1 | package agents.anac.y2019.sacra;
|
---|
2 |
|
---|
3 | import agents.anac.y2019.sacra.yacomponents.BidUtilComparator;
|
---|
4 | import agents.anac.y2019.sacra.yacomponents.BidUtility;
|
---|
5 | import genius.core.AgentID;
|
---|
6 | import genius.core.Bid;
|
---|
7 | import genius.core.actions.Accept;
|
---|
8 | import genius.core.actions.Action;
|
---|
9 | import genius.core.actions.Offer;
|
---|
10 | import genius.core.issue.IssueDiscrete;
|
---|
11 | import genius.core.issue.ValueDiscrete;
|
---|
12 | import genius.core.parties.AbstractNegotiationParty;
|
---|
13 | import genius.core.parties.NegotiationInfo;
|
---|
14 | import genius.core.uncertainty.AdditiveUtilitySpaceFactory;
|
---|
15 | import genius.core.uncertainty.BidRanking;
|
---|
16 | import genius.core.utility.AbstractUtilitySpace;
|
---|
17 | import genius.core.utility.AdditiveUtilitySpace;
|
---|
18 | import genius.core.utility.EvaluatorDiscrete;
|
---|
19 |
|
---|
20 | import java.util.*;
|
---|
21 |
|
---|
22 | public class SACRA extends AbstractNegotiationParty {
|
---|
23 | private final boolean DEBUG = false;
|
---|
24 | private final static int DEFAULT_NUMBER_OF_CANDIDATES = 20000;
|
---|
25 | private final double TEMPERATURE_ALPHA = 0.5;
|
---|
26 | private final int SA_NUMBER_OF_ITERATION = 10000;
|
---|
27 | private final double NEIGHBOR_WEIGHT_RANGE = 0.1;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * Determines the ratio of weight change in the process of generating a neighbor utility space
|
---|
31 | */
|
---|
32 | private final double NEIGHBOR_CHANGE_RATIO = 0.5;
|
---|
33 |
|
---|
34 | protected int numberOfCandidates = -1;
|
---|
35 | protected List<BidUtility> candidateOffers;
|
---|
36 | private Bid firstReceivedBid = null;
|
---|
37 | private Bid lastReceivedBid = null;
|
---|
38 |
|
---|
39 | public void init(NegotiationInfo info) {
|
---|
40 | Set<BidUtility> candidateSet;
|
---|
41 | super.init(info);
|
---|
42 |
|
---|
43 | if (numberOfCandidates < 0)
|
---|
44 | numberOfCandidates = DEFAULT_NUMBER_OF_CANDIDATES;
|
---|
45 |
|
---|
46 | this.candidateOffers = new ArrayList<>();
|
---|
47 | for (int i = 0; i < numberOfCandidates; i++)
|
---|
48 | candidateOffers.add(generateRandomBidUtility());
|
---|
49 |
|
---|
50 | candidateSet = new HashSet<>(candidateOffers);
|
---|
51 | candidateOffers = new ArrayList<>(candidateSet);
|
---|
52 | candidateOffers.sort(new BidUtilComparator().reversed());
|
---|
53 | }
|
---|
54 |
|
---|
55 | @Override
|
---|
56 | public void receiveMessage(AgentID sender, Action action) {
|
---|
57 | super.receiveMessage(sender, action);
|
---|
58 | if (action instanceof Offer) {
|
---|
59 | Bid bid = ((Offer)action).getBid();
|
---|
60 | if (firstReceivedBid == null)
|
---|
61 | firstReceivedBid = bid;
|
---|
62 | lastReceivedBid = bid;
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 | @Override
|
---|
67 | public Action chooseAction(List<Class<? extends Action>> possibleActions) {
|
---|
68 | double concessionRate;
|
---|
69 | double targetUtility;
|
---|
70 | double acceptProbability;
|
---|
71 | Bid maxUtilityBid;
|
---|
72 | Bid offerBid;
|
---|
73 |
|
---|
74 | try {
|
---|
75 | maxUtilityBid = utilitySpace.getMaxUtilityBid();
|
---|
76 | }
|
---|
77 | catch (Exception e) {
|
---|
78 | maxUtilityBid = getNearestCandidate(1);
|
---|
79 | }
|
---|
80 |
|
---|
81 | if (lastReceivedBid == null || firstReceivedBid == null) {
|
---|
82 | return new Offer(getPartyId(), maxUtilityBid);
|
---|
83 | }
|
---|
84 |
|
---|
85 | concessionRate = Math.max(0, utilitySpace.getUtility(lastReceivedBid) - utilitySpace.getUtility(firstReceivedBid))
|
---|
86 | / utilitySpace.getUtility(maxUtilityBid) * 0.7;
|
---|
87 | targetUtility = utilitySpace.getUtility(maxUtilityBid) - concessionRate;
|
---|
88 | acceptProbability = (utilitySpace.getUtility(lastReceivedBid) - targetUtility)
|
---|
89 | / (utilitySpace.getUtility(maxUtilityBid) - targetUtility);
|
---|
90 |
|
---|
91 | if (DEBUG)
|
---|
92 | System.out.printf("EstimatedUtil: %.3f, concessionRate: %.3f, targetUtil: %.3f, acceptProb: %.3f\n",
|
---|
93 | utilitySpace.getUtility(lastReceivedBid),
|
---|
94 | concessionRate,
|
---|
95 | targetUtility,
|
---|
96 | acceptProbability);
|
---|
97 |
|
---|
98 | if (this.rand.nextDouble() < acceptProbability) {
|
---|
99 | return new Accept(getPartyId(), lastReceivedBid);
|
---|
100 | }
|
---|
101 |
|
---|
102 | offerBid = this.getCandidateAboveUtil(targetUtility);
|
---|
103 | return new Offer(getPartyId(), offerBid);
|
---|
104 | }
|
---|
105 |
|
---|
106 | @Override
|
---|
107 | public String getDescription() {
|
---|
108 | return "Simulated Annealing-based Concession Rate controlling Agent";
|
---|
109 | }
|
---|
110 |
|
---|
111 | @Override
|
---|
112 | public AbstractUtilitySpace estimateUtilitySpace() {
|
---|
113 | AdditiveUtilitySpace currentUtilitySpace = generateRandomUtilitySpace();
|
---|
114 | double currentEnergy = getEnergy(currentUtilitySpace);
|
---|
115 |
|
---|
116 | AdditiveUtilitySpace nextUtilitySpace;
|
---|
117 | double nextEnergy;
|
---|
118 |
|
---|
119 | AdditiveUtilitySpace bestUtilitySpace = currentUtilitySpace;
|
---|
120 | double bestEnergy = currentEnergy;
|
---|
121 |
|
---|
122 | for (int nIteration = 0; nIteration < SA_NUMBER_OF_ITERATION; nIteration++) {
|
---|
123 | nextUtilitySpace = generateNeighborUtilitySpace(currentUtilitySpace);
|
---|
124 | nextEnergy = getEnergy(nextUtilitySpace);
|
---|
125 |
|
---|
126 | if (nextEnergy < bestEnergy) {
|
---|
127 | bestUtilitySpace = nextUtilitySpace;
|
---|
128 | bestEnergy = nextEnergy;
|
---|
129 | }
|
---|
130 |
|
---|
131 | if (this.rand.nextDouble() > getOverrideProbability(
|
---|
132 | currentEnergy, nextEnergy, getTemperature(nIteration / SA_NUMBER_OF_ITERATION))) {
|
---|
133 | currentUtilitySpace = nextUtilitySpace;
|
---|
134 | currentEnergy = nextEnergy;
|
---|
135 | }
|
---|
136 | }
|
---|
137 |
|
---|
138 | return bestUtilitySpace;
|
---|
139 | }
|
---|
140 |
|
---|
141 | /** Returns "energy" of the additive utility space (Lower is better)
|
---|
142 | * @param additiveUtilitySpace
|
---|
143 | * @return energy
|
---|
144 | */
|
---|
145 | private double getEnergy(AdditiveUtilitySpace additiveUtilitySpace) {
|
---|
146 | return -getAdditiveUtilitySpaceScore(additiveUtilitySpace);
|
---|
147 | }
|
---|
148 |
|
---|
149 | /**
|
---|
150 | * Returns score of the additive utility space (Higher is better)
|
---|
151 | * @param additiveUtilitySpace
|
---|
152 | * @return score
|
---|
153 | */
|
---|
154 | private double getAdditiveUtilitySpaceScore(AdditiveUtilitySpace additiveUtilitySpace) {
|
---|
155 | BidRanking bidRank = this.userModel.getBidRanking();
|
---|
156 | Map<Bid, Integer> realRanks = new HashMap();
|
---|
157 | List<Double> estimatedUtils = new ArrayList();
|
---|
158 | Map<Bid, Integer> estimatedRanks = new HashMap();
|
---|
159 |
|
---|
160 | for (Bid bid : bidRank.getBidOrder()) {
|
---|
161 | realRanks.put(bid, realRanks.size());
|
---|
162 | estimatedUtils.add(additiveUtilitySpace.getUtility(bid));
|
---|
163 | }
|
---|
164 | Collections.sort(estimatedUtils);
|
---|
165 |
|
---|
166 | for (Bid bid : bidRank.getBidOrder()) {
|
---|
167 | estimatedRanks.put(bid, estimatedUtils.indexOf(additiveUtilitySpace.getUtility(bid)));
|
---|
168 | }
|
---|
169 |
|
---|
170 | double errors = 0.0D;
|
---|
171 |
|
---|
172 | for (Bid bid : bidRank.getBidOrder()) {
|
---|
173 | errors += Math.pow((double)(realRanks.get(bid) - estimatedRanks.get(bid)), 2);
|
---|
174 | }
|
---|
175 |
|
---|
176 | double spearman = 1.0D - 6.0D * errors / (Math.pow((double)realRanks.size(), 3.0D) - (double)realRanks.size());
|
---|
177 | double lowDiff = Math.abs(bidRank.getLowUtility() - additiveUtilitySpace.getUtility(bidRank.getMinimalBid()));
|
---|
178 | double highDiff = Math.abs(bidRank.getHighUtility() - additiveUtilitySpace.getUtility(bidRank.getMaximalBid()));
|
---|
179 |
|
---|
180 | return spearman * 10.0D + (1.0D - lowDiff) + (1.0D - highDiff);
|
---|
181 | }
|
---|
182 |
|
---|
183 | private double getTemperature(double r) {
|
---|
184 | return Math.pow(TEMPERATURE_ALPHA, r);
|
---|
185 | }
|
---|
186 |
|
---|
187 | private double getOverrideProbability(double oldEnergy, double newEnergy, double temperature) {
|
---|
188 | if (newEnergy <= oldEnergy)
|
---|
189 | return 1.0;
|
---|
190 | return Math.exp((oldEnergy - newEnergy) / temperature);
|
---|
191 | }
|
---|
192 |
|
---|
193 | /**
|
---|
194 | * Generate a neighbor of baseUtilitySpace (only a weight or a value of an issue is changed)
|
---|
195 | * @param baseUtilitySpace
|
---|
196 | * @return neighborUtilitySpace
|
---|
197 | */
|
---|
198 | private AdditiveUtilitySpace generateNeighborUtilitySpace(AdditiveUtilitySpace baseUtilitySpace) {
|
---|
199 | AdditiveUtilitySpaceFactory neighborFactory = new AdditiveUtilitySpaceFactory(this.getDomain());
|
---|
200 | List<IssueDiscrete> issueList = neighborFactory.getIssues();
|
---|
201 | IssueDiscrete targetIssue = issueList.get(this.rand.nextInt(issueList.size()));
|
---|
202 | boolean isChangeWeight = this.rand.nextDouble() < NEIGHBOR_CHANGE_RATIO;
|
---|
203 |
|
---|
204 | for (IssueDiscrete issue : neighborFactory.getIssues()) {
|
---|
205 | neighborFactory.setWeight(issue, baseUtilitySpace.getWeight(issue));
|
---|
206 |
|
---|
207 | for (ValueDiscrete value : issue.getValues()) {
|
---|
208 | neighborFactory.setUtility(issue, value,
|
---|
209 | ((EvaluatorDiscrete)baseUtilitySpace.getEvaluator(issue)).getDoubleValue(value));
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | if (isChangeWeight) {
|
---|
214 | neighborFactory.setWeight(targetIssue,
|
---|
215 | Math.max(0, baseUtilitySpace.getWeight(targetIssue)
|
---|
216 | + (this.rand.nextDouble() - 0.5) * NEIGHBOR_WEIGHT_RANGE / issueList.size()));
|
---|
217 | } else {
|
---|
218 | ValueDiscrete targetValue = targetIssue.getValue(this.rand.nextInt(targetIssue.getNumberOfValues()));
|
---|
219 | double evaluatedValue = ((EvaluatorDiscrete)baseUtilitySpace.getEvaluator(targetIssue)).getDoubleValue(targetValue);
|
---|
220 |
|
---|
221 | neighborFactory.setUtility(targetIssue, targetValue,
|
---|
222 | Math.max(0, evaluatedValue * (1 + (this.rand.nextDouble() - 0.5) * NEIGHBOR_WEIGHT_RANGE)));
|
---|
223 | }
|
---|
224 |
|
---|
225 | neighborFactory.normalizeWeights();
|
---|
226 | return neighborFactory.getUtilitySpace();
|
---|
227 | }
|
---|
228 |
|
---|
229 | private AdditiveUtilitySpace generateRandomUtilitySpace() {
|
---|
230 | AdditiveUtilitySpaceFactory randomFactory = new AdditiveUtilitySpaceFactory(this.getDomain());
|
---|
231 |
|
---|
232 | for (IssueDiscrete issue : randomFactory.getIssues()){
|
---|
233 | randomFactory.setWeight(issue, this.rand.nextDouble());
|
---|
234 | for (ValueDiscrete value : issue.getValues()) {
|
---|
235 | randomFactory.setUtility(issue, value, this.rand.nextDouble());
|
---|
236 | }
|
---|
237 | }
|
---|
238 |
|
---|
239 | randomFactory.normalizeWeights();
|
---|
240 | return randomFactory.getUtilitySpace();
|
---|
241 | }
|
---|
242 |
|
---|
243 | protected BidUtility generateRandomBidUtility() {
|
---|
244 | return new BidUtility(generateRandomBid(), utilitySpace);
|
---|
245 | }
|
---|
246 |
|
---|
247 | protected Bid getNearestCandidate(double util) {
|
---|
248 | int index = getNearestCandidateIndex(util);
|
---|
249 | return candidateOffers.get(index).getBid();
|
---|
250 | }
|
---|
251 |
|
---|
252 | protected Bid getCandidateAboveUtil(double util) {
|
---|
253 | int maxIndex = getNearestCandidateIndex(util);
|
---|
254 | int index = this.rand.nextInt(maxIndex);
|
---|
255 | return candidateOffers.get(index).getBid();
|
---|
256 | }
|
---|
257 |
|
---|
258 | protected int getNearestCandidateIndex(double util) {
|
---|
259 | int index;
|
---|
260 | int rangeMin = 0;
|
---|
261 | int rangeMax = candidateOffers.size() - 1;
|
---|
262 |
|
---|
263 | do {
|
---|
264 | index = rangeMin + (rangeMax - rangeMin) / 2;
|
---|
265 | if (util < candidateOffers.get(index).getUtil())
|
---|
266 | rangeMin = index;
|
---|
267 | else
|
---|
268 | rangeMax = index;
|
---|
269 | } while (rangeMax - rangeMin > 1);
|
---|
270 |
|
---|
271 | return index;
|
---|
272 | }
|
---|
273 |
|
---|
274 | }
|
---|