>
|
---|
994 | * <p>Subclasses will need to override {@link #createComplex} to deserialize properly</p>
|
---|
995 | * @return A Complex instance with all fields resolved.
|
---|
996 | * @since 2.0
|
---|
997 | */
|
---|
998 | protected final Object readResolve() {
|
---|
999 | return createComplex(real, imaginary);
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | /** {@inheritDoc} */
|
---|
1003 | public ComplexField getField() {
|
---|
1004 | return ComplexField.getInstance();
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | }
|
---|