1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.util;
|
---|
18 |
|
---|
19 | import java.io.PrintStream;
|
---|
20 |
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.MathArithmeticException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * Faster, more accurate, portable alternative to {@link Math} and
|
---|
26 | * {@link StrictMath} for large scale computation.
|
---|
27 | * <p>
|
---|
28 | * FastMath is a drop-in replacement for both Math and StrictMath. This
|
---|
29 | * means that for any method in Math (say {@code Math.sin(x)} or
|
---|
30 | * {@code Math.cbrt(y)}), user can directly change the class and use the
|
---|
31 | * methods as is (using {@code FastMath.sin(x)} or {@code FastMath.cbrt(y)}
|
---|
32 | * in the previous example).
|
---|
33 | * </p>
|
---|
34 | * <p>
|
---|
35 | * FastMath speed is achieved by relying heavily on optimizing compilers
|
---|
36 | * to native code present in many JVMs today and use of large tables.
|
---|
37 | * The larger tables are lazily initialised on first use, so that the setup
|
---|
38 | * time does not penalise methods that don't need them.
|
---|
39 | * </p>
|
---|
40 | * <p>
|
---|
41 | * Note that FastMath is
|
---|
42 | * extensively used inside Apache Commons Math, so by calling some algorithms,
|
---|
43 | * the overhead when the the tables need to be intialised will occur
|
---|
44 | * regardless of the end-user calling FastMath methods directly or not.
|
---|
45 | * Performance figures for a specific JVM and hardware can be evaluated by
|
---|
46 | * running the FastMathTestPerformance tests in the test directory of the source
|
---|
47 | * distribution.
|
---|
48 | * </p>
|
---|
49 | * <p>
|
---|
50 | * FastMath accuracy should be mostly independent of the JVM as it relies only
|
---|
51 | * on IEEE-754 basic operations and on embedded tables. Almost all operations
|
---|
52 | * are accurate to about 0.5 ulp throughout the domain range. This statement,
|
---|
53 | * of course is only a rough global observed behavior, it is <em>not</em> a
|
---|
54 | * guarantee for <em>every</em> double numbers input (see William Kahan's <a
|
---|
55 | * href="http://en.wikipedia.org/wiki/Rounding#The_table-maker.27s_dilemma">Table
|
---|
56 | * Maker's Dilemma</a>).
|
---|
57 | * </p>
|
---|
58 | * <p>
|
---|
59 | * FastMath additionally implements the following methods not found in Math/StrictMath:
|
---|
60 | * <ul>
|
---|
61 | * <li>{@link #asinh(double)}</li>
|
---|
62 | * <li>{@link #acosh(double)}</li>
|
---|
63 | * <li>{@link #atanh(double)}</li>
|
---|
64 | * </ul>
|
---|
65 | * The following methods are found in Math/StrictMath since 1.6 only, they are provided
|
---|
66 | * by FastMath even in 1.5 Java virtual machines
|
---|
67 | * <ul>
|
---|
68 | * <li>{@link #copySign(double, double)}</li>
|
---|
69 | * <li>{@link #getExponent(double)}</li>
|
---|
70 | * <li>{@link #nextAfter(double,double)}</li>
|
---|
71 | * <li>{@link #nextUp(double)}</li>
|
---|
72 | * <li>{@link #scalb(double, int)}</li>
|
---|
73 | * <li>{@link #copySign(float, float)}</li>
|
---|
74 | * <li>{@link #getExponent(float)}</li>
|
---|
75 | * <li>{@link #nextAfter(float,double)}</li>
|
---|
76 | * <li>{@link #nextUp(float)}</li>
|
---|
77 | * <li>{@link #scalb(float, int)}</li>
|
---|
78 | * </ul>
|
---|
79 | * </p>
|
---|
80 | * @since 2.2
|
---|
81 | */
|
---|
82 | public class FastMath {
|
---|
83 | /** Archimede's constant PI, ratio of circle circumference to diameter. */
|
---|
84 | public static final double PI = 105414357.0 / 33554432.0 + 1.984187159361080883e-9;
|
---|
85 |
|
---|
86 | /** Napier's constant e, base of the natural logarithm. */
|
---|
87 | public static final double E = 2850325.0 / 1048576.0 + 8.254840070411028747e-8;
|
---|
88 |
|
---|
89 | /** Index of exp(0) in the array of integer exponentials. */
|
---|
90 | static final int EXP_INT_TABLE_MAX_INDEX = 750;
|
---|
91 | /** Length of the array of integer exponentials. */
|
---|
92 | static final int EXP_INT_TABLE_LEN = EXP_INT_TABLE_MAX_INDEX * 2;
|
---|
93 | /** Logarithm table length. */
|
---|
94 | static final int LN_MANT_LEN = 1024;
|
---|
95 | /** Exponential fractions table length. */
|
---|
96 | static final int EXP_FRAC_TABLE_LEN = 1025; // 0, 1/1024, ... 1024/1024
|
---|
97 |
|
---|
98 | /** StrictMath.log(Double.MAX_VALUE): {@value} */
|
---|
99 | private static final double LOG_MAX_VALUE = StrictMath.log(Double.MAX_VALUE);
|
---|
100 |
|
---|
101 | /** Indicator for tables initialization.
|
---|
102 | * <p>
|
---|
103 | * This compile-time constant should be set to true only if one explicitly
|
---|
104 | * wants to compute the tables at class loading time instead of using the
|
---|
105 | * already computed ones provided as literal arrays below.
|
---|
106 | * </p>
|
---|
107 | */
|
---|
108 | private static final boolean RECOMPUTE_TABLES_AT_RUNTIME = false;
|
---|
109 |
|
---|
110 | /** log(2) (high bits). */
|
---|
111 | private static final double LN_2_A = 0.693147063255310059;
|
---|
112 |
|
---|
113 | /** log(2) (low bits). */
|
---|
114 | private static final double LN_2_B = 1.17304635250823482e-7;
|
---|
115 |
|
---|
116 | /** Coefficients for log, when input 0.99 < x < 1.01. */
|
---|
117 | private static final double LN_QUICK_COEF[][] = {
|
---|
118 | {1.0, 5.669184079525E-24},
|
---|
119 | {-0.25, -0.25},
|
---|
120 | {0.3333333134651184, 1.986821492305628E-8},
|
---|
121 | {-0.25, -6.663542893624021E-14},
|
---|
122 | {0.19999998807907104, 1.1921056801463227E-8},
|
---|
123 | {-0.1666666567325592, -7.800414592973399E-9},
|
---|
124 | {0.1428571343421936, 5.650007086920087E-9},
|
---|
125 | {-0.12502530217170715, -7.44321345601866E-11},
|
---|
126 | {0.11113807559013367, 9.219544613762692E-9},
|
---|
127 | };
|
---|
128 |
|
---|
129 | /** Coefficients for log in the range of 1.0 < x < 1.0 + 2^-10. */
|
---|
130 | private static final double LN_HI_PREC_COEF[][] = {
|
---|
131 | {1.0, -6.032174644509064E-23},
|
---|
132 | {-0.25, -0.25},
|
---|
133 | {0.3333333134651184, 1.9868161777724352E-8},
|
---|
134 | {-0.2499999701976776, -2.957007209750105E-8},
|
---|
135 | {0.19999954104423523, 1.5830993332061267E-10},
|
---|
136 | {-0.16624879837036133, -2.6033824355191673E-8}
|
---|
137 | };
|
---|
138 |
|
---|
139 | /** Sine, Cosine, Tangent tables are for 0, 1/8, 2/8, ... 13/8 = PI/2 approx. */
|
---|
140 | private static final int SINE_TABLE_LEN = 14;
|
---|
141 |
|
---|
142 | /** Sine table (high bits). */
|
---|
143 | private static final double SINE_TABLE_A[] =
|
---|
144 | {
|
---|
145 | +0.0d,
|
---|
146 | +0.1246747374534607d,
|
---|
147 | +0.24740394949913025d,
|
---|
148 | +0.366272509098053d,
|
---|
149 | +0.4794255495071411d,
|
---|
150 | +0.5850973129272461d,
|
---|
151 | +0.6816387176513672d,
|
---|
152 | +0.7675435543060303d,
|
---|
153 | +0.8414709568023682d,
|
---|
154 | +0.902267575263977d,
|
---|
155 | +0.9489846229553223d,
|
---|
156 | +0.9808930158615112d,
|
---|
157 | +0.9974949359893799d,
|
---|
158 | +0.9985313415527344d,
|
---|
159 | };
|
---|
160 |
|
---|
161 | /** Sine table (low bits). */
|
---|
162 | private static final double SINE_TABLE_B[] =
|
---|
163 | {
|
---|
164 | +0.0d,
|
---|
165 | -4.068233003401932E-9d,
|
---|
166 | +9.755392680573412E-9d,
|
---|
167 | +1.9987994582857286E-8d,
|
---|
168 | -1.0902938113007961E-8d,
|
---|
169 | -3.9986783938944604E-8d,
|
---|
170 | +4.23719669792332E-8d,
|
---|
171 | -5.207000323380292E-8d,
|
---|
172 | +2.800552834259E-8d,
|
---|
173 | +1.883511811213715E-8d,
|
---|
174 | -3.5997360512765566E-9d,
|
---|
175 | +4.116164446561962E-8d,
|
---|
176 | +5.0614674548127384E-8d,
|
---|
177 | -1.0129027912496858E-9d,
|
---|
178 | };
|
---|
179 |
|
---|
180 | /** Cosine table (high bits). */
|
---|
181 | private static final double COSINE_TABLE_A[] =
|
---|
182 | {
|
---|
183 | +1.0d,
|
---|
184 | +0.9921976327896118d,
|
---|
185 | +0.9689123630523682d,
|
---|
186 | +0.9305076599121094d,
|
---|
187 | +0.8775825500488281d,
|
---|
188 | +0.8109631538391113d,
|
---|
189 | +0.7316888570785522d,
|
---|
190 | +0.6409968137741089d,
|
---|
191 | +0.5403022766113281d,
|
---|
192 | +0.4311765432357788d,
|
---|
193 | +0.3153223395347595d,
|
---|
194 | +0.19454771280288696d,
|
---|
195 | +0.07073719799518585d,
|
---|
196 | -0.05417713522911072d,
|
---|
197 | };
|
---|
198 |
|
---|
199 | /** Cosine table (low bits). */
|
---|
200 | private static final double COSINE_TABLE_B[] =
|
---|
201 | {
|
---|
202 | +0.0d,
|
---|
203 | +3.4439717236742845E-8d,
|
---|
204 | +5.865827662008209E-8d,
|
---|
205 | -3.7999795083850525E-8d,
|
---|
206 | +1.184154459111628E-8d,
|
---|
207 | -3.43338934259355E-8d,
|
---|
208 | +1.1795268640216787E-8d,
|
---|
209 | +4.438921624363781E-8d,
|
---|
210 | +2.925681159240093E-8d,
|
---|
211 | -2.6437112632041807E-8d,
|
---|
212 | +2.2860509143963117E-8d,
|
---|
213 | -4.813899778443457E-9d,
|
---|
214 | +3.6725170580355583E-9d,
|
---|
215 | +2.0217439756338078E-10d,
|
---|
216 | };
|
---|
217 |
|
---|
218 |
|
---|
219 | /** Tangent table, used by atan() (high bits). */
|
---|
220 | private static final double TANGENT_TABLE_A[] =
|
---|
221 | {
|
---|
222 | +0.0d,
|
---|
223 | +0.1256551444530487d,
|
---|
224 | +0.25534194707870483d,
|
---|
225 | +0.3936265707015991d,
|
---|
226 | +0.5463024377822876d,
|
---|
227 | +0.7214844226837158d,
|
---|
228 | +0.9315965175628662d,
|
---|
229 | +1.1974215507507324d,
|
---|
230 | +1.5574076175689697d,
|
---|
231 | +2.092571258544922d,
|
---|
232 | +3.0095696449279785d,
|
---|
233 | +5.041914939880371d,
|
---|
234 | +14.101419448852539d,
|
---|
235 | -18.430862426757812d,
|
---|
236 | };
|
---|
237 |
|
---|
238 | /** Tangent table, used by atan() (low bits). */
|
---|
239 | private static final double TANGENT_TABLE_B[] =
|
---|
240 | {
|
---|
241 | +0.0d,
|
---|
242 | -7.877917738262007E-9d,
|
---|
243 | -2.5857668567479893E-8d,
|
---|
244 | +5.2240336371356666E-9d,
|
---|
245 | +5.206150291559893E-8d,
|
---|
246 | +1.8307188599677033E-8d,
|
---|
247 | -5.7618793749770706E-8d,
|
---|
248 | +7.848361555046424E-8d,
|
---|
249 | +1.0708593250394448E-7d,
|
---|
250 | +1.7827257129423813E-8d,
|
---|
251 | +2.893485277253286E-8d,
|
---|
252 | +3.1660099222737955E-7d,
|
---|
253 | +4.983191803254889E-7d,
|
---|
254 | -3.356118100840571E-7d,
|
---|
255 | };
|
---|
256 |
|
---|
257 | /** Bits of 1/(2*pi), need for reducePayneHanek(). */
|
---|
258 | private static final long RECIP_2PI[] = new long[] {
|
---|
259 | (0x28be60dbL << 32) | 0x9391054aL,
|
---|
260 | (0x7f09d5f4L << 32) | 0x7d4d3770L,
|
---|
261 | (0x36d8a566L << 32) | 0x4f10e410L,
|
---|
262 | (0x7f9458eaL << 32) | 0xf7aef158L,
|
---|
263 | (0x6dc91b8eL << 32) | 0x909374b8L,
|
---|
264 | (0x01924bbaL << 32) | 0x82746487L,
|
---|
265 | (0x3f877ac7L << 32) | 0x2c4a69cfL,
|
---|
266 | (0xba208d7dL << 32) | 0x4baed121L,
|
---|
267 | (0x3a671c09L << 32) | 0xad17df90L,
|
---|
268 | (0x4e64758eL << 32) | 0x60d4ce7dL,
|
---|
269 | (0x272117e2L << 32) | 0xef7e4a0eL,
|
---|
270 | (0xc7fe25ffL << 32) | 0xf7816603L,
|
---|
271 | (0xfbcbc462L << 32) | 0xd6829b47L,
|
---|
272 | (0xdb4d9fb3L << 32) | 0xc9f2c26dL,
|
---|
273 | (0xd3d18fd9L << 32) | 0xa797fa8bL,
|
---|
274 | (0x5d49eeb1L << 32) | 0xfaf97c5eL,
|
---|
275 | (0xcf41ce7dL << 32) | 0xe294a4baL,
|
---|
276 | 0x9afed7ecL << 32 };
|
---|
277 |
|
---|
278 | /** Bits of pi/4, need for reducePayneHanek(). */
|
---|
279 | private static final long PI_O_4_BITS[] = new long[] {
|
---|
280 | (0xc90fdaa2L << 32) | 0x2168c234L,
|
---|
281 | (0xc4c6628bL << 32) | 0x80dc1cd1L };
|
---|
282 |
|
---|
283 | /** Eighths.
|
---|
284 | * This is used by sinQ, because its faster to do a table lookup than
|
---|
285 | * a multiply in this time-critical routine
|
---|
286 | */
|
---|
287 | private static final double EIGHTHS[] = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.125, 1.25, 1.375, 1.5, 1.625};
|
---|
288 |
|
---|
289 | /** Table of 2^((n+2)/3) */
|
---|
290 | private static final double CBRTTWO[] = { 0.6299605249474366,
|
---|
291 | 0.7937005259840998,
|
---|
292 | 1.0,
|
---|
293 | 1.2599210498948732,
|
---|
294 | 1.5874010519681994 };
|
---|
295 |
|
---|
296 | /*
|
---|
297 | * There are 52 bits in the mantissa of a double.
|
---|
298 | * For additional precision, the code splits double numbers into two parts,
|
---|
299 | * by clearing the low order 30 bits if possible, and then performs the arithmetic
|
---|
300 | * on each half separately.
|
---|
301 | */
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * 0x40000000 - used to split a double into two parts, both with the low order bits cleared.
|
---|
305 | * Equivalent to 2^30.
|
---|
306 | */
|
---|
307 | private static final long HEX_40000000 = 0x40000000L; // 1073741824L
|
---|
308 |
|
---|
309 | /** Mask used to clear low order 30 bits */
|
---|
310 | private static final long MASK_30BITS = -1L - (HEX_40000000 -1); // 0xFFFFFFFFC0000000L;
|
---|
311 |
|
---|
312 | /** Mask used to clear the non-sign part of an int. */
|
---|
313 | private static final int MASK_NON_SIGN_INT = 0x7fffffff;
|
---|
314 |
|
---|
315 | /** Mask used to clear the non-sign part of a long. */
|
---|
316 | private static final long MASK_NON_SIGN_LONG = 0x7fffffffffffffffl;
|
---|
317 |
|
---|
318 | /** Mask used to extract exponent from double bits. */
|
---|
319 | private static final long MASK_DOUBLE_EXPONENT = 0x7ff0000000000000L;
|
---|
320 |
|
---|
321 | /** Mask used to extract mantissa from double bits. */
|
---|
322 | private static final long MASK_DOUBLE_MANTISSA = 0x000fffffffffffffL;
|
---|
323 |
|
---|
324 | /** Mask used to add implicit high order bit for normalized double. */
|
---|
325 | private static final long IMPLICIT_HIGH_BIT = 0x0010000000000000L;
|
---|
326 |
|
---|
327 | /** 2^52 - double numbers this large must be integral (no fraction) or NaN or Infinite */
|
---|
328 | private static final double TWO_POWER_52 = 4503599627370496.0;
|
---|
329 |
|
---|
330 | /** Constant: {@value}. */
|
---|
331 | private static final double F_1_3 = 1d / 3d;
|
---|
332 | /** Constant: {@value}. */
|
---|
333 | private static final double F_1_5 = 1d / 5d;
|
---|
334 | /** Constant: {@value}. */
|
---|
335 | private static final double F_1_7 = 1d / 7d;
|
---|
336 | /** Constant: {@value}. */
|
---|
337 | private static final double F_1_9 = 1d / 9d;
|
---|
338 | /** Constant: {@value}. */
|
---|
339 | private static final double F_1_11 = 1d / 11d;
|
---|
340 | /** Constant: {@value}. */
|
---|
341 | private static final double F_1_13 = 1d / 13d;
|
---|
342 | /** Constant: {@value}. */
|
---|
343 | private static final double F_1_15 = 1d / 15d;
|
---|
344 | /** Constant: {@value}. */
|
---|
345 | private static final double F_1_17 = 1d / 17d;
|
---|
346 | /** Constant: {@value}. */
|
---|
347 | private static final double F_3_4 = 3d / 4d;
|
---|
348 | /** Constant: {@value}. */
|
---|
349 | private static final double F_15_16 = 15d / 16d;
|
---|
350 | /** Constant: {@value}. */
|
---|
351 | private static final double F_13_14 = 13d / 14d;
|
---|
352 | /** Constant: {@value}. */
|
---|
353 | private static final double F_11_12 = 11d / 12d;
|
---|
354 | /** Constant: {@value}. */
|
---|
355 | private static final double F_9_10 = 9d / 10d;
|
---|
356 | /** Constant: {@value}. */
|
---|
357 | private static final double F_7_8 = 7d / 8d;
|
---|
358 | /** Constant: {@value}. */
|
---|
359 | private static final double F_5_6 = 5d / 6d;
|
---|
360 | /** Constant: {@value}. */
|
---|
361 | private static final double F_1_2 = 1d / 2d;
|
---|
362 | /** Constant: {@value}. */
|
---|
363 | private static final double F_1_4 = 1d / 4d;
|
---|
364 |
|
---|
365 | /**
|
---|
366 | * Private Constructor
|
---|
367 | */
|
---|
368 | private FastMath() {}
|
---|
369 |
|
---|
370 | // Generic helper methods
|
---|
371 |
|
---|
372 | /**
|
---|
373 | * Get the high order bits from the mantissa.
|
---|
374 | * Equivalent to adding and subtracting HEX_40000 but also works for very large numbers
|
---|
375 | *
|
---|
376 | * @param d the value to split
|
---|
377 | * @return the high order part of the mantissa
|
---|
378 | */
|
---|
379 | private static double doubleHighPart(double d) {
|
---|
380 | if (d > -Precision.SAFE_MIN && d < Precision.SAFE_MIN){
|
---|
381 | return d; // These are un-normalised - don't try to convert
|
---|
382 | }
|
---|
383 | long xl = Double.doubleToRawLongBits(d); // can take raw bits because just gonna convert it back
|
---|
384 | xl &= MASK_30BITS; // Drop low order bits
|
---|
385 | return Double.longBitsToDouble(xl);
|
---|
386 | }
|
---|
387 |
|
---|
388 | /** Compute the square root of a number.
|
---|
389 | * <p><b>Note:</b> this implementation currently delegates to {@link Math#sqrt}
|
---|
390 | * @param a number on which evaluation is done
|
---|
391 | * @return square root of a
|
---|
392 | */
|
---|
393 | public static double sqrt(final double a) {
|
---|
394 | return Math.sqrt(a);
|
---|
395 | }
|
---|
396 |
|
---|
397 | /** Compute the hyperbolic cosine of a number.
|
---|
398 | * @param x number on which evaluation is done
|
---|
399 | * @return hyperbolic cosine of x
|
---|
400 | */
|
---|
401 | public static double cosh(double x) {
|
---|
402 | if (x != x) {
|
---|
403 | return x;
|
---|
404 | }
|
---|
405 |
|
---|
406 | // cosh[z] = (exp(z) + exp(-z))/2
|
---|
407 |
|
---|
408 | // for numbers with magnitude 20 or so,
|
---|
409 | // exp(-z) can be ignored in comparison with exp(z)
|
---|
410 |
|
---|
411 | if (x > 20) {
|
---|
412 | if (x >= LOG_MAX_VALUE) {
|
---|
413 | // Avoid overflow (MATH-905).
|
---|
414 | final double t = exp(0.5 * x);
|
---|
415 | return (0.5 * t) * t;
|
---|
416 | } else {
|
---|
417 | return 0.5 * exp(x);
|
---|
418 | }
|
---|
419 | } else if (x < -20) {
|
---|
420 | if (x <= -LOG_MAX_VALUE) {
|
---|
421 | // Avoid overflow (MATH-905).
|
---|
422 | final double t = exp(-0.5 * x);
|
---|
423 | return (0.5 * t) * t;
|
---|
424 | } else {
|
---|
425 | return 0.5 * exp(-x);
|
---|
426 | }
|
---|
427 | }
|
---|
428 |
|
---|
429 | final double hiPrec[] = new double[2];
|
---|
430 | if (x < 0.0) {
|
---|
431 | x = -x;
|
---|
432 | }
|
---|
433 | exp(x, 0.0, hiPrec);
|
---|
434 |
|
---|
435 | double ya = hiPrec[0] + hiPrec[1];
|
---|
436 | double yb = -(ya - hiPrec[0] - hiPrec[1]);
|
---|
437 |
|
---|
438 | double temp = ya * HEX_40000000;
|
---|
439 | double yaa = ya + temp - temp;
|
---|
440 | double yab = ya - yaa;
|
---|
441 |
|
---|
442 | // recip = 1/y
|
---|
443 | double recip = 1.0/ya;
|
---|
444 | temp = recip * HEX_40000000;
|
---|
445 | double recipa = recip + temp - temp;
|
---|
446 | double recipb = recip - recipa;
|
---|
447 |
|
---|
448 | // Correct for rounding in division
|
---|
449 | recipb += (1.0 - yaa*recipa - yaa*recipb - yab*recipa - yab*recipb) * recip;
|
---|
450 | // Account for yb
|
---|
451 | recipb += -yb * recip * recip;
|
---|
452 |
|
---|
453 | // y = y + 1/y
|
---|
454 | temp = ya + recipa;
|
---|
455 | yb += -(temp - ya - recipa);
|
---|
456 | ya = temp;
|
---|
457 | temp = ya + recipb;
|
---|
458 | yb += -(temp - ya - recipb);
|
---|
459 | ya = temp;
|
---|
460 |
|
---|
461 | double result = ya + yb;
|
---|
462 | result *= 0.5;
|
---|
463 | return result;
|
---|
464 | }
|
---|
465 |
|
---|
466 | /** Compute the hyperbolic sine of a number.
|
---|
467 | * @param x number on which evaluation is done
|
---|
468 | * @return hyperbolic sine of x
|
---|
469 | */
|
---|
470 | public static double sinh(double x) {
|
---|
471 | boolean negate = false;
|
---|
472 | if (x != x) {
|
---|
473 | return x;
|
---|
474 | }
|
---|
475 |
|
---|
476 | // sinh[z] = (exp(z) - exp(-z) / 2
|
---|
477 |
|
---|
478 | // for values of z larger than about 20,
|
---|
479 | // exp(-z) can be ignored in comparison with exp(z)
|
---|
480 |
|
---|
481 | if (x > 20) {
|
---|
482 | if (x >= LOG_MAX_VALUE) {
|
---|
483 | // Avoid overflow (MATH-905).
|
---|
484 | final double t = exp(0.5 * x);
|
---|
485 | return (0.5 * t) * t;
|
---|
486 | } else {
|
---|
487 | return 0.5 * exp(x);
|
---|
488 | }
|
---|
489 | } else if (x < -20) {
|
---|
490 | if (x <= -LOG_MAX_VALUE) {
|
---|
491 | // Avoid overflow (MATH-905).
|
---|
492 | final double t = exp(-0.5 * x);
|
---|
493 | return (-0.5 * t) * t;
|
---|
494 | } else {
|
---|
495 | return -0.5 * exp(-x);
|
---|
496 | }
|
---|
497 | }
|
---|
498 |
|
---|
499 | if (x == 0) {
|
---|
500 | return x;
|
---|
501 | }
|
---|
502 |
|
---|
503 | if (x < 0.0) {
|
---|
504 | x = -x;
|
---|
505 | negate = true;
|
---|
506 | }
|
---|
507 |
|
---|
508 | double result;
|
---|
509 |
|
---|
510 | if (x > 0.25) {
|
---|
511 | double hiPrec[] = new double[2];
|
---|
512 | exp(x, 0.0, hiPrec);
|
---|
513 |
|
---|
514 | double ya = hiPrec[0] + hiPrec[1];
|
---|
515 | double yb = -(ya - hiPrec[0] - hiPrec[1]);
|
---|
516 |
|
---|
517 | double temp = ya * HEX_40000000;
|
---|
518 | double yaa = ya + temp - temp;
|
---|
519 | double yab = ya - yaa;
|
---|
520 |
|
---|
521 | // recip = 1/y
|
---|
522 | double recip = 1.0/ya;
|
---|
523 | temp = recip * HEX_40000000;
|
---|
524 | double recipa = recip + temp - temp;
|
---|
525 | double recipb = recip - recipa;
|
---|
526 |
|
---|
527 | // Correct for rounding in division
|
---|
528 | recipb += (1.0 - yaa*recipa - yaa*recipb - yab*recipa - yab*recipb) * recip;
|
---|
529 | // Account for yb
|
---|
530 | recipb += -yb * recip * recip;
|
---|
531 |
|
---|
532 | recipa = -recipa;
|
---|
533 | recipb = -recipb;
|
---|
534 |
|
---|
535 | // y = y + 1/y
|
---|
536 | temp = ya + recipa;
|
---|
537 | yb += -(temp - ya - recipa);
|
---|
538 | ya = temp;
|
---|
539 | temp = ya + recipb;
|
---|
540 | yb += -(temp - ya - recipb);
|
---|
541 | ya = temp;
|
---|
542 |
|
---|
543 | result = ya + yb;
|
---|
544 | result *= 0.5;
|
---|
545 | }
|
---|
546 | else {
|
---|
547 | double hiPrec[] = new double[2];
|
---|
548 | expm1(x, hiPrec);
|
---|
549 |
|
---|
550 | double ya = hiPrec[0] + hiPrec[1];
|
---|
551 | double yb = -(ya - hiPrec[0] - hiPrec[1]);
|
---|
552 |
|
---|
553 | /* Compute expm1(-x) = -expm1(x) / (expm1(x) + 1) */
|
---|
554 | double denom = 1.0 + ya;
|
---|
555 | double denomr = 1.0 / denom;
|
---|
556 | double denomb = -(denom - 1.0 - ya) + yb;
|
---|
557 | double ratio = ya * denomr;
|
---|
558 | double temp = ratio * HEX_40000000;
|
---|
559 | double ra = ratio + temp - temp;
|
---|
560 | double rb = ratio - ra;
|
---|
561 |
|
---|
562 | temp = denom * HEX_40000000;
|
---|
563 | double za = denom + temp - temp;
|
---|
564 | double zb = denom - za;
|
---|
565 |
|
---|
566 | rb += (ya - za*ra - za*rb - zb*ra - zb*rb) * denomr;
|
---|
567 |
|
---|
568 | // Adjust for yb
|
---|
569 | rb += yb*denomr; // numerator
|
---|
570 | rb += -ya * denomb * denomr * denomr; // denominator
|
---|
571 |
|
---|
572 | // y = y - 1/y
|
---|
573 | temp = ya + ra;
|
---|
574 | yb += -(temp - ya - ra);
|
---|
575 | ya = temp;
|
---|
576 | temp = ya + rb;
|
---|
577 | yb += -(temp - ya - rb);
|
---|
578 | ya = temp;
|
---|
579 |
|
---|
580 | result = ya + yb;
|
---|
581 | result *= 0.5;
|
---|
582 | }
|
---|
583 |
|
---|
584 | if (negate) {
|
---|
585 | result = -result;
|
---|
586 | }
|
---|
587 |
|
---|
588 | return result;
|
---|
589 | }
|
---|
590 |
|
---|
591 | /** Compute the hyperbolic tangent of a number.
|
---|
592 | * @param x number on which evaluation is done
|
---|
593 | * @return hyperbolic tangent of x
|
---|
594 | */
|
---|
595 | public static double tanh(double x) {
|
---|
596 | boolean negate = false;
|
---|
597 |
|
---|
598 | if (x != x) {
|
---|
599 | return x;
|
---|
600 | }
|
---|
601 |
|
---|
602 | // tanh[z] = sinh[z] / cosh[z]
|
---|
603 | // = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
|
---|
604 | // = (exp(2x) - 1) / (exp(2x) + 1)
|
---|
605 |
|
---|
606 | // for magnitude > 20, sinh[z] == cosh[z] in double precision
|
---|
607 |
|
---|
608 | if (x > 20.0) {
|
---|
609 | return 1.0;
|
---|
610 | }
|
---|
611 |
|
---|
612 | if (x < -20) {
|
---|
613 | return -1.0;
|
---|
614 | }
|
---|
615 |
|
---|
616 | if (x == 0) {
|
---|
617 | return x;
|
---|
618 | }
|
---|
619 |
|
---|
620 | if (x < 0.0) {
|
---|
621 | x = -x;
|
---|
622 | negate = true;
|
---|
623 | }
|
---|
624 |
|
---|
625 | double result;
|
---|
626 | if (x >= 0.5) {
|
---|
627 | double hiPrec[] = new double[2];
|
---|
628 | // tanh(x) = (exp(2x) - 1) / (exp(2x) + 1)
|
---|
629 | exp(x*2.0, 0.0, hiPrec);
|
---|
630 |
|
---|
631 | double ya = hiPrec[0] + hiPrec[1];
|
---|
632 | double yb = -(ya - hiPrec[0] - hiPrec[1]);
|
---|
633 |
|
---|
634 | /* Numerator */
|
---|
635 | double na = -1.0 + ya;
|
---|
636 | double nb = -(na + 1.0 - ya);
|
---|
637 | double temp = na + yb;
|
---|
638 | nb += -(temp - na - yb);
|
---|
639 | na = temp;
|
---|
640 |
|
---|
641 | /* Denominator */
|
---|
642 | double da = 1.0 + ya;
|
---|
643 | double db = -(da - 1.0 - ya);
|
---|
644 | temp = da + yb;
|
---|
645 | db += -(temp - da - yb);
|
---|
646 | da = temp;
|
---|
647 |
|
---|
648 | temp = da * HEX_40000000;
|
---|
649 | double daa = da + temp - temp;
|
---|
650 | double dab = da - daa;
|
---|
651 |
|
---|
652 | // ratio = na/da
|
---|
653 | double ratio = na/da;
|
---|
654 | temp = ratio * HEX_40000000;
|
---|
655 | double ratioa = ratio + temp - temp;
|
---|
656 | double ratiob = ratio - ratioa;
|
---|
657 |
|
---|
658 | // Correct for rounding in division
|
---|
659 | ratiob += (na - daa*ratioa - daa*ratiob - dab*ratioa - dab*ratiob) / da;
|
---|
660 |
|
---|
661 | // Account for nb
|
---|
662 | ratiob += nb / da;
|
---|
663 | // Account for db
|
---|
664 | ratiob += -db * na / da / da;
|
---|
665 |
|
---|
666 | result = ratioa + ratiob;
|
---|
667 | }
|
---|
668 | else {
|
---|
669 | double hiPrec[] = new double[2];
|
---|
670 | // tanh(x) = expm1(2x) / (expm1(2x) + 2)
|
---|
671 | expm1(x*2.0, hiPrec);
|
---|
672 |
|
---|
673 | double ya = hiPrec[0] + hiPrec[1];
|
---|
674 | double yb = -(ya - hiPrec[0] - hiPrec[1]);
|
---|
675 |
|
---|
676 | /* Numerator */
|
---|
677 | double na = ya;
|
---|
678 | double nb = yb;
|
---|
679 |
|
---|
680 | /* Denominator */
|
---|
681 | double da = 2.0 + ya;
|
---|
682 | double db = -(da - 2.0 - ya);
|
---|
683 | double temp = da + yb;
|
---|
684 | db += -(temp - da - yb);
|
---|
685 | da = temp;
|
---|
686 |
|
---|
687 | temp = da * HEX_40000000;
|
---|
688 | double daa = da + temp - temp;
|
---|
689 | double dab = da - daa;
|
---|
690 |
|
---|
691 | // ratio = na/da
|
---|
692 | double ratio = na/da;
|
---|
693 | temp = ratio * HEX_40000000;
|
---|
694 | double ratioa = ratio + temp - temp;
|
---|
695 | double ratiob = ratio - ratioa;
|
---|
696 |
|
---|
697 | // Correct for rounding in division
|
---|
698 | ratiob += (na - daa*ratioa - daa*ratiob - dab*ratioa - dab*ratiob) / da;
|
---|
699 |
|
---|
700 | // Account for nb
|
---|
701 | ratiob += nb / da;
|
---|
702 | // Account for db
|
---|
703 | ratiob += -db * na / da / da;
|
---|
704 |
|
---|
705 | result = ratioa + ratiob;
|
---|
706 | }
|
---|
707 |
|
---|
708 | if (negate) {
|
---|
709 | result = -result;
|
---|
710 | }
|
---|
711 |
|
---|
712 | return result;
|
---|
713 | }
|
---|
714 |
|
---|
715 | /** Compute the inverse hyperbolic cosine of a number.
|
---|
716 | * @param a number on which evaluation is done
|
---|
717 | * @return inverse hyperbolic cosine of a
|
---|
718 | */
|
---|
719 | public static double acosh(final double a) {
|
---|
720 | return FastMath.log(a + FastMath.sqrt(a * a - 1));
|
---|
721 | }
|
---|
722 |
|
---|
723 | /** Compute the inverse hyperbolic sine of a number.
|
---|
724 | * @param a number on which evaluation is done
|
---|
725 | * @return inverse hyperbolic sine of a
|
---|
726 | */
|
---|
727 | public static double asinh(double a) {
|
---|
728 | boolean negative = false;
|
---|
729 | if (a < 0) {
|
---|
730 | negative = true;
|
---|
731 | a = -a;
|
---|
732 | }
|
---|
733 |
|
---|
734 | double absAsinh;
|
---|
735 | if (a > 0.167) {
|
---|
736 | absAsinh = FastMath.log(FastMath.sqrt(a * a + 1) + a);
|
---|
737 | } else {
|
---|
738 | final double a2 = a * a;
|
---|
739 | if (a > 0.097) {
|
---|
740 | absAsinh = a * (1 - a2 * (F_1_3 - a2 * (F_1_5 - a2 * (F_1_7 - a2 * (F_1_9 - a2 * (F_1_11 - a2 * (F_1_13 - a2 * (F_1_15 - a2 * F_1_17 * F_15_16) * F_13_14) * F_11_12) * F_9_10) * F_7_8) * F_5_6) * F_3_4) * F_1_2);
|
---|
741 | } else if (a > 0.036) {
|
---|
742 | absAsinh = a * (1 - a2 * (F_1_3 - a2 * (F_1_5 - a2 * (F_1_7 - a2 * (F_1_9 - a2 * (F_1_11 - a2 * F_1_13 * F_11_12) * F_9_10) * F_7_8) * F_5_6) * F_3_4) * F_1_2);
|
---|
743 | } else if (a > 0.0036) {
|
---|
744 | absAsinh = a * (1 - a2 * (F_1_3 - a2 * (F_1_5 - a2 * (F_1_7 - a2 * F_1_9 * F_7_8) * F_5_6) * F_3_4) * F_1_2);
|
---|
745 | } else {
|
---|
746 | absAsinh = a * (1 - a2 * (F_1_3 - a2 * F_1_5 * F_3_4) * F_1_2);
|
---|
747 | }
|
---|
748 | }
|
---|
749 |
|
---|
750 | return negative ? -absAsinh : absAsinh;
|
---|
751 | }
|
---|
752 |
|
---|
753 | /** Compute the inverse hyperbolic tangent of a number.
|
---|
754 | * @param a number on which evaluation is done
|
---|
755 | * @return inverse hyperbolic tangent of a
|
---|
756 | */
|
---|
757 | public static double atanh(double a) {
|
---|
758 | boolean negative = false;
|
---|
759 | if (a < 0) {
|
---|
760 | negative = true;
|
---|
761 | a = -a;
|
---|
762 | }
|
---|
763 |
|
---|
764 | double absAtanh;
|
---|
765 | if (a > 0.15) {
|
---|
766 | absAtanh = 0.5 * FastMath.log((1 + a) / (1 - a));
|
---|
767 | } else {
|
---|
768 | final double a2 = a * a;
|
---|
769 | if (a > 0.087) {
|
---|
770 | absAtanh = a * (1 + a2 * (F_1_3 + a2 * (F_1_5 + a2 * (F_1_7 + a2 * (F_1_9 + a2 * (F_1_11 + a2 * (F_1_13 + a2 * (F_1_15 + a2 * F_1_17))))))));
|
---|
771 | } else if (a > 0.031) {
|
---|
772 | absAtanh = a * (1 + a2 * (F_1_3 + a2 * (F_1_5 + a2 * (F_1_7 + a2 * (F_1_9 + a2 * (F_1_11 + a2 * F_1_13))))));
|
---|
773 | } else if (a > 0.003) {
|
---|
774 | absAtanh = a * (1 + a2 * (F_1_3 + a2 * (F_1_5 + a2 * (F_1_7 + a2 * F_1_9))));
|
---|
775 | } else {
|
---|
776 | absAtanh = a * (1 + a2 * (F_1_3 + a2 * F_1_5));
|
---|
777 | }
|
---|
778 | }
|
---|
779 |
|
---|
780 | return negative ? -absAtanh : absAtanh;
|
---|
781 | }
|
---|
782 |
|
---|
783 | /** Compute the signum of a number.
|
---|
784 | * The signum is -1 for negative numbers, +1 for positive numbers and 0 otherwise
|
---|
785 | * @param a number on which evaluation is done
|
---|
786 | * @return -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
|
---|
787 | */
|
---|
788 | public static double signum(final double a) {
|
---|
789 | return (a < 0.0) ? -1.0 : ((a > 0.0) ? 1.0 : a); // return +0.0/-0.0/NaN depending on a
|
---|
790 | }
|
---|
791 |
|
---|
792 | /** Compute the signum of a number.
|
---|
793 | * The signum is -1 for negative numbers, +1 for positive numbers and 0 otherwise
|
---|
794 | * @param a number on which evaluation is done
|
---|
795 | * @return -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
|
---|
796 | */
|
---|
797 | public static float signum(final float a) {
|
---|
798 | return (a < 0.0f) ? -1.0f : ((a > 0.0f) ? 1.0f : a); // return +0.0/-0.0/NaN depending on a
|
---|
799 | }
|
---|
800 |
|
---|
801 | /** Compute next number towards positive infinity.
|
---|
802 | * @param a number to which neighbor should be computed
|
---|
803 | * @return neighbor of a towards positive infinity
|
---|
804 | */
|
---|
805 | public static double nextUp(final double a) {
|
---|
806 | return nextAfter(a, Double.POSITIVE_INFINITY);
|
---|
807 | }
|
---|
808 |
|
---|
809 | /** Compute next number towards positive infinity.
|
---|
810 | * @param a number to which neighbor should be computed
|
---|
811 | * @return neighbor of a towards positive infinity
|
---|
812 | */
|
---|
813 | public static float nextUp(final float a) {
|
---|
814 | return nextAfter(a, Float.POSITIVE_INFINITY);
|
---|
815 | }
|
---|
816 |
|
---|
817 | /** Compute next number towards negative infinity.
|
---|
818 | * @param a number to which neighbor should be computed
|
---|
819 | * @return neighbor of a towards negative infinity
|
---|
820 | * @since 3.4
|
---|
821 | */
|
---|
822 | public static double nextDown(final double a) {
|
---|
823 | return nextAfter(a, Double.NEGATIVE_INFINITY);
|
---|
824 | }
|
---|
825 |
|
---|
826 | /** Compute next number towards negative infinity.
|
---|
827 | * @param a number to which neighbor should be computed
|
---|
828 | * @return neighbor of a towards negative infinity
|
---|
829 | * @since 3.4
|
---|
830 | */
|
---|
831 | public static float nextDown(final float a) {
|
---|
832 | return nextAfter(a, Float.NEGATIVE_INFINITY);
|
---|
833 | }
|
---|
834 |
|
---|
835 | /** Returns a pseudo-random number between 0.0 and 1.0.
|
---|
836 | * <p><b>Note:</b> this implementation currently delegates to {@link Math#random}
|
---|
837 | * @return a random number between 0.0 and 1.0
|
---|
838 | */
|
---|
839 | public static double random() {
|
---|
840 | return Math.random();
|
---|
841 | }
|
---|
842 |
|
---|
843 | /**
|
---|
844 | * Exponential function.
|
---|
845 | *
|
---|
846 | * Computes exp(x), function result is nearly rounded. It will be correctly
|
---|
847 | * rounded to the theoretical value for 99.9% of input values, otherwise it will
|
---|
848 | * have a 1 ULP error.
|
---|
849 | *
|
---|
850 | * Method:
|
---|
851 | * Lookup intVal = exp(int(x))
|
---|
852 | * Lookup fracVal = exp(int(x-int(x) / 1024.0) * 1024.0 );
|
---|
853 | * Compute z as the exponential of the remaining bits by a polynomial minus one
|
---|
854 | * exp(x) = intVal * fracVal * (1 + z)
|
---|
855 | *
|
---|
856 | * Accuracy:
|
---|
857 | * Calculation is done with 63 bits of precision, so result should be correctly
|
---|
858 | * rounded for 99.9% of input values, with less than 1 ULP error otherwise.
|
---|
859 | *
|
---|
860 | * @param x a double
|
---|
861 | * @return double e<sup>x</sup>
|
---|
862 | */
|
---|
863 | public static double exp(double x) {
|
---|
864 | return exp(x, 0.0, null);
|
---|
865 | }
|
---|
866 |
|
---|
867 | /**
|
---|
868 | * Internal helper method for exponential function.
|
---|
869 | * @param x original argument of the exponential function
|
---|
870 | * @param extra extra bits of precision on input (To Be Confirmed)
|
---|
871 | * @param hiPrec extra bits of precision on output (To Be Confirmed)
|
---|
872 | * @return exp(x)
|
---|
873 | */
|
---|
874 | private static double exp(double x, double extra, double[] hiPrec) {
|
---|
875 | double intPartA;
|
---|
876 | double intPartB;
|
---|
877 | int intVal = (int) x;
|
---|
878 |
|
---|
879 | /* Lookup exp(floor(x)).
|
---|
880 | * intPartA will have the upper 22 bits, intPartB will have the lower
|
---|
881 | * 52 bits.
|
---|
882 | */
|
---|
883 | if (x < 0.0) {
|
---|
884 |
|
---|
885 | // We don't check against intVal here as conversion of large negative double values
|
---|
886 | // may be affected by a JIT bug. Subsequent comparisons can safely use intVal
|
---|
887 | if (x < -746d) {
|
---|
888 | if (hiPrec != null) {
|
---|
889 | hiPrec[0] = 0.0;
|
---|
890 | hiPrec[1] = 0.0;
|
---|
891 | }
|
---|
892 | return 0.0;
|
---|
893 | }
|
---|
894 |
|
---|
895 | if (intVal < -709) {
|
---|
896 | /* This will produce a subnormal output */
|
---|
897 | final double result = exp(x+40.19140625, extra, hiPrec) / 285040095144011776.0;
|
---|
898 | if (hiPrec != null) {
|
---|
899 | hiPrec[0] /= 285040095144011776.0;
|
---|
900 | hiPrec[1] /= 285040095144011776.0;
|
---|
901 | }
|
---|
902 | return result;
|
---|
903 | }
|
---|
904 |
|
---|
905 | if (intVal == -709) {
|
---|
906 | /* exp(1.494140625) is nearly a machine number... */
|
---|
907 | final double result = exp(x+1.494140625, extra, hiPrec) / 4.455505956692756620;
|
---|
908 | if (hiPrec != null) {
|
---|
909 | hiPrec[0] /= 4.455505956692756620;
|
---|
910 | hiPrec[1] /= 4.455505956692756620;
|
---|
911 | }
|
---|
912 | return result;
|
---|
913 | }
|
---|
914 |
|
---|
915 | intVal--;
|
---|
916 |
|
---|
917 | } else {
|
---|
918 | if (intVal > 709) {
|
---|
919 | if (hiPrec != null) {
|
---|
920 | hiPrec[0] = Double.POSITIVE_INFINITY;
|
---|
921 | hiPrec[1] = 0.0;
|
---|
922 | }
|
---|
923 | return Double.POSITIVE_INFINITY;
|
---|
924 | }
|
---|
925 |
|
---|
926 | }
|
---|
927 |
|
---|
928 | intPartA = ExpIntTable.EXP_INT_TABLE_A[EXP_INT_TABLE_MAX_INDEX+intVal];
|
---|
929 | intPartB = ExpIntTable.EXP_INT_TABLE_B[EXP_INT_TABLE_MAX_INDEX+intVal];
|
---|
930 |
|
---|
931 | /* Get the fractional part of x, find the greatest multiple of 2^-10 less than
|
---|
932 | * x and look up the exp function of it.
|
---|
933 | * fracPartA will have the upper 22 bits, fracPartB the lower 52 bits.
|
---|
934 | */
|
---|
935 | final int intFrac = (int) ((x - intVal) * 1024.0);
|
---|
936 | final double fracPartA = ExpFracTable.EXP_FRAC_TABLE_A[intFrac];
|
---|
937 | final double fracPartB = ExpFracTable.EXP_FRAC_TABLE_B[intFrac];
|
---|
938 |
|
---|
939 | /* epsilon is the difference in x from the nearest multiple of 2^-10. It
|
---|
940 | * has a value in the range 0 <= epsilon < 2^-10.
|
---|
941 | * Do the subtraction from x as the last step to avoid possible loss of precision.
|
---|
942 | */
|
---|
943 | final double epsilon = x - (intVal + intFrac / 1024.0);
|
---|
944 |
|
---|
945 | /* Compute z = exp(epsilon) - 1.0 via a minimax polynomial. z has
|
---|
946 | full double precision (52 bits). Since z < 2^-10, we will have
|
---|
947 | 62 bits of precision when combined with the constant 1. This will be
|
---|
948 | used in the last addition below to get proper rounding. */
|
---|
949 |
|
---|
950 | /* Remez generated polynomial. Converges on the interval [0, 2^-10], error
|
---|
951 | is less than 0.5 ULP */
|
---|
952 | double z = 0.04168701738764507;
|
---|
953 | z = z * epsilon + 0.1666666505023083;
|
---|
954 | z = z * epsilon + 0.5000000000042687;
|
---|
955 | z = z * epsilon + 1.0;
|
---|
956 | z = z * epsilon + -3.940510424527919E-20;
|
---|
957 |
|
---|
958 | /* Compute (intPartA+intPartB) * (fracPartA+fracPartB) by binomial
|
---|
959 | expansion.
|
---|
960 | tempA is exact since intPartA and intPartB only have 22 bits each.
|
---|
961 | tempB will have 52 bits of precision.
|
---|
962 | */
|
---|
963 | double tempA = intPartA * fracPartA;
|
---|
964 | double tempB = intPartA * fracPartB + intPartB * fracPartA + intPartB * fracPartB;
|
---|
965 |
|
---|
966 | /* Compute the result. (1+z)(tempA+tempB). Order of operations is
|
---|
967 | important. For accuracy add by increasing size. tempA is exact and
|
---|
968 | much larger than the others. If there are extra bits specified from the
|
---|
969 | pow() function, use them. */
|
---|
970 | final double tempC = tempB + tempA;
|
---|
971 |
|
---|
972 | // If tempC is positive infinite, the evaluation below could result in NaN,
|
---|
973 | // because z could be negative at the same time.
|
---|
974 | if (tempC == Double.POSITIVE_INFINITY) {
|
---|
975 | return Double.POSITIVE_INFINITY;
|
---|
976 | }
|
---|
977 |
|
---|
978 | final double result;
|
---|
979 | if (extra != 0.0) {
|
---|
980 | result = tempC*extra*z + tempC*extra + tempC*z + tempB + tempA;
|
---|
981 | } else {
|
---|
982 | result = tempC*z + tempB + tempA;
|
---|
983 | }
|
---|
984 |
|
---|
985 | if (hiPrec != null) {
|
---|
986 | // If requesting high precision
|
---|
987 | hiPrec[0] = tempA;
|
---|
988 | hiPrec[1] = tempC*extra*z + tempC*extra + tempC*z + tempB;
|
---|
989 | }
|
---|
990 |
|
---|
991 | return result;
|
---|
992 | }
|
---|
993 |
|
---|
994 | /** Compute exp(x) - 1
|
---|
995 | * @param x number to compute shifted exponential
|
---|
996 | * @return exp(x) - 1
|
---|
997 | */
|
---|
998 | public static double expm1(double x) {
|
---|
999 | return expm1(x, null);
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | /** Internal helper method for expm1
|
---|
1003 | * @param x number to compute shifted exponential
|
---|
1004 | * @param hiPrecOut receive high precision result for -1.0 < x < 1.0
|
---|
1005 | * @return exp(x) - 1
|
---|
1006 | */
|
---|
1007 | private static double expm1(double x, double hiPrecOut[]) {
|
---|
1008 | if (x != x || x == 0.0) { // NaN or zero
|
---|
1009 | return x;
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | if (x <= -1.0 || x >= 1.0) {
|
---|
1013 | // If not between +/- 1.0
|
---|
1014 | //return exp(x) - 1.0;
|
---|
1015 | double hiPrec[] = new double[2];
|
---|
1016 | exp(x, 0.0, hiPrec);
|
---|
1017 | if (x > 0.0) {
|
---|
1018 | return -1.0 + hiPrec[0] + hiPrec[1];
|
---|
1019 | } else {
|
---|
1020 | final double ra = -1.0 + hiPrec[0];
|
---|
1021 | double rb = -(ra + 1.0 - hiPrec[0]);
|
---|
1022 | rb += hiPrec[1];
|
---|
1023 | return ra + rb;
|
---|
1024 | }
|
---|
1025 | }
|
---|
1026 |
|
---|
1027 | double baseA;
|
---|
1028 | double baseB;
|
---|
1029 | double epsilon;
|
---|
1030 | boolean negative = false;
|
---|
1031 |
|
---|
1032 | if (x < 0.0) {
|
---|
1033 | x = -x;
|
---|
1034 | negative = true;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | {
|
---|
1038 | int intFrac = (int) (x * 1024.0);
|
---|
1039 | double tempA = ExpFracTable.EXP_FRAC_TABLE_A[intFrac] - 1.0;
|
---|
1040 | double tempB = ExpFracTable.EXP_FRAC_TABLE_B[intFrac];
|
---|
1041 |
|
---|
1042 | double temp = tempA + tempB;
|
---|
1043 | tempB = -(temp - tempA - tempB);
|
---|
1044 | tempA = temp;
|
---|
1045 |
|
---|
1046 | temp = tempA * HEX_40000000;
|
---|
1047 | baseA = tempA + temp - temp;
|
---|
1048 | baseB = tempB + (tempA - baseA);
|
---|
1049 |
|
---|
1050 | epsilon = x - intFrac/1024.0;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 |
|
---|
1054 | /* Compute expm1(epsilon) */
|
---|
1055 | double zb = 0.008336750013465571;
|
---|
1056 | zb = zb * epsilon + 0.041666663879186654;
|
---|
1057 | zb = zb * epsilon + 0.16666666666745392;
|
---|
1058 | zb = zb * epsilon + 0.49999999999999994;
|
---|
1059 | zb *= epsilon;
|
---|
1060 | zb *= epsilon;
|
---|
1061 |
|
---|
1062 | double za = epsilon;
|
---|
1063 | double temp = za + zb;
|
---|
1064 | zb = -(temp - za - zb);
|
---|
1065 | za = temp;
|
---|
1066 |
|
---|
1067 | temp = za * HEX_40000000;
|
---|
1068 | temp = za + temp - temp;
|
---|
1069 | zb += za - temp;
|
---|
1070 | za = temp;
|
---|
1071 |
|
---|
1072 | /* Combine the parts. expm1(a+b) = expm1(a) + expm1(b) + expm1(a)*expm1(b) */
|
---|
1073 | double ya = za * baseA;
|
---|
1074 | //double yb = za*baseB + zb*baseA + zb*baseB;
|
---|
1075 | temp = ya + za * baseB;
|
---|
1076 | double yb = -(temp - ya - za * baseB);
|
---|
1077 | ya = temp;
|
---|
1078 |
|
---|
1079 | temp = ya + zb * baseA;
|
---|
1080 | yb += -(temp - ya - zb * baseA);
|
---|
1081 | ya = temp;
|
---|
1082 |
|
---|
1083 | temp = ya + zb * baseB;
|
---|
1084 | yb += -(temp - ya - zb*baseB);
|
---|
1085 | ya = temp;
|
---|
1086 |
|
---|
1087 | //ya = ya + za + baseA;
|
---|
1088 | //yb = yb + zb + baseB;
|
---|
1089 | temp = ya + baseA;
|
---|
1090 | yb += -(temp - baseA - ya);
|
---|
1091 | ya = temp;
|
---|
1092 |
|
---|
1093 | temp = ya + za;
|
---|
1094 | //yb += (ya > za) ? -(temp - ya - za) : -(temp - za - ya);
|
---|
1095 | yb += -(temp - ya - za);
|
---|
1096 | ya = temp;
|
---|
1097 |
|
---|
1098 | temp = ya + baseB;
|
---|
1099 | //yb += (ya > baseB) ? -(temp - ya - baseB) : -(temp - baseB - ya);
|
---|
1100 | yb += -(temp - ya - baseB);
|
---|
1101 | ya = temp;
|
---|
1102 |
|
---|
1103 | temp = ya + zb;
|
---|
1104 | //yb += (ya > zb) ? -(temp - ya - zb) : -(temp - zb - ya);
|
---|
1105 | yb += -(temp - ya - zb);
|
---|
1106 | ya = temp;
|
---|
1107 |
|
---|
1108 | if (negative) {
|
---|
1109 | /* Compute expm1(-x) = -expm1(x) / (expm1(x) + 1) */
|
---|
1110 | double denom = 1.0 + ya;
|
---|
1111 | double denomr = 1.0 / denom;
|
---|
1112 | double denomb = -(denom - 1.0 - ya) + yb;
|
---|
1113 | double ratio = ya * denomr;
|
---|
1114 | temp = ratio * HEX_40000000;
|
---|
1115 | final double ra = ratio + temp - temp;
|
---|
1116 | double rb = ratio - ra;
|
---|
1117 |
|
---|
1118 | temp = denom * HEX_40000000;
|
---|
1119 | za = denom + temp - temp;
|
---|
1120 | zb = denom - za;
|
---|
1121 |
|
---|
1122 | rb += (ya - za * ra - za * rb - zb * ra - zb * rb) * denomr;
|
---|
1123 |
|
---|
1124 | // f(x) = x/1+x
|
---|
1125 | // Compute f'(x)
|
---|
1126 | // Product rule: d(uv) = du*v + u*dv
|
---|
1127 | // Chain rule: d(f(g(x)) = f'(g(x))*f(g'(x))
|
---|
1128 | // d(1/x) = -1/(x*x)
|
---|
1129 | // d(1/1+x) = -1/( (1+x)^2) * 1 = -1/((1+x)*(1+x))
|
---|
1130 | // d(x/1+x) = -x/((1+x)(1+x)) + 1/1+x = 1 / ((1+x)(1+x))
|
---|
1131 |
|
---|
1132 | // Adjust for yb
|
---|
1133 | rb += yb * denomr; // numerator
|
---|
1134 | rb += -ya * denomb * denomr * denomr; // denominator
|
---|
1135 |
|
---|
1136 | // negate
|
---|
1137 | ya = -ra;
|
---|
1138 | yb = -rb;
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | if (hiPrecOut != null) {
|
---|
1142 | hiPrecOut[0] = ya;
|
---|
1143 | hiPrecOut[1] = yb;
|
---|
1144 | }
|
---|
1145 |
|
---|
1146 | return ya + yb;
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | /**
|
---|
1150 | * Natural logarithm.
|
---|
1151 | *
|
---|
1152 | * @param x a double
|
---|
1153 | * @return log(x)
|
---|
1154 | */
|
---|
1155 | public static double log(final double x) {
|
---|
1156 | return log(x, null);
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | /**
|
---|
1160 | * Internal helper method for natural logarithm function.
|
---|
1161 | * @param x original argument of the natural logarithm function
|
---|
1162 | * @param hiPrec extra bits of precision on output (To Be Confirmed)
|
---|
1163 | * @return log(x)
|
---|
1164 | */
|
---|
1165 | private static double log(final double x, final double[] hiPrec) {
|
---|
1166 | if (x==0) { // Handle special case of +0/-0
|
---|
1167 | return Double.NEGATIVE_INFINITY;
|
---|
1168 | }
|
---|
1169 | long bits = Double.doubleToRawLongBits(x);
|
---|
1170 |
|
---|
1171 | /* Handle special cases of negative input, and NaN */
|
---|
1172 | if (((bits & 0x8000000000000000L) != 0 || x != x) && x != 0.0) {
|
---|
1173 | if (hiPrec != null) {
|
---|
1174 | hiPrec[0] = Double.NaN;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | return Double.NaN;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | /* Handle special cases of Positive infinity. */
|
---|
1181 | if (x == Double.POSITIVE_INFINITY) {
|
---|
1182 | if (hiPrec != null) {
|
---|
1183 | hiPrec[0] = Double.POSITIVE_INFINITY;
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | return Double.POSITIVE_INFINITY;
|
---|
1187 | }
|
---|
1188 |
|
---|
1189 | /* Extract the exponent */
|
---|
1190 | int exp = (int)(bits >> 52)-1023;
|
---|
1191 |
|
---|
1192 | if ((bits & 0x7ff0000000000000L) == 0) {
|
---|
1193 | // Subnormal!
|
---|
1194 | if (x == 0) {
|
---|
1195 | // Zero
|
---|
1196 | if (hiPrec != null) {
|
---|
1197 | hiPrec[0] = Double.NEGATIVE_INFINITY;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | return Double.NEGATIVE_INFINITY;
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | /* Normalize the subnormal number. */
|
---|
1204 | bits <<= 1;
|
---|
1205 | while ( (bits & 0x0010000000000000L) == 0) {
|
---|
1206 | --exp;
|
---|
1207 | bits <<= 1;
|
---|
1208 | }
|
---|
1209 | }
|
---|
1210 |
|
---|
1211 |
|
---|
1212 | if ((exp == -1 || exp == 0) && x < 1.01 && x > 0.99 && hiPrec == null) {
|
---|
1213 | /* The normal method doesn't work well in the range [0.99, 1.01], so call do a straight
|
---|
1214 | polynomial expansion in higer precision. */
|
---|
1215 |
|
---|
1216 | /* Compute x - 1.0 and split it */
|
---|
1217 | double xa = x - 1.0;
|
---|
1218 | double xb = xa - x + 1.0;
|
---|
1219 | double tmp = xa * HEX_40000000;
|
---|
1220 | double aa = xa + tmp - tmp;
|
---|
1221 | double ab = xa - aa;
|
---|
1222 | xa = aa;
|
---|
1223 | xb = ab;
|
---|
1224 |
|
---|
1225 | final double[] lnCoef_last = LN_QUICK_COEF[LN_QUICK_COEF.length - 1];
|
---|
1226 | double ya = lnCoef_last[0];
|
---|
1227 | double yb = lnCoef_last[1];
|
---|
1228 |
|
---|
1229 | for (int i = LN_QUICK_COEF.length - 2; i >= 0; i--) {
|
---|
1230 | /* Multiply a = y * x */
|
---|
1231 | aa = ya * xa;
|
---|
1232 | ab = ya * xb + yb * xa + yb * xb;
|
---|
1233 | /* split, so now y = a */
|
---|
1234 | tmp = aa * HEX_40000000;
|
---|
1235 | ya = aa + tmp - tmp;
|
---|
1236 | yb = aa - ya + ab;
|
---|
1237 |
|
---|
1238 | /* Add a = y + lnQuickCoef */
|
---|
1239 | final double[] lnCoef_i = LN_QUICK_COEF[i];
|
---|
1240 | aa = ya + lnCoef_i[0];
|
---|
1241 | ab = yb + lnCoef_i[1];
|
---|
1242 | /* Split y = a */
|
---|
1243 | tmp = aa * HEX_40000000;
|
---|
1244 | ya = aa + tmp - tmp;
|
---|
1245 | yb = aa - ya + ab;
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 | /* Multiply a = y * x */
|
---|
1249 | aa = ya * xa;
|
---|
1250 | ab = ya * xb + yb * xa + yb * xb;
|
---|
1251 | /* split, so now y = a */
|
---|
1252 | tmp = aa * HEX_40000000;
|
---|
1253 | ya = aa + tmp - tmp;
|
---|
1254 | yb = aa - ya + ab;
|
---|
1255 |
|
---|
1256 | return ya + yb;
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 | // lnm is a log of a number in the range of 1.0 - 2.0, so 0 <= lnm < ln(2)
|
---|
1260 | final double[] lnm = lnMant.LN_MANT[(int)((bits & 0x000ffc0000000000L) >> 42)];
|
---|
1261 |
|
---|
1262 | /*
|
---|
1263 | double epsilon = x / Double.longBitsToDouble(bits & 0xfffffc0000000000L);
|
---|
1264 |
|
---|
1265 | epsilon -= 1.0;
|
---|
1266 | */
|
---|
1267 |
|
---|
1268 | // y is the most significant 10 bits of the mantissa
|
---|
1269 | //double y = Double.longBitsToDouble(bits & 0xfffffc0000000000L);
|
---|
1270 | //double epsilon = (x - y) / y;
|
---|
1271 | final double epsilon = (bits & 0x3ffffffffffL) / (TWO_POWER_52 + (bits & 0x000ffc0000000000L));
|
---|
1272 |
|
---|
1273 | double lnza = 0.0;
|
---|
1274 | double lnzb = 0.0;
|
---|
1275 |
|
---|
1276 | if (hiPrec != null) {
|
---|
1277 | /* split epsilon -> x */
|
---|
1278 | double tmp = epsilon * HEX_40000000;
|
---|
1279 | double aa = epsilon + tmp - tmp;
|
---|
1280 | double ab = epsilon - aa;
|
---|
1281 | double xa = aa;
|
---|
1282 | double xb = ab;
|
---|
1283 |
|
---|
1284 | /* Need a more accurate epsilon, so adjust the division. */
|
---|
1285 | final double numer = bits & 0x3ffffffffffL;
|
---|
1286 | final double denom = TWO_POWER_52 + (bits & 0x000ffc0000000000L);
|
---|
1287 | aa = numer - xa*denom - xb * denom;
|
---|
1288 | xb += aa / denom;
|
---|
1289 |
|
---|
1290 | /* Remez polynomial evaluation */
|
---|
1291 | final double[] lnCoef_last = LN_HI_PREC_COEF[LN_HI_PREC_COEF.length-1];
|
---|
1292 | double ya = lnCoef_last[0];
|
---|
1293 | double yb = lnCoef_last[1];
|
---|
1294 |
|
---|
1295 | for (int i = LN_HI_PREC_COEF.length - 2; i >= 0; i--) {
|
---|
1296 | /* Multiply a = y * x */
|
---|
1297 | aa = ya * xa;
|
---|
1298 | ab = ya * xb + yb * xa + yb * xb;
|
---|
1299 | /* split, so now y = a */
|
---|
1300 | tmp = aa * HEX_40000000;
|
---|
1301 | ya = aa + tmp - tmp;
|
---|
1302 | yb = aa - ya + ab;
|
---|
1303 |
|
---|
1304 | /* Add a = y + lnHiPrecCoef */
|
---|
1305 | final double[] lnCoef_i = LN_HI_PREC_COEF[i];
|
---|
1306 | aa = ya + lnCoef_i[0];
|
---|
1307 | ab = yb + lnCoef_i[1];
|
---|
1308 | /* Split y = a */
|
---|
1309 | tmp = aa * HEX_40000000;
|
---|
1310 | ya = aa + tmp - tmp;
|
---|
1311 | yb = aa - ya + ab;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /* Multiply a = y * x */
|
---|
1315 | aa = ya * xa;
|
---|
1316 | ab = ya * xb + yb * xa + yb * xb;
|
---|
1317 |
|
---|
1318 | /* split, so now lnz = a */
|
---|
1319 | /*
|
---|
1320 | tmp = aa * 1073741824.0;
|
---|
1321 | lnza = aa + tmp - tmp;
|
---|
1322 | lnzb = aa - lnza + ab;
|
---|
1323 | */
|
---|
1324 | lnza = aa + ab;
|
---|
1325 | lnzb = -(lnza - aa - ab);
|
---|
1326 | } else {
|
---|
1327 | /* High precision not required. Eval Remez polynomial
|
---|
1328 | using standard double precision */
|
---|
1329 | lnza = -0.16624882440418567;
|
---|
1330 | lnza = lnza * epsilon + 0.19999954120254515;
|
---|
1331 | lnza = lnza * epsilon + -0.2499999997677497;
|
---|
1332 | lnza = lnza * epsilon + 0.3333333333332802;
|
---|
1333 | lnza = lnza * epsilon + -0.5;
|
---|
1334 | lnza = lnza * epsilon + 1.0;
|
---|
1335 | lnza *= epsilon;
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 | /* Relative sizes:
|
---|
1339 | * lnzb [0, 2.33E-10]
|
---|
1340 | * lnm[1] [0, 1.17E-7]
|
---|
1341 | * ln2B*exp [0, 1.12E-4]
|
---|
1342 | * lnza [0, 9.7E-4]
|
---|
1343 | * lnm[0] [0, 0.692]
|
---|
1344 | * ln2A*exp [0, 709]
|
---|
1345 | */
|
---|
1346 |
|
---|
1347 | /* Compute the following sum:
|
---|
1348 | * lnzb + lnm[1] + ln2B*exp + lnza + lnm[0] + ln2A*exp;
|
---|
1349 | */
|
---|
1350 |
|
---|
1351 | //return lnzb + lnm[1] + ln2B*exp + lnza + lnm[0] + ln2A*exp;
|
---|
1352 | double a = LN_2_A*exp;
|
---|
1353 | double b = 0.0;
|
---|
1354 | double c = a+lnm[0];
|
---|
1355 | double d = -(c-a-lnm[0]);
|
---|
1356 | a = c;
|
---|
1357 | b += d;
|
---|
1358 |
|
---|
1359 | c = a + lnza;
|
---|
1360 | d = -(c - a - lnza);
|
---|
1361 | a = c;
|
---|
1362 | b += d;
|
---|
1363 |
|
---|
1364 | c = a + LN_2_B*exp;
|
---|
1365 | d = -(c - a - LN_2_B*exp);
|
---|
1366 | a = c;
|
---|
1367 | b += d;
|
---|
1368 |
|
---|
1369 | c = a + lnm[1];
|
---|
1370 | d = -(c - a - lnm[1]);
|
---|
1371 | a = c;
|
---|
1372 | b += d;
|
---|
1373 |
|
---|
1374 | c = a + lnzb;
|
---|
1375 | d = -(c - a - lnzb);
|
---|
1376 | a = c;
|
---|
1377 | b += d;
|
---|
1378 |
|
---|
1379 | if (hiPrec != null) {
|
---|
1380 | hiPrec[0] = a;
|
---|
1381 | hiPrec[1] = b;
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 | return a + b;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | /**
|
---|
1388 | * Computes log(1 + x).
|
---|
1389 | *
|
---|
1390 | * @param x Number.
|
---|
1391 | * @return {@code log(1 + x)}.
|
---|
1392 | */
|
---|
1393 | public static double log1p(final double x) {
|
---|
1394 | if (x == -1) {
|
---|
1395 | return Double.NEGATIVE_INFINITY;
|
---|
1396 | }
|
---|
1397 |
|
---|
1398 | if (x == Double.POSITIVE_INFINITY) {
|
---|
1399 | return Double.POSITIVE_INFINITY;
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 | if (x > 1e-6 ||
|
---|
1403 | x < -1e-6) {
|
---|
1404 | final double xpa = 1 + x;
|
---|
1405 | final double xpb = -(xpa - 1 - x);
|
---|
1406 |
|
---|
1407 | final double[] hiPrec = new double[2];
|
---|
1408 | final double lores = log(xpa, hiPrec);
|
---|
1409 | if (Double.isInfinite(lores)) { // Don't allow this to be converted to NaN
|
---|
1410 | return lores;
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 | // Do a taylor series expansion around xpa:
|
---|
1414 | // f(x+y) = f(x) + f'(x) y + f''(x)/2 y^2
|
---|
1415 | final double fx1 = xpb / xpa;
|
---|
1416 | final double epsilon = 0.5 * fx1 + 1;
|
---|
1417 | return epsilon * fx1 + hiPrec[1] + hiPrec[0];
|
---|
1418 | } else {
|
---|
1419 | // Value is small |x| < 1e6, do a Taylor series centered on 1.
|
---|
1420 | final double y = (x * F_1_3 - F_1_2) * x + 1;
|
---|
1421 | return y * x;
|
---|
1422 | }
|
---|
1423 | }
|
---|
1424 |
|
---|
1425 | /** Compute the base 10 logarithm.
|
---|
1426 | * @param x a number
|
---|
1427 | * @return log10(x)
|
---|
1428 | */
|
---|
1429 | public static double log10(final double x) {
|
---|
1430 | final double hiPrec[] = new double[2];
|
---|
1431 |
|
---|
1432 | final double lores = log(x, hiPrec);
|
---|
1433 | if (Double.isInfinite(lores)){ // don't allow this to be converted to NaN
|
---|
1434 | return lores;
|
---|
1435 | }
|
---|
1436 |
|
---|
1437 | final double tmp = hiPrec[0] * HEX_40000000;
|
---|
1438 | final double lna = hiPrec[0] + tmp - tmp;
|
---|
1439 | final double lnb = hiPrec[0] - lna + hiPrec[1];
|
---|
1440 |
|
---|
1441 | final double rln10a = 0.4342944622039795;
|
---|
1442 | final double rln10b = 1.9699272335463627E-8;
|
---|
1443 |
|
---|
1444 | return rln10b * lnb + rln10b * lna + rln10a * lnb + rln10a * lna;
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 | /**
|
---|
1448 | * Computes the <a href="http://mathworld.wolfram.com/Logarithm.html">
|
---|
1449 | * logarithm</a> in a given base.
|
---|
1450 | *
|
---|
1451 | * Returns {@code NaN} if either argument is negative.
|
---|
1452 | * If {@code base} is 0 and {@code x} is positive, 0 is returned.
|
---|
1453 | * If {@code base} is positive and {@code x} is 0,
|
---|
1454 | * {@code Double.NEGATIVE_INFINITY} is returned.
|
---|
1455 | * If both arguments are 0, the result is {@code NaN}.
|
---|
1456 | *
|
---|
1457 | * @param base Base of the logarithm, must be greater than 0.
|
---|
1458 | * @param x Argument, must be greater than 0.
|
---|
1459 | * @return the value of the logarithm, i.e. the number {@code y} such that
|
---|
1460 | * <code>base<sup>y</sup> = x</code>.
|
---|
1461 | * @since 1.2 (previously in {@code MathUtils}, moved as of version 3.0)
|
---|
1462 | */
|
---|
1463 | public static double log(double base, double x) {
|
---|
1464 | return log(x) / log(base);
|
---|
1465 | }
|
---|
1466 |
|
---|
1467 | /**
|
---|
1468 | * Power function. Compute x^y.
|
---|
1469 | *
|
---|
1470 | * @param x a double
|
---|
1471 | * @param y a double
|
---|
1472 | * @return double
|
---|
1473 | */
|
---|
1474 | public static double pow(final double x, final double y) {
|
---|
1475 |
|
---|
1476 | if (y == 0) {
|
---|
1477 | // y = -0 or y = +0
|
---|
1478 | return 1.0;
|
---|
1479 | } else {
|
---|
1480 |
|
---|
1481 | final long yBits = Double.doubleToRawLongBits(y);
|
---|
1482 | final int yRawExp = (int) ((yBits & MASK_DOUBLE_EXPONENT) >> 52);
|
---|
1483 | final long yRawMantissa = yBits & MASK_DOUBLE_MANTISSA;
|
---|
1484 | final long xBits = Double.doubleToRawLongBits(x);
|
---|
1485 | final int xRawExp = (int) ((xBits & MASK_DOUBLE_EXPONENT) >> 52);
|
---|
1486 | final long xRawMantissa = xBits & MASK_DOUBLE_MANTISSA;
|
---|
1487 |
|
---|
1488 | if (yRawExp > 1085) {
|
---|
1489 | // y is either a very large integral value that does not fit in a long or it is a special number
|
---|
1490 |
|
---|
1491 | if ((yRawExp == 2047 && yRawMantissa != 0) ||
|
---|
1492 | (xRawExp == 2047 && xRawMantissa != 0)) {
|
---|
1493 | // NaN
|
---|
1494 | return Double.NaN;
|
---|
1495 | } else if (xRawExp == 1023 && xRawMantissa == 0) {
|
---|
1496 | // x = -1.0 or x = +1.0
|
---|
1497 | if (yRawExp == 2047) {
|
---|
1498 | // y is infinite
|
---|
1499 | return Double.NaN;
|
---|
1500 | } else {
|
---|
1501 | // y is a large even integer
|
---|
1502 | return 1.0;
|
---|
1503 | }
|
---|
1504 | } else {
|
---|
1505 | // the absolute value of x is either greater or smaller than 1.0
|
---|
1506 |
|
---|
1507 | // if yRawExp == 2047 and mantissa is 0, y = -infinity or y = +infinity
|
---|
1508 | // if 1085 < yRawExp < 2047, y is simply a large number, however, due to limited
|
---|
1509 | // accuracy, at this magnitude it behaves just like infinity with regards to x
|
---|
1510 | if ((y > 0) ^ (xRawExp < 1023)) {
|
---|
1511 | // either y = +infinity (or large engouh) and abs(x) > 1.0
|
---|
1512 | // or y = -infinity (or large engouh) and abs(x) < 1.0
|
---|
1513 | return Double.POSITIVE_INFINITY;
|
---|
1514 | } else {
|
---|
1515 | // either y = +infinity (or large engouh) and abs(x) < 1.0
|
---|
1516 | // or y = -infinity (or large engouh) and abs(x) > 1.0
|
---|
1517 | return +0.0;
|
---|
1518 | }
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 | } else {
|
---|
1522 | // y is a regular non-zero number
|
---|
1523 |
|
---|
1524 | if (yRawExp >= 1023) {
|
---|
1525 | // y may be an integral value, which should be handled specifically
|
---|
1526 | final long yFullMantissa = IMPLICIT_HIGH_BIT | yRawMantissa;
|
---|
1527 | if (yRawExp < 1075) {
|
---|
1528 | // normal number with negative shift that may have a fractional part
|
---|
1529 | final long integralMask = (-1L) << (1075 - yRawExp);
|
---|
1530 | if ((yFullMantissa & integralMask) == yFullMantissa) {
|
---|
1531 | // all fractional bits are 0, the number is really integral
|
---|
1532 | final long l = yFullMantissa >> (1075 - yRawExp);
|
---|
1533 | return FastMath.pow(x, (y < 0) ? -l : l);
|
---|
1534 | }
|
---|
1535 | } else {
|
---|
1536 | // normal number with positive shift, always an integral value
|
---|
1537 | // we know it fits in a primitive long because yRawExp > 1085 has been handled above
|
---|
1538 | final long l = yFullMantissa << (yRawExp - 1075);
|
---|
1539 | return FastMath.pow(x, (y < 0) ? -l : l);
|
---|
1540 | }
|
---|
1541 | }
|
---|
1542 |
|
---|
1543 | // y is a non-integral value
|
---|
1544 |
|
---|
1545 | if (x == 0) {
|
---|
1546 | // x = -0 or x = +0
|
---|
1547 | // the integer powers have already been handled above
|
---|
1548 | return y < 0 ? Double.POSITIVE_INFINITY : +0.0;
|
---|
1549 | } else if (xRawExp == 2047) {
|
---|
1550 | if (xRawMantissa == 0) {
|
---|
1551 | // x = -infinity or x = +infinity
|
---|
1552 | return (y < 0) ? +0.0 : Double.POSITIVE_INFINITY;
|
---|
1553 | } else {
|
---|
1554 | // NaN
|
---|
1555 | return Double.NaN;
|
---|
1556 | }
|
---|
1557 | } else if (x < 0) {
|
---|
1558 | // the integer powers have already been handled above
|
---|
1559 | return Double.NaN;
|
---|
1560 | } else {
|
---|
1561 |
|
---|
1562 | // this is the general case, for regular fractional numbers x and y
|
---|
1563 |
|
---|
1564 | // Split y into ya and yb such that y = ya+yb
|
---|
1565 | final double tmp = y * HEX_40000000;
|
---|
1566 | final double ya = (y + tmp) - tmp;
|
---|
1567 | final double yb = y - ya;
|
---|
1568 |
|
---|
1569 | /* Compute ln(x) */
|
---|
1570 | final double lns[] = new double[2];
|
---|
1571 | final double lores = log(x, lns);
|
---|
1572 | if (Double.isInfinite(lores)) { // don't allow this to be converted to NaN
|
---|
1573 | return lores;
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 | double lna = lns[0];
|
---|
1577 | double lnb = lns[1];
|
---|
1578 |
|
---|
1579 | /* resplit lns */
|
---|
1580 | final double tmp1 = lna * HEX_40000000;
|
---|
1581 | final double tmp2 = (lna + tmp1) - tmp1;
|
---|
1582 | lnb += lna - tmp2;
|
---|
1583 | lna = tmp2;
|
---|
1584 |
|
---|
1585 | // y*ln(x) = (aa+ab)
|
---|
1586 | final double aa = lna * ya;
|
---|
1587 | final double ab = lna * yb + lnb * ya + lnb * yb;
|
---|
1588 |
|
---|
1589 | lna = aa+ab;
|
---|
1590 | lnb = -(lna - aa - ab);
|
---|
1591 |
|
---|
1592 | double z = 1.0 / 120.0;
|
---|
1593 | z = z * lnb + (1.0 / 24.0);
|
---|
1594 | z = z * lnb + (1.0 / 6.0);
|
---|
1595 | z = z * lnb + 0.5;
|
---|
1596 | z = z * lnb + 1.0;
|
---|
1597 | z *= lnb;
|
---|
1598 |
|
---|
1599 | final double result = exp(lna, z, null);
|
---|
1600 | //result = result + result * z;
|
---|
1601 | return result;
|
---|
1602 |
|
---|
1603 | }
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 | }
|
---|
1607 |
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | /**
|
---|
1611 | * Raise a double to an int power.
|
---|
1612 | *
|
---|
1613 | * @param d Number to raise.
|
---|
1614 | * @param e Exponent.
|
---|
1615 | * @return d<sup>e</sup>
|
---|
1616 | * @since 3.1
|
---|
1617 | */
|
---|
1618 | public static double pow(double d, int e) {
|
---|
1619 | return pow(d, (long) e);
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | /**
|
---|
1623 | * Raise a double to a long power.
|
---|
1624 | *
|
---|
1625 | * @param d Number to raise.
|
---|
1626 | * @param e Exponent.
|
---|
1627 | * @return d<sup>e</sup>
|
---|
1628 | * @since 3.6
|
---|
1629 | */
|
---|
1630 | public static double pow(double d, long e) {
|
---|
1631 | if (e == 0) {
|
---|
1632 | return 1.0;
|
---|
1633 | } else if (e > 0) {
|
---|
1634 | return new Split(d).pow(e).full;
|
---|
1635 | } else {
|
---|
1636 | return new Split(d).reciprocal().pow(-e).full;
|
---|
1637 | }
|
---|
1638 | }
|
---|
1639 |
|
---|
1640 | /** Class operator on double numbers split into one 26 bits number and one 27 bits number. */
|
---|
1641 | private static class Split {
|
---|
1642 |
|
---|
1643 | /** Split version of NaN. */
|
---|
1644 | public static final Split NAN = new Split(Double.NaN, 0);
|
---|
1645 |
|
---|
1646 | /** Split version of positive infinity. */
|
---|
1647 | public static final Split POSITIVE_INFINITY = new Split(Double.POSITIVE_INFINITY, 0);
|
---|
1648 |
|
---|
1649 | /** Split version of negative infinity. */
|
---|
1650 | public static final Split NEGATIVE_INFINITY = new Split(Double.NEGATIVE_INFINITY, 0);
|
---|
1651 |
|
---|
1652 | /** Full number. */
|
---|
1653 | private final double full;
|
---|
1654 |
|
---|
1655 | /** High order bits. */
|
---|
1656 | private final double high;
|
---|
1657 |
|
---|
1658 | /** Low order bits. */
|
---|
1659 | private final double low;
|
---|
1660 |
|
---|
1661 | /** Simple constructor.
|
---|
1662 | * @param x number to split
|
---|
1663 | */
|
---|
1664 | Split(final double x) {
|
---|
1665 | full = x;
|
---|
1666 | high = Double.longBitsToDouble(Double.doubleToRawLongBits(x) & ((-1L) << 27));
|
---|
1667 | low = x - high;
|
---|
1668 | }
|
---|
1669 |
|
---|
1670 | /** Simple constructor.
|
---|
1671 | * @param high high order bits
|
---|
1672 | * @param low low order bits
|
---|
1673 | */
|
---|
1674 | Split(final double high, final double low) {
|
---|
1675 | this(high == 0.0 ? (low == 0.0 && Double.doubleToRawLongBits(high) == Long.MIN_VALUE /* negative zero */ ? -0.0 : low) : high + low, high, low);
|
---|
1676 | }
|
---|
1677 |
|
---|
1678 | /** Simple constructor.
|
---|
1679 | * @param full full number
|
---|
1680 | * @param high high order bits
|
---|
1681 | * @param low low order bits
|
---|
1682 | */
|
---|
1683 | Split(final double full, final double high, final double low) {
|
---|
1684 | this.full = full;
|
---|
1685 | this.high = high;
|
---|
1686 | this.low = low;
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | /** Multiply the instance by another one.
|
---|
1690 | * @param b other instance to multiply by
|
---|
1691 | * @return product
|
---|
1692 | */
|
---|
1693 | public Split multiply(final Split b) {
|
---|
1694 | // beware the following expressions must NOT be simplified, they rely on floating point arithmetic properties
|
---|
1695 | final Split mulBasic = new Split(full * b.full);
|
---|
1696 | final double mulError = low * b.low - (((mulBasic.full - high * b.high) - low * b.high) - high * b.low);
|
---|
1697 | return new Split(mulBasic.high, mulBasic.low + mulError);
|
---|
1698 | }
|
---|
1699 |
|
---|
1700 | /** Compute the reciprocal of the instance.
|
---|
1701 | * @return reciprocal of the instance
|
---|
1702 | */
|
---|
1703 | public Split reciprocal() {
|
---|
1704 |
|
---|
1705 | final double approximateInv = 1.0 / full;
|
---|
1706 | final Split splitInv = new Split(approximateInv);
|
---|
1707 |
|
---|
1708 | // if 1.0/d were computed perfectly, remultiplying it by d should give 1.0
|
---|
1709 | // we want to estimate the error so we can fix the low order bits of approximateInvLow
|
---|
1710 | // beware the following expressions must NOT be simplified, they rely on floating point arithmetic properties
|
---|
1711 | final Split product = multiply(splitInv);
|
---|
1712 | final double error = (product.high - 1) + product.low;
|
---|
1713 |
|
---|
1714 | // better accuracy estimate of reciprocal
|
---|
1715 | return Double.isNaN(error) ? splitInv : new Split(splitInv.high, splitInv.low - error / full);
|
---|
1716 |
|
---|
1717 | }
|
---|
1718 |
|
---|
1719 | /** Computes this^e.
|
---|
1720 | * @param e exponent (beware, here it MUST be > 0; the only exclusion is Long.MIN_VALUE)
|
---|
1721 | * @return d^e, split in high and low bits
|
---|
1722 | * @since 3.6
|
---|
1723 | */
|
---|
1724 | private Split pow(final long e) {
|
---|
1725 |
|
---|
1726 | // prepare result
|
---|
1727 | Split result = new Split(1);
|
---|
1728 |
|
---|
1729 | // d^(2p)
|
---|
1730 | Split d2p = new Split(full, high, low);
|
---|
1731 |
|
---|
1732 | for (long p = e; p != 0; p >>>= 1) {
|
---|
1733 |
|
---|
1734 | if ((p & 0x1) != 0) {
|
---|
1735 | // accurate multiplication result = result * d^(2p) using Veltkamp TwoProduct algorithm
|
---|
1736 | result = result.multiply(d2p);
|
---|
1737 | }
|
---|
1738 |
|
---|
1739 | // accurate squaring d^(2(p+1)) = d^(2p) * d^(2p) using Veltkamp TwoProduct algorithm
|
---|
1740 | d2p = d2p.multiply(d2p);
|
---|
1741 |
|
---|
1742 | }
|
---|
1743 |
|
---|
1744 | if (Double.isNaN(result.full)) {
|
---|
1745 | if (Double.isNaN(full)) {
|
---|
1746 | return Split.NAN;
|
---|
1747 | } else {
|
---|
1748 | // some intermediate numbers exceeded capacity,
|
---|
1749 | // and the low order bits became NaN (because infinity - infinity = NaN)
|
---|
1750 | if (FastMath.abs(full) < 1) {
|
---|
1751 | return new Split(FastMath.copySign(0.0, full), 0.0);
|
---|
1752 | } else if (full < 0 && (e & 0x1) == 1) {
|
---|
1753 | return Split.NEGATIVE_INFINITY;
|
---|
1754 | } else {
|
---|
1755 | return Split.POSITIVE_INFINITY;
|
---|
1756 | }
|
---|
1757 | }
|
---|
1758 | } else {
|
---|
1759 | return result;
|
---|
1760 | }
|
---|
1761 |
|
---|
1762 | }
|
---|
1763 |
|
---|
1764 | }
|
---|
1765 |
|
---|
1766 | /**
|
---|
1767 | * Computes sin(x) - x, where |x| < 1/16.
|
---|
1768 | * Use a Remez polynomial approximation.
|
---|
1769 | * @param x a number smaller than 1/16
|
---|
1770 | * @return sin(x) - x
|
---|
1771 | */
|
---|
1772 | private static double polySine(final double x)
|
---|
1773 | {
|
---|
1774 | double x2 = x*x;
|
---|
1775 |
|
---|
1776 | double p = 2.7553817452272217E-6;
|
---|
1777 | p = p * x2 + -1.9841269659586505E-4;
|
---|
1778 | p = p * x2 + 0.008333333333329196;
|
---|
1779 | p = p * x2 + -0.16666666666666666;
|
---|
1780 | //p *= x2;
|
---|
1781 | //p *= x;
|
---|
1782 | p = p * x2 * x;
|
---|
1783 |
|
---|
1784 | return p;
|
---|
1785 | }
|
---|
1786 |
|
---|
1787 | /**
|
---|
1788 | * Computes cos(x) - 1, where |x| < 1/16.
|
---|
1789 | * Use a Remez polynomial approximation.
|
---|
1790 | * @param x a number smaller than 1/16
|
---|
1791 | * @return cos(x) - 1
|
---|
1792 | */
|
---|
1793 | private static double polyCosine(double x) {
|
---|
1794 | double x2 = x*x;
|
---|
1795 |
|
---|
1796 | double p = 2.479773539153719E-5;
|
---|
1797 | p = p * x2 + -0.0013888888689039883;
|
---|
1798 | p = p * x2 + 0.041666666666621166;
|
---|
1799 | p = p * x2 + -0.49999999999999994;
|
---|
1800 | p *= x2;
|
---|
1801 |
|
---|
1802 | return p;
|
---|
1803 | }
|
---|
1804 |
|
---|
1805 | /**
|
---|
1806 | * Compute sine over the first quadrant (0 < x < pi/2).
|
---|
1807 | * Use combination of table lookup and rational polynomial expansion.
|
---|
1808 | * @param xa number from which sine is requested
|
---|
1809 | * @param xb extra bits for x (may be 0.0)
|
---|
1810 | * @return sin(xa + xb)
|
---|
1811 | */
|
---|
1812 | private static double sinQ(double xa, double xb) {
|
---|
1813 | int idx = (int) ((xa * 8.0) + 0.5);
|
---|
1814 | final double epsilon = xa - EIGHTHS[idx]; //idx*0.125;
|
---|
1815 |
|
---|
1816 | // Table lookups
|
---|
1817 | final double sintA = SINE_TABLE_A[idx];
|
---|
1818 | final double sintB = SINE_TABLE_B[idx];
|
---|
1819 | final double costA = COSINE_TABLE_A[idx];
|
---|
1820 | final double costB = COSINE_TABLE_B[idx];
|
---|
1821 |
|
---|
1822 | // Polynomial eval of sin(epsilon), cos(epsilon)
|
---|
1823 | double sinEpsA = epsilon;
|
---|
1824 | double sinEpsB = polySine(epsilon);
|
---|
1825 | final double cosEpsA = 1.0;
|
---|
1826 | final double cosEpsB = polyCosine(epsilon);
|
---|
1827 |
|
---|
1828 | // Split epsilon xa + xb = x
|
---|
1829 | final double temp = sinEpsA * HEX_40000000;
|
---|
1830 | double temp2 = (sinEpsA + temp) - temp;
|
---|
1831 | sinEpsB += sinEpsA - temp2;
|
---|
1832 | sinEpsA = temp2;
|
---|
1833 |
|
---|
1834 | /* Compute sin(x) by angle addition formula */
|
---|
1835 | double result;
|
---|
1836 |
|
---|
1837 | /* Compute the following sum:
|
---|
1838 | *
|
---|
1839 | * result = sintA + costA*sinEpsA + sintA*cosEpsB + costA*sinEpsB +
|
---|
1840 | * sintB + costB*sinEpsA + sintB*cosEpsB + costB*sinEpsB;
|
---|
1841 | *
|
---|
1842 | * Ranges of elements
|
---|
1843 | *
|
---|
1844 | * xxxtA 0 PI/2
|
---|
1845 | * xxxtB -1.5e-9 1.5e-9
|
---|
1846 | * sinEpsA -0.0625 0.0625
|
---|
1847 | * sinEpsB -6e-11 6e-11
|
---|
1848 | * cosEpsA 1.0
|
---|
1849 | * cosEpsB 0 -0.0625
|
---|
1850 | *
|
---|
1851 | */
|
---|
1852 |
|
---|
1853 | //result = sintA + costA*sinEpsA + sintA*cosEpsB + costA*sinEpsB +
|
---|
1854 | // sintB + costB*sinEpsA + sintB*cosEpsB + costB*sinEpsB;
|
---|
1855 |
|
---|
1856 | //result = sintA + sintA*cosEpsB + sintB + sintB * cosEpsB;
|
---|
1857 | //result += costA*sinEpsA + costA*sinEpsB + costB*sinEpsA + costB * sinEpsB;
|
---|
1858 | double a = 0;
|
---|
1859 | double b = 0;
|
---|
1860 |
|
---|
1861 | double t = sintA;
|
---|
1862 | double c = a + t;
|
---|
1863 | double d = -(c - a - t);
|
---|
1864 | a = c;
|
---|
1865 | b += d;
|
---|
1866 |
|
---|
1867 | t = costA * sinEpsA;
|
---|
1868 | c = a + t;
|
---|
1869 | d = -(c - a - t);
|
---|
1870 | a = c;
|
---|
1871 | b += d;
|
---|
1872 |
|
---|
1873 | b = b + sintA * cosEpsB + costA * sinEpsB;
|
---|
1874 | /*
|
---|
1875 | t = sintA*cosEpsB;
|
---|
1876 | c = a + t;
|
---|
1877 | d = -(c - a - t);
|
---|
1878 | a = c;
|
---|
1879 | b = b + d;
|
---|
1880 |
|
---|
1881 | t = costA*sinEpsB;
|
---|
1882 | c = a + t;
|
---|
1883 | d = -(c - a - t);
|
---|
1884 | a = c;
|
---|
1885 | b = b + d;
|
---|
1886 | */
|
---|
1887 |
|
---|
1888 | b = b + sintB + costB * sinEpsA + sintB * cosEpsB + costB * sinEpsB;
|
---|
1889 | /*
|
---|
1890 | t = sintB;
|
---|
1891 | c = a + t;
|
---|
1892 | d = -(c - a - t);
|
---|
1893 | a = c;
|
---|
1894 | b = b + d;
|
---|
1895 |
|
---|
1896 | t = costB*sinEpsA;
|
---|
1897 | c = a + t;
|
---|
1898 | d = -(c - a - t);
|
---|
1899 | a = c;
|
---|
1900 | b = b + d;
|
---|
1901 |
|
---|
1902 | t = sintB*cosEpsB;
|
---|
1903 | c = a + t;
|
---|
1904 | d = -(c - a - t);
|
---|
1905 | a = c;
|
---|
1906 | b = b + d;
|
---|
1907 |
|
---|
1908 | t = costB*sinEpsB;
|
---|
1909 | c = a + t;
|
---|
1910 | d = -(c - a - t);
|
---|
1911 | a = c;
|
---|
1912 | b = b + d;
|
---|
1913 | */
|
---|
1914 |
|
---|
1915 | if (xb != 0.0) {
|
---|
1916 | t = ((costA + costB) * (cosEpsA + cosEpsB) -
|
---|
1917 | (sintA + sintB) * (sinEpsA + sinEpsB)) * xb; // approximate cosine*xb
|
---|
1918 | c = a + t;
|
---|
1919 | d = -(c - a - t);
|
---|
1920 | a = c;
|
---|
1921 | b += d;
|
---|
1922 | }
|
---|
1923 |
|
---|
1924 | result = a + b;
|
---|
1925 |
|
---|
1926 | return result;
|
---|
1927 | }
|
---|
1928 |
|
---|
1929 | /**
|
---|
1930 | * Compute cosine in the first quadrant by subtracting input from PI/2 and
|
---|
1931 | * then calling sinQ. This is more accurate as the input approaches PI/2.
|
---|
1932 | * @param xa number from which cosine is requested
|
---|
1933 | * @param xb extra bits for x (may be 0.0)
|
---|
1934 | * @return cos(xa + xb)
|
---|
1935 | */
|
---|
1936 | private static double cosQ(double xa, double xb) {
|
---|
1937 | final double pi2a = 1.5707963267948966;
|
---|
1938 | final double pi2b = 6.123233995736766E-17;
|
---|
1939 |
|
---|
1940 | final double a = pi2a - xa;
|
---|
1941 | double b = -(a - pi2a + xa);
|
---|
1942 | b += pi2b - xb;
|
---|
1943 |
|
---|
1944 | return sinQ(a, b);
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 | /**
|
---|
1948 | * Compute tangent (or cotangent) over the first quadrant. 0 < x < pi/2
|
---|
1949 | * Use combination of table lookup and rational polynomial expansion.
|
---|
1950 | * @param xa number from which sine is requested
|
---|
1951 | * @param xb extra bits for x (may be 0.0)
|
---|
1952 | * @param cotanFlag if true, compute the cotangent instead of the tangent
|
---|
1953 | * @return tan(xa+xb) (or cotangent, depending on cotanFlag)
|
---|
1954 | */
|
---|
1955 | private static double tanQ(double xa, double xb, boolean cotanFlag) {
|
---|
1956 |
|
---|
1957 | int idx = (int) ((xa * 8.0) + 0.5);
|
---|
1958 | final double epsilon = xa - EIGHTHS[idx]; //idx*0.125;
|
---|
1959 |
|
---|
1960 | // Table lookups
|
---|
1961 | final double sintA = SINE_TABLE_A[idx];
|
---|
1962 | final double sintB = SINE_TABLE_B[idx];
|
---|
1963 | final double costA = COSINE_TABLE_A[idx];
|
---|
1964 | final double costB = COSINE_TABLE_B[idx];
|
---|
1965 |
|
---|
1966 | // Polynomial eval of sin(epsilon), cos(epsilon)
|
---|
1967 | double sinEpsA = epsilon;
|
---|
1968 | double sinEpsB = polySine(epsilon);
|
---|
1969 | final double cosEpsA = 1.0;
|
---|
1970 | final double cosEpsB = polyCosine(epsilon);
|
---|
1971 |
|
---|
1972 | // Split epsilon xa + xb = x
|
---|
1973 | double temp = sinEpsA * HEX_40000000;
|
---|
1974 | double temp2 = (sinEpsA + temp) - temp;
|
---|
1975 | sinEpsB += sinEpsA - temp2;
|
---|
1976 | sinEpsA = temp2;
|
---|
1977 |
|
---|
1978 | /* Compute sin(x) by angle addition formula */
|
---|
1979 |
|
---|
1980 | /* Compute the following sum:
|
---|
1981 | *
|
---|
1982 | * result = sintA + costA*sinEpsA + sintA*cosEpsB + costA*sinEpsB +
|
---|
1983 | * sintB + costB*sinEpsA + sintB*cosEpsB + costB*sinEpsB;
|
---|
1984 | *
|
---|
1985 | * Ranges of elements
|
---|
1986 | *
|
---|
1987 | * xxxtA 0 PI/2
|
---|
1988 | * xxxtB -1.5e-9 1.5e-9
|
---|
1989 | * sinEpsA -0.0625 0.0625
|
---|
1990 | * sinEpsB -6e-11 6e-11
|
---|
1991 | * cosEpsA 1.0
|
---|
1992 | * cosEpsB 0 -0.0625
|
---|
1993 | *
|
---|
1994 | */
|
---|
1995 |
|
---|
1996 | //result = sintA + costA*sinEpsA + sintA*cosEpsB + costA*sinEpsB +
|
---|
1997 | // sintB + costB*sinEpsA + sintB*cosEpsB + costB*sinEpsB;
|
---|
1998 |
|
---|
1999 | //result = sintA + sintA*cosEpsB + sintB + sintB * cosEpsB;
|
---|
2000 | //result += costA*sinEpsA + costA*sinEpsB + costB*sinEpsA + costB * sinEpsB;
|
---|
2001 | double a = 0;
|
---|
2002 | double b = 0;
|
---|
2003 |
|
---|
2004 | // Compute sine
|
---|
2005 | double t = sintA;
|
---|
2006 | double c = a + t;
|
---|
2007 | double d = -(c - a - t);
|
---|
2008 | a = c;
|
---|
2009 | b += d;
|
---|
2010 |
|
---|
2011 | t = costA*sinEpsA;
|
---|
2012 | c = a + t;
|
---|
2013 | d = -(c - a - t);
|
---|
2014 | a = c;
|
---|
2015 | b += d;
|
---|
2016 |
|
---|
2017 | b += sintA*cosEpsB + costA*sinEpsB;
|
---|
2018 | b += sintB + costB*sinEpsA + sintB*cosEpsB + costB*sinEpsB;
|
---|
2019 |
|
---|
2020 | double sina = a + b;
|
---|
2021 | double sinb = -(sina - a - b);
|
---|
2022 |
|
---|
2023 | // Compute cosine
|
---|
2024 |
|
---|
2025 | a = b = c = d = 0.0;
|
---|
2026 |
|
---|
2027 | t = costA*cosEpsA;
|
---|
2028 | c = a + t;
|
---|
2029 | d = -(c - a - t);
|
---|
2030 | a = c;
|
---|
2031 | b += d;
|
---|
2032 |
|
---|
2033 | t = -sintA*sinEpsA;
|
---|
2034 | c = a + t;
|
---|
2035 | d = -(c - a - t);
|
---|
2036 | a = c;
|
---|
2037 | b += d;
|
---|
2038 |
|
---|
2039 | b += costB*cosEpsA + costA*cosEpsB + costB*cosEpsB;
|
---|
2040 | b -= sintB*sinEpsA + sintA*sinEpsB + sintB*sinEpsB;
|
---|
2041 |
|
---|
2042 | double cosa = a + b;
|
---|
2043 | double cosb = -(cosa - a - b);
|
---|
2044 |
|
---|
2045 | if (cotanFlag) {
|
---|
2046 | double tmp;
|
---|
2047 | tmp = cosa; cosa = sina; sina = tmp;
|
---|
2048 | tmp = cosb; cosb = sinb; sinb = tmp;
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 |
|
---|
2052 | /* estimate and correct, compute 1.0/(cosa+cosb) */
|
---|
2053 | /*
|
---|
2054 | double est = (sina+sinb)/(cosa+cosb);
|
---|
2055 | double err = (sina - cosa*est) + (sinb - cosb*est);
|
---|
2056 | est += err/(cosa+cosb);
|
---|
2057 | err = (sina - cosa*est) + (sinb - cosb*est);
|
---|
2058 | */
|
---|
2059 |
|
---|
2060 | // f(x) = 1/x, f'(x) = -1/x^2
|
---|
2061 |
|
---|
2062 | double est = sina/cosa;
|
---|
2063 |
|
---|
2064 | /* Split the estimate to get more accurate read on division rounding */
|
---|
2065 | temp = est * HEX_40000000;
|
---|
2066 | double esta = (est + temp) - temp;
|
---|
2067 | double estb = est - esta;
|
---|
2068 |
|
---|
2069 | temp = cosa * HEX_40000000;
|
---|
2070 | double cosaa = (cosa + temp) - temp;
|
---|
2071 | double cosab = cosa - cosaa;
|
---|
2072 |
|
---|
2073 | //double err = (sina - est*cosa)/cosa; // Correction for division rounding
|
---|
2074 | double err = (sina - esta*cosaa - esta*cosab - estb*cosaa - estb*cosab)/cosa; // Correction for division rounding
|
---|
2075 | err += sinb/cosa; // Change in est due to sinb
|
---|
2076 | err += -sina * cosb / cosa / cosa; // Change in est due to cosb
|
---|
2077 |
|
---|
2078 | if (xb != 0.0) {
|
---|
2079 | // tan' = 1 + tan^2 cot' = -(1 + cot^2)
|
---|
2080 | // Approximate impact of xb
|
---|
2081 | double xbadj = xb + est*est*xb;
|
---|
2082 | if (cotanFlag) {
|
---|
2083 | xbadj = -xbadj;
|
---|
2084 | }
|
---|
2085 |
|
---|
2086 | err += xbadj;
|
---|
2087 | }
|
---|
2088 |
|
---|
2089 | return est+err;
|
---|
2090 | }
|
---|
2091 |
|
---|
2092 | /** Reduce the input argument using the Payne and Hanek method.
|
---|
2093 | * This is good for all inputs 0.0 < x < inf
|
---|
2094 | * Output is remainder after dividing by PI/2
|
---|
2095 | * The result array should contain 3 numbers.
|
---|
2096 | * result[0] is the integer portion, so mod 4 this gives the quadrant.
|
---|
2097 | * result[1] is the upper bits of the remainder
|
---|
2098 | * result[2] is the lower bits of the remainder
|
---|
2099 | *
|
---|
2100 | * @param x number to reduce
|
---|
2101 | * @param result placeholder where to put the result
|
---|
2102 | */
|
---|
2103 | private static void reducePayneHanek(double x, double result[])
|
---|
2104 | {
|
---|
2105 | /* Convert input double to bits */
|
---|
2106 | long inbits = Double.doubleToRawLongBits(x);
|
---|
2107 | int exponent = (int) ((inbits >> 52) & 0x7ff) - 1023;
|
---|
2108 |
|
---|
2109 | /* Convert to fixed point representation */
|
---|
2110 | inbits &= 0x000fffffffffffffL;
|
---|
2111 | inbits |= 0x0010000000000000L;
|
---|
2112 |
|
---|
2113 | /* Normalize input to be between 0.5 and 1.0 */
|
---|
2114 | exponent++;
|
---|
2115 | inbits <<= 11;
|
---|
2116 |
|
---|
2117 | /* Based on the exponent, get a shifted copy of recip2pi */
|
---|
2118 | long shpi0;
|
---|
2119 | long shpiA;
|
---|
2120 | long shpiB;
|
---|
2121 | int idx = exponent >> 6;
|
---|
2122 | int shift = exponent - (idx << 6);
|
---|
2123 |
|
---|
2124 | if (shift != 0) {
|
---|
2125 | shpi0 = (idx == 0) ? 0 : (RECIP_2PI[idx-1] << shift);
|
---|
2126 | shpi0 |= RECIP_2PI[idx] >>> (64-shift);
|
---|
2127 | shpiA = (RECIP_2PI[idx] << shift) | (RECIP_2PI[idx+1] >>> (64-shift));
|
---|
2128 | shpiB = (RECIP_2PI[idx+1] << shift) | (RECIP_2PI[idx+2] >>> (64-shift));
|
---|
2129 | } else {
|
---|
2130 | shpi0 = (idx == 0) ? 0 : RECIP_2PI[idx-1];
|
---|
2131 | shpiA = RECIP_2PI[idx];
|
---|
2132 | shpiB = RECIP_2PI[idx+1];
|
---|
2133 | }
|
---|
2134 |
|
---|
2135 | /* Multiply input by shpiA */
|
---|
2136 | long a = inbits >>> 32;
|
---|
2137 | long b = inbits & 0xffffffffL;
|
---|
2138 |
|
---|
2139 | long c = shpiA >>> 32;
|
---|
2140 | long d = shpiA & 0xffffffffL;
|
---|
2141 |
|
---|
2142 | long ac = a * c;
|
---|
2143 | long bd = b * d;
|
---|
2144 | long bc = b * c;
|
---|
2145 | long ad = a * d;
|
---|
2146 |
|
---|
2147 | long prodB = bd + (ad << 32);
|
---|
2148 | long prodA = ac + (ad >>> 32);
|
---|
2149 |
|
---|
2150 | boolean bita = (bd & 0x8000000000000000L) != 0;
|
---|
2151 | boolean bitb = (ad & 0x80000000L ) != 0;
|
---|
2152 | boolean bitsum = (prodB & 0x8000000000000000L) != 0;
|
---|
2153 |
|
---|
2154 | /* Carry */
|
---|
2155 | if ( (bita && bitb) ||
|
---|
2156 | ((bita || bitb) && !bitsum) ) {
|
---|
2157 | prodA++;
|
---|
2158 | }
|
---|
2159 |
|
---|
2160 | bita = (prodB & 0x8000000000000000L) != 0;
|
---|
2161 | bitb = (bc & 0x80000000L ) != 0;
|
---|
2162 |
|
---|
2163 | prodB += bc << 32;
|
---|
2164 | prodA += bc >>> 32;
|
---|
2165 |
|
---|
2166 | bitsum = (prodB & 0x8000000000000000L) != 0;
|
---|
2167 |
|
---|
2168 | /* Carry */
|
---|
2169 | if ( (bita && bitb) ||
|
---|
2170 | ((bita || bitb) && !bitsum) ) {
|
---|
2171 | prodA++;
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 | /* Multiply input by shpiB */
|
---|
2175 | c = shpiB >>> 32;
|
---|
2176 | d = shpiB & 0xffffffffL;
|
---|
2177 | ac = a * c;
|
---|
2178 | bc = b * c;
|
---|
2179 | ad = a * d;
|
---|
2180 |
|
---|
2181 | /* Collect terms */
|
---|
2182 | ac += (bc + ad) >>> 32;
|
---|
2183 |
|
---|
2184 | bita = (prodB & 0x8000000000000000L) != 0;
|
---|
2185 | bitb = (ac & 0x8000000000000000L ) != 0;
|
---|
2186 | prodB += ac;
|
---|
2187 | bitsum = (prodB & 0x8000000000000000L) != 0;
|
---|
2188 | /* Carry */
|
---|
2189 | if ( (bita && bitb) ||
|
---|
2190 | ((bita || bitb) && !bitsum) ) {
|
---|
2191 | prodA++;
|
---|
2192 | }
|
---|
2193 |
|
---|
2194 | /* Multiply by shpi0 */
|
---|
2195 | c = shpi0 >>> 32;
|
---|
2196 | d = shpi0 & 0xffffffffL;
|
---|
2197 |
|
---|
2198 | bd = b * d;
|
---|
2199 | bc = b * c;
|
---|
2200 | ad = a * d;
|
---|
2201 |
|
---|
2202 | prodA += bd + ((bc + ad) << 32);
|
---|
2203 |
|
---|
2204 | /*
|
---|
2205 | * prodA, prodB now contain the remainder as a fraction of PI. We want this as a fraction of
|
---|
2206 | * PI/2, so use the following steps:
|
---|
2207 | * 1.) multiply by 4.
|
---|
2208 | * 2.) do a fixed point muliply by PI/4.
|
---|
2209 | * 3.) Convert to floating point.
|
---|
2210 | * 4.) Multiply by 2
|
---|
2211 | */
|
---|
2212 |
|
---|
2213 | /* This identifies the quadrant */
|
---|
2214 | int intPart = (int)(prodA >>> 62);
|
---|
2215 |
|
---|
2216 | /* Multiply by 4 */
|
---|
2217 | prodA <<= 2;
|
---|
2218 | prodA |= prodB >>> 62;
|
---|
2219 | prodB <<= 2;
|
---|
2220 |
|
---|
2221 | /* Multiply by PI/4 */
|
---|
2222 | a = prodA >>> 32;
|
---|
2223 | b = prodA & 0xffffffffL;
|
---|
2224 |
|
---|
2225 | c = PI_O_4_BITS[0] >>> 32;
|
---|
2226 | d = PI_O_4_BITS[0] & 0xffffffffL;
|
---|
2227 |
|
---|
2228 | ac = a * c;
|
---|
2229 | bd = b * d;
|
---|
2230 | bc = b * c;
|
---|
2231 | ad = a * d;
|
---|
2232 |
|
---|
2233 | long prod2B = bd + (ad << 32);
|
---|
2234 | long prod2A = ac + (ad >>> 32);
|
---|
2235 |
|
---|
2236 | bita = (bd & 0x8000000000000000L) != 0;
|
---|
2237 | bitb = (ad & 0x80000000L ) != 0;
|
---|
2238 | bitsum = (prod2B & 0x8000000000000000L) != 0;
|
---|
2239 |
|
---|
2240 | /* Carry */
|
---|
2241 | if ( (bita && bitb) ||
|
---|
2242 | ((bita || bitb) && !bitsum) ) {
|
---|
2243 | prod2A++;
|
---|
2244 | }
|
---|
2245 |
|
---|
2246 | bita = (prod2B & 0x8000000000000000L) != 0;
|
---|
2247 | bitb = (bc & 0x80000000L ) != 0;
|
---|
2248 |
|
---|
2249 | prod2B += bc << 32;
|
---|
2250 | prod2A += bc >>> 32;
|
---|
2251 |
|
---|
2252 | bitsum = (prod2B & 0x8000000000000000L) != 0;
|
---|
2253 |
|
---|
2254 | /* Carry */
|
---|
2255 | if ( (bita && bitb) ||
|
---|
2256 | ((bita || bitb) && !bitsum) ) {
|
---|
2257 | prod2A++;
|
---|
2258 | }
|
---|
2259 |
|
---|
2260 | /* Multiply input by pio4bits[1] */
|
---|
2261 | c = PI_O_4_BITS[1] >>> 32;
|
---|
2262 | d = PI_O_4_BITS[1] & 0xffffffffL;
|
---|
2263 | ac = a * c;
|
---|
2264 | bc = b * c;
|
---|
2265 | ad = a * d;
|
---|
2266 |
|
---|
2267 | /* Collect terms */
|
---|
2268 | ac += (bc + ad) >>> 32;
|
---|
2269 |
|
---|
2270 | bita = (prod2B & 0x8000000000000000L) != 0;
|
---|
2271 | bitb = (ac & 0x8000000000000000L ) != 0;
|
---|
2272 | prod2B += ac;
|
---|
2273 | bitsum = (prod2B & 0x8000000000000000L) != 0;
|
---|
2274 | /* Carry */
|
---|
2275 | if ( (bita && bitb) ||
|
---|
2276 | ((bita || bitb) && !bitsum) ) {
|
---|
2277 | prod2A++;
|
---|
2278 | }
|
---|
2279 |
|
---|
2280 | /* Multiply inputB by pio4bits[0] */
|
---|
2281 | a = prodB >>> 32;
|
---|
2282 | b = prodB & 0xffffffffL;
|
---|
2283 | c = PI_O_4_BITS[0] >>> 32;
|
---|
2284 | d = PI_O_4_BITS[0] & 0xffffffffL;
|
---|
2285 | ac = a * c;
|
---|
2286 | bc = b * c;
|
---|
2287 | ad = a * d;
|
---|
2288 |
|
---|
2289 | /* Collect terms */
|
---|
2290 | ac += (bc + ad) >>> 32;
|
---|
2291 |
|
---|
2292 | bita = (prod2B & 0x8000000000000000L) != 0;
|
---|
2293 | bitb = (ac & 0x8000000000000000L ) != 0;
|
---|
2294 | prod2B += ac;
|
---|
2295 | bitsum = (prod2B & 0x8000000000000000L) != 0;
|
---|
2296 | /* Carry */
|
---|
2297 | if ( (bita && bitb) ||
|
---|
2298 | ((bita || bitb) && !bitsum) ) {
|
---|
2299 | prod2A++;
|
---|
2300 | }
|
---|
2301 |
|
---|
2302 | /* Convert to double */
|
---|
2303 | double tmpA = (prod2A >>> 12) / TWO_POWER_52; // High order 52 bits
|
---|
2304 | double tmpB = (((prod2A & 0xfffL) << 40) + (prod2B >>> 24)) / TWO_POWER_52 / TWO_POWER_52; // Low bits
|
---|
2305 |
|
---|
2306 | double sumA = tmpA + tmpB;
|
---|
2307 | double sumB = -(sumA - tmpA - tmpB);
|
---|
2308 |
|
---|
2309 | /* Multiply by PI/2 and return */
|
---|
2310 | result[0] = intPart;
|
---|
2311 | result[1] = sumA * 2.0;
|
---|
2312 | result[2] = sumB * 2.0;
|
---|
2313 | }
|
---|
2314 |
|
---|
2315 | /**
|
---|
2316 | * Sine function.
|
---|
2317 | *
|
---|
2318 | * @param x Argument.
|
---|
2319 | * @return sin(x)
|
---|
2320 | */
|
---|
2321 | public static double sin(double x) {
|
---|
2322 | boolean negative = false;
|
---|
2323 | int quadrant = 0;
|
---|
2324 | double xa;
|
---|
2325 | double xb = 0.0;
|
---|
2326 |
|
---|
2327 | /* Take absolute value of the input */
|
---|
2328 | xa = x;
|
---|
2329 | if (x < 0) {
|
---|
2330 | negative = true;
|
---|
2331 | xa = -xa;
|
---|
2332 | }
|
---|
2333 |
|
---|
2334 | /* Check for zero and negative zero */
|
---|
2335 | if (xa == 0.0) {
|
---|
2336 | long bits = Double.doubleToRawLongBits(x);
|
---|
2337 | if (bits < 0) {
|
---|
2338 | return -0.0;
|
---|
2339 | }
|
---|
2340 | return 0.0;
|
---|
2341 | }
|
---|
2342 |
|
---|
2343 | if (xa != xa || xa == Double.POSITIVE_INFINITY) {
|
---|
2344 | return Double.NaN;
|
---|
2345 | }
|
---|
2346 |
|
---|
2347 | /* Perform any argument reduction */
|
---|
2348 | if (xa > 3294198.0) {
|
---|
2349 | // PI * (2**20)
|
---|
2350 | // Argument too big for CodyWaite reduction. Must use
|
---|
2351 | // PayneHanek.
|
---|
2352 | double reduceResults[] = new double[3];
|
---|
2353 | reducePayneHanek(xa, reduceResults);
|
---|
2354 | quadrant = ((int) reduceResults[0]) & 3;
|
---|
2355 | xa = reduceResults[1];
|
---|
2356 | xb = reduceResults[2];
|
---|
2357 | } else if (xa > 1.5707963267948966) {
|
---|
2358 | final CodyWaite cw = new CodyWaite(xa);
|
---|
2359 | quadrant = cw.getK() & 3;
|
---|
2360 | xa = cw.getRemA();
|
---|
2361 | xb = cw.getRemB();
|
---|
2362 | }
|
---|
2363 |
|
---|
2364 | if (negative) {
|
---|
2365 | quadrant ^= 2; // Flip bit 1
|
---|
2366 | }
|
---|
2367 |
|
---|
2368 | switch (quadrant) {
|
---|
2369 | case 0:
|
---|
2370 | return sinQ(xa, xb);
|
---|
2371 | case 1:
|
---|
2372 | return cosQ(xa, xb);
|
---|
2373 | case 2:
|
---|
2374 | return -sinQ(xa, xb);
|
---|
2375 | case 3:
|
---|
2376 | return -cosQ(xa, xb);
|
---|
2377 | default:
|
---|
2378 | return Double.NaN;
|
---|
2379 | }
|
---|
2380 | }
|
---|
2381 |
|
---|
2382 | /**
|
---|
2383 | * Cosine function.
|
---|
2384 | *
|
---|
2385 | * @param x Argument.
|
---|
2386 | * @return cos(x)
|
---|
2387 | */
|
---|
2388 | public static double cos(double x) {
|
---|
2389 | int quadrant = 0;
|
---|
2390 |
|
---|
2391 | /* Take absolute value of the input */
|
---|
2392 | double xa = x;
|
---|
2393 | if (x < 0) {
|
---|
2394 | xa = -xa;
|
---|
2395 | }
|
---|
2396 |
|
---|
2397 | if (xa != xa || xa == Double.POSITIVE_INFINITY) {
|
---|
2398 | return Double.NaN;
|
---|
2399 | }
|
---|
2400 |
|
---|
2401 | /* Perform any argument reduction */
|
---|
2402 | double xb = 0;
|
---|
2403 | if (xa > 3294198.0) {
|
---|
2404 | // PI * (2**20)
|
---|
2405 | // Argument too big for CodyWaite reduction. Must use
|
---|
2406 | // PayneHanek.
|
---|
2407 | double reduceResults[] = new double[3];
|
---|
2408 | reducePayneHanek(xa, reduceResults);
|
---|
2409 | quadrant = ((int) reduceResults[0]) & 3;
|
---|
2410 | xa = reduceResults[1];
|
---|
2411 | xb = reduceResults[2];
|
---|
2412 | } else if (xa > 1.5707963267948966) {
|
---|
2413 | final CodyWaite cw = new CodyWaite(xa);
|
---|
2414 | quadrant = cw.getK() & 3;
|
---|
2415 | xa = cw.getRemA();
|
---|
2416 | xb = cw.getRemB();
|
---|
2417 | }
|
---|
2418 |
|
---|
2419 | //if (negative)
|
---|
2420 | // quadrant = (quadrant + 2) % 4;
|
---|
2421 |
|
---|
2422 | switch (quadrant) {
|
---|
2423 | case 0:
|
---|
2424 | return cosQ(xa, xb);
|
---|
2425 | case 1:
|
---|
2426 | return -sinQ(xa, xb);
|
---|
2427 | case 2:
|
---|
2428 | return -cosQ(xa, xb);
|
---|
2429 | case 3:
|
---|
2430 | return sinQ(xa, xb);
|
---|
2431 | default:
|
---|
2432 | return Double.NaN;
|
---|
2433 | }
|
---|
2434 | }
|
---|
2435 |
|
---|
2436 | /**
|
---|
2437 | * Tangent function.
|
---|
2438 | *
|
---|
2439 | * @param x Argument.
|
---|
2440 | * @return tan(x)
|
---|
2441 | */
|
---|
2442 | public static double tan(double x) {
|
---|
2443 | boolean negative = false;
|
---|
2444 | int quadrant = 0;
|
---|
2445 |
|
---|
2446 | /* Take absolute value of the input */
|
---|
2447 | double xa = x;
|
---|
2448 | if (x < 0) {
|
---|
2449 | negative = true;
|
---|
2450 | xa = -xa;
|
---|
2451 | }
|
---|
2452 |
|
---|
2453 | /* Check for zero and negative zero */
|
---|
2454 | if (xa == 0.0) {
|
---|
2455 | long bits = Double.doubleToRawLongBits(x);
|
---|
2456 | if (bits < 0) {
|
---|
2457 | return -0.0;
|
---|
2458 | }
|
---|
2459 | return 0.0;
|
---|
2460 | }
|
---|
2461 |
|
---|
2462 | if (xa != xa || xa == Double.POSITIVE_INFINITY) {
|
---|
2463 | return Double.NaN;
|
---|
2464 | }
|
---|
2465 |
|
---|
2466 | /* Perform any argument reduction */
|
---|
2467 | double xb = 0;
|
---|
2468 | if (xa > 3294198.0) {
|
---|
2469 | // PI * (2**20)
|
---|
2470 | // Argument too big for CodyWaite reduction. Must use
|
---|
2471 | // PayneHanek.
|
---|
2472 | double reduceResults[] = new double[3];
|
---|
2473 | reducePayneHanek(xa, reduceResults);
|
---|
2474 | quadrant = ((int) reduceResults[0]) & 3;
|
---|
2475 | xa = reduceResults[1];
|
---|
2476 | xb = reduceResults[2];
|
---|
2477 | } else if (xa > 1.5707963267948966) {
|
---|
2478 | final CodyWaite cw = new CodyWaite(xa);
|
---|
2479 | quadrant = cw.getK() & 3;
|
---|
2480 | xa = cw.getRemA();
|
---|
2481 | xb = cw.getRemB();
|
---|
2482 | }
|
---|
2483 |
|
---|
2484 | if (xa > 1.5) {
|
---|
2485 | // Accuracy suffers between 1.5 and PI/2
|
---|
2486 | final double pi2a = 1.5707963267948966;
|
---|
2487 | final double pi2b = 6.123233995736766E-17;
|
---|
2488 |
|
---|
2489 | final double a = pi2a - xa;
|
---|
2490 | double b = -(a - pi2a + xa);
|
---|
2491 | b += pi2b - xb;
|
---|
2492 |
|
---|
2493 | xa = a + b;
|
---|
2494 | xb = -(xa - a - b);
|
---|
2495 | quadrant ^= 1;
|
---|
2496 | negative ^= true;
|
---|
2497 | }
|
---|
2498 |
|
---|
2499 | double result;
|
---|
2500 | if ((quadrant & 1) == 0) {
|
---|
2501 | result = tanQ(xa, xb, false);
|
---|
2502 | } else {
|
---|
2503 | result = -tanQ(xa, xb, true);
|
---|
2504 | }
|
---|
2505 |
|
---|
2506 | if (negative) {
|
---|
2507 | result = -result;
|
---|
2508 | }
|
---|
2509 |
|
---|
2510 | return result;
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | /**
|
---|
2514 | * Arctangent function
|
---|
2515 | * @param x a number
|
---|
2516 | * @return atan(x)
|
---|
2517 | */
|
---|
2518 | public static double atan(double x) {
|
---|
2519 | return atan(x, 0.0, false);
|
---|
2520 | }
|
---|
2521 |
|
---|
2522 | /** Internal helper function to compute arctangent.
|
---|
2523 | * @param xa number from which arctangent is requested
|
---|
2524 | * @param xb extra bits for x (may be 0.0)
|
---|
2525 | * @param leftPlane if true, result angle must be put in the left half plane
|
---|
2526 | * @return atan(xa + xb) (or angle shifted by {@code PI} if leftPlane is true)
|
---|
2527 | */
|
---|
2528 | private static double atan(double xa, double xb, boolean leftPlane) {
|
---|
2529 | if (xa == 0.0) { // Matches +/- 0.0; return correct sign
|
---|
2530 | return leftPlane ? copySign(Math.PI, xa) : xa;
|
---|
2531 | }
|
---|
2532 |
|
---|
2533 | final boolean negate;
|
---|
2534 | if (xa < 0) {
|
---|
2535 | // negative
|
---|
2536 | xa = -xa;
|
---|
2537 | xb = -xb;
|
---|
2538 | negate = true;
|
---|
2539 | } else {
|
---|
2540 | negate = false;
|
---|
2541 | }
|
---|
2542 |
|
---|
2543 | if (xa > 1.633123935319537E16) { // Very large input
|
---|
2544 | return (negate ^ leftPlane) ? (-Math.PI * F_1_2) : (Math.PI * F_1_2);
|
---|
2545 | }
|
---|
2546 |
|
---|
2547 | /* Estimate the closest tabulated arctan value, compute eps = xa-tangentTable */
|
---|
2548 | final int idx;
|
---|
2549 | if (xa < 1) {
|
---|
2550 | idx = (int) (((-1.7168146928204136 * xa * xa + 8.0) * xa) + 0.5);
|
---|
2551 | } else {
|
---|
2552 | final double oneOverXa = 1 / xa;
|
---|
2553 | idx = (int) (-((-1.7168146928204136 * oneOverXa * oneOverXa + 8.0) * oneOverXa) + 13.07);
|
---|
2554 | }
|
---|
2555 |
|
---|
2556 | final double ttA = TANGENT_TABLE_A[idx];
|
---|
2557 | final double ttB = TANGENT_TABLE_B[idx];
|
---|
2558 |
|
---|
2559 | double epsA = xa - ttA;
|
---|
2560 | double epsB = -(epsA - xa + ttA);
|
---|
2561 | epsB += xb - ttB;
|
---|
2562 |
|
---|
2563 | double temp = epsA + epsB;
|
---|
2564 | epsB = -(temp - epsA - epsB);
|
---|
2565 | epsA = temp;
|
---|
2566 |
|
---|
2567 | /* Compute eps = eps / (1.0 + xa*tangent) */
|
---|
2568 | temp = xa * HEX_40000000;
|
---|
2569 | double ya = xa + temp - temp;
|
---|
2570 | double yb = xb + xa - ya;
|
---|
2571 | xa = ya;
|
---|
2572 | xb += yb;
|
---|
2573 |
|
---|
2574 | //if (idx > 8 || idx == 0)
|
---|
2575 | if (idx == 0) {
|
---|
2576 | /* If the slope of the arctan is gentle enough (< 0.45), this approximation will suffice */
|
---|
2577 | //double denom = 1.0 / (1.0 + xa*tangentTableA[idx] + xb*tangentTableA[idx] + xa*tangentTableB[idx] + xb*tangentTableB[idx]);
|
---|
2578 | final double denom = 1d / (1d + (xa + xb) * (ttA + ttB));
|
---|
2579 | //double denom = 1.0 / (1.0 + xa*tangentTableA[idx]);
|
---|
2580 | ya = epsA * denom;
|
---|
2581 | yb = epsB * denom;
|
---|
2582 | } else {
|
---|
2583 | double temp2 = xa * ttA;
|
---|
2584 | double za = 1d + temp2;
|
---|
2585 | double zb = -(za - 1d - temp2);
|
---|
2586 | temp2 = xb * ttA + xa * ttB;
|
---|
2587 | temp = za + temp2;
|
---|
2588 | zb += -(temp - za - temp2);
|
---|
2589 | za = temp;
|
---|
2590 |
|
---|
2591 | zb += xb * ttB;
|
---|
2592 | ya = epsA / za;
|
---|
2593 |
|
---|
2594 | temp = ya * HEX_40000000;
|
---|
2595 | final double yaa = (ya + temp) - temp;
|
---|
2596 | final double yab = ya - yaa;
|
---|
2597 |
|
---|
2598 | temp = za * HEX_40000000;
|
---|
2599 | final double zaa = (za + temp) - temp;
|
---|
2600 | final double zab = za - zaa;
|
---|
2601 |
|
---|
2602 | /* Correct for rounding in division */
|
---|
2603 | yb = (epsA - yaa * zaa - yaa * zab - yab * zaa - yab * zab) / za;
|
---|
2604 |
|
---|
2605 | yb += -epsA * zb / za / za;
|
---|
2606 | yb += epsB / za;
|
---|
2607 | }
|
---|
2608 |
|
---|
2609 |
|
---|
2610 | epsA = ya;
|
---|
2611 | epsB = yb;
|
---|
2612 |
|
---|
2613 | /* Evaluate polynomial */
|
---|
2614 | final double epsA2 = epsA * epsA;
|
---|
2615 |
|
---|
2616 | /*
|
---|
2617 | yb = -0.09001346640161823;
|
---|
2618 | yb = yb * epsA2 + 0.11110718400605211;
|
---|
2619 | yb = yb * epsA2 + -0.1428571349122913;
|
---|
2620 | yb = yb * epsA2 + 0.19999999999273194;
|
---|
2621 | yb = yb * epsA2 + -0.33333333333333093;
|
---|
2622 | yb = yb * epsA2 * epsA;
|
---|
2623 | */
|
---|
2624 |
|
---|
2625 | yb = 0.07490822288864472;
|
---|
2626 | yb = yb * epsA2 - 0.09088450866185192;
|
---|
2627 | yb = yb * epsA2 + 0.11111095942313305;
|
---|
2628 | yb = yb * epsA2 - 0.1428571423679182;
|
---|
2629 | yb = yb * epsA2 + 0.19999999999923582;
|
---|
2630 | yb = yb * epsA2 - 0.33333333333333287;
|
---|
2631 | yb = yb * epsA2 * epsA;
|
---|
2632 |
|
---|
2633 |
|
---|
2634 | ya = epsA;
|
---|
2635 |
|
---|
2636 | temp = ya + yb;
|
---|
2637 | yb = -(temp - ya - yb);
|
---|
2638 | ya = temp;
|
---|
2639 |
|
---|
2640 | /* Add in effect of epsB. atan'(x) = 1/(1+x^2) */
|
---|
2641 | yb += epsB / (1d + epsA * epsA);
|
---|
2642 |
|
---|
2643 | final double eighths = EIGHTHS[idx];
|
---|
2644 |
|
---|
2645 | //result = yb + eighths[idx] + ya;
|
---|
2646 | double za = eighths + ya;
|
---|
2647 | double zb = -(za - eighths - ya);
|
---|
2648 | temp = za + yb;
|
---|
2649 | zb += -(temp - za - yb);
|
---|
2650 | za = temp;
|
---|
2651 |
|
---|
2652 | double result = za + zb;
|
---|
2653 |
|
---|
2654 | if (leftPlane) {
|
---|
2655 | // Result is in the left plane
|
---|
2656 | final double resultb = -(result - za - zb);
|
---|
2657 | final double pia = 1.5707963267948966 * 2;
|
---|
2658 | final double pib = 6.123233995736766E-17 * 2;
|
---|
2659 |
|
---|
2660 | za = pia - result;
|
---|
2661 | zb = -(za - pia + result);
|
---|
2662 | zb += pib - resultb;
|
---|
2663 |
|
---|
2664 | result = za + zb;
|
---|
2665 | }
|
---|
2666 |
|
---|
2667 |
|
---|
2668 | if (negate ^ leftPlane) {
|
---|
2669 | result = -result;
|
---|
2670 | }
|
---|
2671 |
|
---|
2672 | return result;
|
---|
2673 | }
|
---|
2674 |
|
---|
2675 | /**
|
---|
2676 | * Two arguments arctangent function
|
---|
2677 | * @param y ordinate
|
---|
2678 | * @param x abscissa
|
---|
2679 | * @return phase angle of point (x,y) between {@code -PI} and {@code PI}
|
---|
2680 | */
|
---|
2681 | public static double atan2(double y, double x) {
|
---|
2682 | if (x != x || y != y) {
|
---|
2683 | return Double.NaN;
|
---|
2684 | }
|
---|
2685 |
|
---|
2686 | if (y == 0) {
|
---|
2687 | final double result = x * y;
|
---|
2688 | final double invx = 1d / x;
|
---|
2689 | final double invy = 1d / y;
|
---|
2690 |
|
---|
2691 | if (invx == 0) { // X is infinite
|
---|
2692 | if (x > 0) {
|
---|
2693 | return y; // return +/- 0.0
|
---|
2694 | } else {
|
---|
2695 | return copySign(Math.PI, y);
|
---|
2696 | }
|
---|
2697 | }
|
---|
2698 |
|
---|
2699 | if (x < 0 || invx < 0) {
|
---|
2700 | if (y < 0 || invy < 0) {
|
---|
2701 | return -Math.PI;
|
---|
2702 | } else {
|
---|
2703 | return Math.PI;
|
---|
2704 | }
|
---|
2705 | } else {
|
---|
2706 | return result;
|
---|
2707 | }
|
---|
2708 | }
|
---|
2709 |
|
---|
2710 | // y cannot now be zero
|
---|
2711 |
|
---|
2712 | if (y == Double.POSITIVE_INFINITY) {
|
---|
2713 | if (x == Double.POSITIVE_INFINITY) {
|
---|
2714 | return Math.PI * F_1_4;
|
---|
2715 | }
|
---|
2716 |
|
---|
2717 | if (x == Double.NEGATIVE_INFINITY) {
|
---|
2718 | return Math.PI * F_3_4;
|
---|
2719 | }
|
---|
2720 |
|
---|
2721 | return Math.PI * F_1_2;
|
---|
2722 | }
|
---|
2723 |
|
---|
2724 | if (y == Double.NEGATIVE_INFINITY) {
|
---|
2725 | if (x == Double.POSITIVE_INFINITY) {
|
---|
2726 | return -Math.PI * F_1_4;
|
---|
2727 | }
|
---|
2728 |
|
---|
2729 | if (x == Double.NEGATIVE_INFINITY) {
|
---|
2730 | return -Math.PI * F_3_4;
|
---|
2731 | }
|
---|
2732 |
|
---|
2733 | return -Math.PI * F_1_2;
|
---|
2734 | }
|
---|
2735 |
|
---|
2736 | if (x == Double.POSITIVE_INFINITY) {
|
---|
2737 | if (y > 0 || 1 / y > 0) {
|
---|
2738 | return 0d;
|
---|
2739 | }
|
---|
2740 |
|
---|
2741 | if (y < 0 || 1 / y < 0) {
|
---|
2742 | return -0d;
|
---|
2743 | }
|
---|
2744 | }
|
---|
2745 |
|
---|
2746 | if (x == Double.NEGATIVE_INFINITY)
|
---|
2747 | {
|
---|
2748 | if (y > 0.0 || 1 / y > 0.0) {
|
---|
2749 | return Math.PI;
|
---|
2750 | }
|
---|
2751 |
|
---|
2752 | if (y < 0 || 1 / y < 0) {
|
---|
2753 | return -Math.PI;
|
---|
2754 | }
|
---|
2755 | }
|
---|
2756 |
|
---|
2757 | // Neither y nor x can be infinite or NAN here
|
---|
2758 |
|
---|
2759 | if (x == 0) {
|
---|
2760 | if (y > 0 || 1 / y > 0) {
|
---|
2761 | return Math.PI * F_1_2;
|
---|
2762 | }
|
---|
2763 |
|
---|
2764 | if (y < 0 || 1 / y < 0) {
|
---|
2765 | return -Math.PI * F_1_2;
|
---|
2766 | }
|
---|
2767 | }
|
---|
2768 |
|
---|
2769 | // Compute ratio r = y/x
|
---|
2770 | final double r = y / x;
|
---|
2771 | if (Double.isInfinite(r)) { // bypass calculations that can create NaN
|
---|
2772 | return atan(r, 0, x < 0);
|
---|
2773 | }
|
---|
2774 |
|
---|
2775 | double ra = doubleHighPart(r);
|
---|
2776 | double rb = r - ra;
|
---|
2777 |
|
---|
2778 | // Split x
|
---|
2779 | final double xa = doubleHighPart(x);
|
---|
2780 | final double xb = x - xa;
|
---|
2781 |
|
---|
2782 | rb += (y - ra * xa - ra * xb - rb * xa - rb * xb) / x;
|
---|
2783 |
|
---|
2784 | final double temp = ra + rb;
|
---|
2785 | rb = -(temp - ra - rb);
|
---|
2786 | ra = temp;
|
---|
2787 |
|
---|
2788 | if (ra == 0) { // Fix up the sign so atan works correctly
|
---|
2789 | ra = copySign(0d, y);
|
---|
2790 | }
|
---|
2791 |
|
---|
2792 | // Call atan
|
---|
2793 | final double result = atan(ra, rb, x < 0);
|
---|
2794 |
|
---|
2795 | return result;
|
---|
2796 | }
|
---|
2797 |
|
---|
2798 | /** Compute the arc sine of a number.
|
---|
2799 | * @param x number on which evaluation is done
|
---|
2800 | * @return arc sine of x
|
---|
2801 | */
|
---|
2802 | public static double asin(double x) {
|
---|
2803 | if (x != x) {
|
---|
2804 | return Double.NaN;
|
---|
2805 | }
|
---|
2806 |
|
---|
2807 | if (x > 1.0 || x < -1.0) {
|
---|
2808 | return Double.NaN;
|
---|
2809 | }
|
---|
2810 |
|
---|
2811 | if (x == 1.0) {
|
---|
2812 | return Math.PI/2.0;
|
---|
2813 | }
|
---|
2814 |
|
---|
2815 | if (x == -1.0) {
|
---|
2816 | return -Math.PI/2.0;
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 | if (x == 0.0) { // Matches +/- 0.0; return correct sign
|
---|
2820 | return x;
|
---|
2821 | }
|
---|
2822 |
|
---|
2823 | /* Compute asin(x) = atan(x/sqrt(1-x*x)) */
|
---|
2824 |
|
---|
2825 | /* Split x */
|
---|
2826 | double temp = x * HEX_40000000;
|
---|
2827 | final double xa = x + temp - temp;
|
---|
2828 | final double xb = x - xa;
|
---|
2829 |
|
---|
2830 | /* Square it */
|
---|
2831 | double ya = xa*xa;
|
---|
2832 | double yb = xa*xb*2.0 + xb*xb;
|
---|
2833 |
|
---|
2834 | /* Subtract from 1 */
|
---|
2835 | ya = -ya;
|
---|
2836 | yb = -yb;
|
---|
2837 |
|
---|
2838 | double za = 1.0 + ya;
|
---|
2839 | double zb = -(za - 1.0 - ya);
|
---|
2840 |
|
---|
2841 | temp = za + yb;
|
---|
2842 | zb += -(temp - za - yb);
|
---|
2843 | za = temp;
|
---|
2844 |
|
---|
2845 | /* Square root */
|
---|
2846 | double y;
|
---|
2847 | y = sqrt(za);
|
---|
2848 | temp = y * HEX_40000000;
|
---|
2849 | ya = y + temp - temp;
|
---|
2850 | yb = y - ya;
|
---|
2851 |
|
---|
2852 | /* Extend precision of sqrt */
|
---|
2853 | yb += (za - ya*ya - 2*ya*yb - yb*yb) / (2.0*y);
|
---|
2854 |
|
---|
2855 | /* Contribution of zb to sqrt */
|
---|
2856 | double dx = zb / (2.0*y);
|
---|
2857 |
|
---|
2858 | // Compute ratio r = x/y
|
---|
2859 | double r = x/y;
|
---|
2860 | temp = r * HEX_40000000;
|
---|
2861 | double ra = r + temp - temp;
|
---|
2862 | double rb = r - ra;
|
---|
2863 |
|
---|
2864 | rb += (x - ra*ya - ra*yb - rb*ya - rb*yb) / y; // Correct for rounding in division
|
---|
2865 | rb += -x * dx / y / y; // Add in effect additional bits of sqrt.
|
---|
2866 |
|
---|
2867 | temp = ra + rb;
|
---|
2868 | rb = -(temp - ra - rb);
|
---|
2869 | ra = temp;
|
---|
2870 |
|
---|
2871 | return atan(ra, rb, false);
|
---|
2872 | }
|
---|
2873 |
|
---|
2874 | /** Compute the arc cosine of a number.
|
---|
2875 | * @param x number on which evaluation is done
|
---|
2876 | * @return arc cosine of x
|
---|
2877 | */
|
---|
2878 | public static double acos(double x) {
|
---|
2879 | if (x != x) {
|
---|
2880 | return Double.NaN;
|
---|
2881 | }
|
---|
2882 |
|
---|
2883 | if (x > 1.0 || x < -1.0) {
|
---|
2884 | return Double.NaN;
|
---|
2885 | }
|
---|
2886 |
|
---|
2887 | if (x == -1.0) {
|
---|
2888 | return Math.PI;
|
---|
2889 | }
|
---|
2890 |
|
---|
2891 | if (x == 1.0) {
|
---|
2892 | return 0.0;
|
---|
2893 | }
|
---|
2894 |
|
---|
2895 | if (x == 0) {
|
---|
2896 | return Math.PI/2.0;
|
---|
2897 | }
|
---|
2898 |
|
---|
2899 | /* Compute acos(x) = atan(sqrt(1-x*x)/x) */
|
---|
2900 |
|
---|
2901 | /* Split x */
|
---|
2902 | double temp = x * HEX_40000000;
|
---|
2903 | final double xa = x + temp - temp;
|
---|
2904 | final double xb = x - xa;
|
---|
2905 |
|
---|
2906 | /* Square it */
|
---|
2907 | double ya = xa*xa;
|
---|
2908 | double yb = xa*xb*2.0 + xb*xb;
|
---|
2909 |
|
---|
2910 | /* Subtract from 1 */
|
---|
2911 | ya = -ya;
|
---|
2912 | yb = -yb;
|
---|
2913 |
|
---|
2914 | double za = 1.0 + ya;
|
---|
2915 | double zb = -(za - 1.0 - ya);
|
---|
2916 |
|
---|
2917 | temp = za + yb;
|
---|
2918 | zb += -(temp - za - yb);
|
---|
2919 | za = temp;
|
---|
2920 |
|
---|
2921 | /* Square root */
|
---|
2922 | double y = sqrt(za);
|
---|
2923 | temp = y * HEX_40000000;
|
---|
2924 | ya = y + temp - temp;
|
---|
2925 | yb = y - ya;
|
---|
2926 |
|
---|
2927 | /* Extend precision of sqrt */
|
---|
2928 | yb += (za - ya*ya - 2*ya*yb - yb*yb) / (2.0*y);
|
---|
2929 |
|
---|
2930 | /* Contribution of zb to sqrt */
|
---|
2931 | yb += zb / (2.0*y);
|
---|
2932 | y = ya+yb;
|
---|
2933 | yb = -(y - ya - yb);
|
---|
2934 |
|
---|
2935 | // Compute ratio r = y/x
|
---|
2936 | double r = y/x;
|
---|
2937 |
|
---|
2938 | // Did r overflow?
|
---|
2939 | if (Double.isInfinite(r)) { // x is effectively zero
|
---|
2940 | return Math.PI/2; // so return the appropriate value
|
---|
2941 | }
|
---|
2942 |
|
---|
2943 | double ra = doubleHighPart(r);
|
---|
2944 | double rb = r - ra;
|
---|
2945 |
|
---|
2946 | rb += (y - ra*xa - ra*xb - rb*xa - rb*xb) / x; // Correct for rounding in division
|
---|
2947 | rb += yb / x; // Add in effect additional bits of sqrt.
|
---|
2948 |
|
---|
2949 | temp = ra + rb;
|
---|
2950 | rb = -(temp - ra - rb);
|
---|
2951 | ra = temp;
|
---|
2952 |
|
---|
2953 | return atan(ra, rb, x<0);
|
---|
2954 | }
|
---|
2955 |
|
---|
2956 | /** Compute the cubic root of a number.
|
---|
2957 | * @param x number on which evaluation is done
|
---|
2958 | * @return cubic root of x
|
---|
2959 | */
|
---|
2960 | public static double cbrt(double x) {
|
---|
2961 | /* Convert input double to bits */
|
---|
2962 | long inbits = Double.doubleToRawLongBits(x);
|
---|
2963 | int exponent = (int) ((inbits >> 52) & 0x7ff) - 1023;
|
---|
2964 | boolean subnormal = false;
|
---|
2965 |
|
---|
2966 | if (exponent == -1023) {
|
---|
2967 | if (x == 0) {
|
---|
2968 | return x;
|
---|
2969 | }
|
---|
2970 |
|
---|
2971 | /* Subnormal, so normalize */
|
---|
2972 | subnormal = true;
|
---|
2973 | x *= 1.8014398509481984E16; // 2^54
|
---|
2974 | inbits = Double.doubleToRawLongBits(x);
|
---|
2975 | exponent = (int) ((inbits >> 52) & 0x7ff) - 1023;
|
---|
2976 | }
|
---|
2977 |
|
---|
2978 | if (exponent == 1024) {
|
---|
2979 | // Nan or infinity. Don't care which.
|
---|
2980 | return x;
|
---|
2981 | }
|
---|
2982 |
|
---|
2983 | /* Divide the exponent by 3 */
|
---|
2984 | int exp3 = exponent / 3;
|
---|
2985 |
|
---|
2986 | /* p2 will be the nearest power of 2 to x with its exponent divided by 3 */
|
---|
2987 | double p2 = Double.longBitsToDouble((inbits & 0x8000000000000000L) |
|
---|
2988 | (long)(((exp3 + 1023) & 0x7ff)) << 52);
|
---|
2989 |
|
---|
2990 | /* This will be a number between 1 and 2 */
|
---|
2991 | final double mant = Double.longBitsToDouble((inbits & 0x000fffffffffffffL) | 0x3ff0000000000000L);
|
---|
2992 |
|
---|
2993 | /* Estimate the cube root of mant by polynomial */
|
---|
2994 | double est = -0.010714690733195933;
|
---|
2995 | est = est * mant + 0.0875862700108075;
|
---|
2996 | est = est * mant + -0.3058015757857271;
|
---|
2997 | est = est * mant + 0.7249995199969751;
|
---|
2998 | est = est * mant + 0.5039018405998233;
|
---|
2999 |
|
---|
3000 | est *= CBRTTWO[exponent % 3 + 2];
|
---|
3001 |
|
---|
3002 | // est should now be good to about 15 bits of precision. Do 2 rounds of
|
---|
3003 | // Newton's method to get closer, this should get us full double precision
|
---|
3004 | // Scale down x for the purpose of doing newtons method. This avoids over/under flows.
|
---|
3005 | final double xs = x / (p2*p2*p2);
|
---|
3006 | est += (xs - est*est*est) / (3*est*est);
|
---|
3007 | est += (xs - est*est*est) / (3*est*est);
|
---|
3008 |
|
---|
3009 | // Do one round of Newton's method in extended precision to get the last bit right.
|
---|
3010 | double temp = est * HEX_40000000;
|
---|
3011 | double ya = est + temp - temp;
|
---|
3012 | double yb = est - ya;
|
---|
3013 |
|
---|
3014 | double za = ya * ya;
|
---|
3015 | double zb = ya * yb * 2.0 + yb * yb;
|
---|
3016 | temp = za * HEX_40000000;
|
---|
3017 | double temp2 = za + temp - temp;
|
---|
3018 | zb += za - temp2;
|
---|
3019 | za = temp2;
|
---|
3020 |
|
---|
3021 | zb = za * yb + ya * zb + zb * yb;
|
---|
3022 | za *= ya;
|
---|
3023 |
|
---|
3024 | double na = xs - za;
|
---|
3025 | double nb = -(na - xs + za);
|
---|
3026 | nb -= zb;
|
---|
3027 |
|
---|
3028 | est += (na+nb)/(3*est*est);
|
---|
3029 |
|
---|
3030 | /* Scale by a power of two, so this is exact. */
|
---|
3031 | est *= p2;
|
---|
3032 |
|
---|
3033 | if (subnormal) {
|
---|
3034 | est *= 3.814697265625E-6; // 2^-18
|
---|
3035 | }
|
---|
3036 |
|
---|
3037 | return est;
|
---|
3038 | }
|
---|
3039 |
|
---|
3040 | /**
|
---|
3041 | * Convert degrees to radians, with error of less than 0.5 ULP
|
---|
3042 | * @param x angle in degrees
|
---|
3043 | * @return x converted into radians
|
---|
3044 | */
|
---|
3045 | public static double toRadians(double x)
|
---|
3046 | {
|
---|
3047 | if (Double.isInfinite(x) || x == 0.0) { // Matches +/- 0.0; return correct sign
|
---|
3048 | return x;
|
---|
3049 | }
|
---|
3050 |
|
---|
3051 | // These are PI/180 split into high and low order bits
|
---|
3052 | final double facta = 0.01745329052209854;
|
---|
3053 | final double factb = 1.997844754509471E-9;
|
---|
3054 |
|
---|
3055 | double xa = doubleHighPart(x);
|
---|
3056 | double xb = x - xa;
|
---|
3057 |
|
---|
3058 | double result = xb * factb + xb * facta + xa * factb + xa * facta;
|
---|
3059 | if (result == 0) {
|
---|
3060 | result *= x; // ensure correct sign if calculation underflows
|
---|
3061 | }
|
---|
3062 | return result;
|
---|
3063 | }
|
---|
3064 |
|
---|
3065 | /**
|
---|
3066 | * Convert radians to degrees, with error of less than 0.5 ULP
|
---|
3067 | * @param x angle in radians
|
---|
3068 | * @return x converted into degrees
|
---|
3069 | */
|
---|
3070 | public static double toDegrees(double x)
|
---|
3071 | {
|
---|
3072 | if (Double.isInfinite(x) || x == 0.0) { // Matches +/- 0.0; return correct sign
|
---|
3073 | return x;
|
---|
3074 | }
|
---|
3075 |
|
---|
3076 | // These are 180/PI split into high and low order bits
|
---|
3077 | final double facta = 57.2957763671875;
|
---|
3078 | final double factb = 3.145894820876798E-6;
|
---|
3079 |
|
---|
3080 | double xa = doubleHighPart(x);
|
---|
3081 | double xb = x - xa;
|
---|
3082 |
|
---|
3083 | return xb * factb + xb * facta + xa * factb + xa * facta;
|
---|
3084 | }
|
---|
3085 |
|
---|
3086 | /**
|
---|
3087 | * Absolute value.
|
---|
3088 | * @param x number from which absolute value is requested
|
---|
3089 | * @return abs(x)
|
---|
3090 | */
|
---|
3091 | public static int abs(final int x) {
|
---|
3092 | final int i = x >>> 31;
|
---|
3093 | return (x ^ (~i + 1)) + i;
|
---|
3094 | }
|
---|
3095 |
|
---|
3096 | /**
|
---|
3097 | * Absolute value.
|
---|
3098 | * @param x number from which absolute value is requested
|
---|
3099 | * @return abs(x)
|
---|
3100 | */
|
---|
3101 | public static long abs(final long x) {
|
---|
3102 | final long l = x >>> 63;
|
---|
3103 | // l is one if x negative zero else
|
---|
3104 | // ~l+1 is zero if x is positive, -1 if x is negative
|
---|
3105 | // x^(~l+1) is x is x is positive, ~x if x is negative
|
---|
3106 | // add around
|
---|
3107 | return (x ^ (~l + 1)) + l;
|
---|
3108 | }
|
---|
3109 |
|
---|
3110 | /**
|
---|
3111 | * Absolute value.
|
---|
3112 | * @param x number from which absolute value is requested
|
---|
3113 | * @return abs(x)
|
---|
3114 | */
|
---|
3115 | public static float abs(final float x) {
|
---|
3116 | return Float.intBitsToFloat(MASK_NON_SIGN_INT & Float.floatToRawIntBits(x));
|
---|
3117 | }
|
---|
3118 |
|
---|
3119 | /**
|
---|
3120 | * Absolute value.
|
---|
3121 | * @param x number from which absolute value is requested
|
---|
3122 | * @return abs(x)
|
---|
3123 | */
|
---|
3124 | public static double abs(double x) {
|
---|
3125 | return Double.longBitsToDouble(MASK_NON_SIGN_LONG & Double.doubleToRawLongBits(x));
|
---|
3126 | }
|
---|
3127 |
|
---|
3128 | /**
|
---|
3129 | * Compute least significant bit (Unit in Last Position) for a number.
|
---|
3130 | * @param x number from which ulp is requested
|
---|
3131 | * @return ulp(x)
|
---|
3132 | */
|
---|
3133 | public static double ulp(double x) {
|
---|
3134 | if (Double.isInfinite(x)) {
|
---|
3135 | return Double.POSITIVE_INFINITY;
|
---|
3136 | }
|
---|
3137 | return abs(x - Double.longBitsToDouble(Double.doubleToRawLongBits(x) ^ 1));
|
---|
3138 | }
|
---|
3139 |
|
---|
3140 | /**
|
---|
3141 | * Compute least significant bit (Unit in Last Position) for a number.
|
---|
3142 | * @param x number from which ulp is requested
|
---|
3143 | * @return ulp(x)
|
---|
3144 | */
|
---|
3145 | public static float ulp(float x) {
|
---|
3146 | if (Float.isInfinite(x)) {
|
---|
3147 | return Float.POSITIVE_INFINITY;
|
---|
3148 | }
|
---|
3149 | return abs(x - Float.intBitsToFloat(Float.floatToIntBits(x) ^ 1));
|
---|
3150 | }
|
---|
3151 |
|
---|
3152 | /**
|
---|
3153 | * Multiply a double number by a power of 2.
|
---|
3154 | * @param d number to multiply
|
---|
3155 | * @param n power of 2
|
---|
3156 | * @return d × 2<sup>n</sup>
|
---|
3157 | */
|
---|
3158 | public static double scalb(final double d, final int n) {
|
---|
3159 |
|
---|
3160 | // first simple and fast handling when 2^n can be represented using normal numbers
|
---|
3161 | if ((n > -1023) && (n < 1024)) {
|
---|
3162 | return d * Double.longBitsToDouble(((long) (n + 1023)) << 52);
|
---|
3163 | }
|
---|
3164 |
|
---|
3165 | // handle special cases
|
---|
3166 | if (Double.isNaN(d) || Double.isInfinite(d) || (d == 0)) {
|
---|
3167 | return d;
|
---|
3168 | }
|
---|
3169 | if (n < -2098) {
|
---|
3170 | return (d > 0) ? 0.0 : -0.0;
|
---|
3171 | }
|
---|
3172 | if (n > 2097) {
|
---|
3173 | return (d > 0) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
---|
3174 | }
|
---|
3175 |
|
---|
3176 | // decompose d
|
---|
3177 | final long bits = Double.doubleToRawLongBits(d);
|
---|
3178 | final long sign = bits & 0x8000000000000000L;
|
---|
3179 | int exponent = ((int) (bits >>> 52)) & 0x7ff;
|
---|
3180 | long mantissa = bits & 0x000fffffffffffffL;
|
---|
3181 |
|
---|
3182 | // compute scaled exponent
|
---|
3183 | int scaledExponent = exponent + n;
|
---|
3184 |
|
---|
3185 | if (n < 0) {
|
---|
3186 | // we are really in the case n <= -1023
|
---|
3187 | if (scaledExponent > 0) {
|
---|
3188 | // both the input and the result are normal numbers, we only adjust the exponent
|
---|
3189 | return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa);
|
---|
3190 | } else if (scaledExponent > -53) {
|
---|
3191 | // the input is a normal number and the result is a subnormal number
|
---|
3192 |
|
---|
3193 | // recover the hidden mantissa bit
|
---|
3194 | mantissa |= 1L << 52;
|
---|
3195 |
|
---|
3196 | // scales down complete mantissa, hence losing least significant bits
|
---|
3197 | final long mostSignificantLostBit = mantissa & (1L << (-scaledExponent));
|
---|
3198 | mantissa >>>= 1 - scaledExponent;
|
---|
3199 | if (mostSignificantLostBit != 0) {
|
---|
3200 | // we need to add 1 bit to round up the result
|
---|
3201 | mantissa++;
|
---|
3202 | }
|
---|
3203 | return Double.longBitsToDouble(sign | mantissa);
|
---|
3204 |
|
---|
3205 | } else {
|
---|
3206 | // no need to compute the mantissa, the number scales down to 0
|
---|
3207 | return (sign == 0L) ? 0.0 : -0.0;
|
---|
3208 | }
|
---|
3209 | } else {
|
---|
3210 | // we are really in the case n >= 1024
|
---|
3211 | if (exponent == 0) {
|
---|
3212 |
|
---|
3213 | // the input number is subnormal, normalize it
|
---|
3214 | while ((mantissa >>> 52) != 1) {
|
---|
3215 | mantissa <<= 1;
|
---|
3216 | --scaledExponent;
|
---|
3217 | }
|
---|
3218 | ++scaledExponent;
|
---|
3219 | mantissa &= 0x000fffffffffffffL;
|
---|
3220 |
|
---|
3221 | if (scaledExponent < 2047) {
|
---|
3222 | return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa);
|
---|
3223 | } else {
|
---|
3224 | return (sign == 0L) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
---|
3225 | }
|
---|
3226 |
|
---|
3227 | } else if (scaledExponent < 2047) {
|
---|
3228 | return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa);
|
---|
3229 | } else {
|
---|
3230 | return (sign == 0L) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
---|
3231 | }
|
---|
3232 | }
|
---|
3233 |
|
---|
3234 | }
|
---|
3235 |
|
---|
3236 | /**
|
---|
3237 | * Multiply a float number by a power of 2.
|
---|
3238 | * @param f number to multiply
|
---|
3239 | * @param n power of 2
|
---|
3240 | * @return f × 2<sup>n</sup>
|
---|
3241 | */
|
---|
3242 | public static float scalb(final float f, final int n) {
|
---|
3243 |
|
---|
3244 | // first simple and fast handling when 2^n can be represented using normal numbers
|
---|
3245 | if ((n > -127) && (n < 128)) {
|
---|
3246 | return f * Float.intBitsToFloat((n + 127) << 23);
|
---|
3247 | }
|
---|
3248 |
|
---|
3249 | // handle special cases
|
---|
3250 | if (Float.isNaN(f) || Float.isInfinite(f) || (f == 0f)) {
|
---|
3251 | return f;
|
---|
3252 | }
|
---|
3253 | if (n < -277) {
|
---|
3254 | return (f > 0) ? 0.0f : -0.0f;
|
---|
3255 | }
|
---|
3256 | if (n > 276) {
|
---|
3257 | return (f > 0) ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
---|
3258 | }
|
---|
3259 |
|
---|
3260 | // decompose f
|
---|
3261 | final int bits = Float.floatToIntBits(f);
|
---|
3262 | final int sign = bits & 0x80000000;
|
---|
3263 | int exponent = (bits >>> 23) & 0xff;
|
---|
3264 | int mantissa = bits & 0x007fffff;
|
---|
3265 |
|
---|
3266 | // compute scaled exponent
|
---|
3267 | int scaledExponent = exponent + n;
|
---|
3268 |
|
---|
3269 | if (n < 0) {
|
---|
3270 | // we are really in the case n <= -127
|
---|
3271 | if (scaledExponent > 0) {
|
---|
3272 | // both the input and the result are normal numbers, we only adjust the exponent
|
---|
3273 | return Float.intBitsToFloat(sign | (scaledExponent << 23) | mantissa);
|
---|
3274 | } else if (scaledExponent > -24) {
|
---|
3275 | // the input is a normal number and the result is a subnormal number
|
---|
3276 |
|
---|
3277 | // recover the hidden mantissa bit
|
---|
3278 | mantissa |= 1 << 23;
|
---|
3279 |
|
---|
3280 | // scales down complete mantissa, hence losing least significant bits
|
---|
3281 | final int mostSignificantLostBit = mantissa & (1 << (-scaledExponent));
|
---|
3282 | mantissa >>>= 1 - scaledExponent;
|
---|
3283 | if (mostSignificantLostBit != 0) {
|
---|
3284 | // we need to add 1 bit to round up the result
|
---|
3285 | mantissa++;
|
---|
3286 | }
|
---|
3287 | return Float.intBitsToFloat(sign | mantissa);
|
---|
3288 |
|
---|
3289 | } else {
|
---|
3290 | // no need to compute the mantissa, the number scales down to 0
|
---|
3291 | return (sign == 0) ? 0.0f : -0.0f;
|
---|
3292 | }
|
---|
3293 | } else {
|
---|
3294 | // we are really in the case n >= 128
|
---|
3295 | if (exponent == 0) {
|
---|
3296 |
|
---|
3297 | // the input number is subnormal, normalize it
|
---|
3298 | while ((mantissa >>> 23) != 1) {
|
---|
3299 | mantissa <<= 1;
|
---|
3300 | --scaledExponent;
|
---|
3301 | }
|
---|
3302 | ++scaledExponent;
|
---|
3303 | mantissa &= 0x007fffff;
|
---|
3304 |
|
---|
3305 | if (scaledExponent < 255) {
|
---|
3306 | return Float.intBitsToFloat(sign | (scaledExponent << 23) | mantissa);
|
---|
3307 | } else {
|
---|
3308 | return (sign == 0) ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
---|
3309 | }
|
---|
3310 |
|
---|
3311 | } else if (scaledExponent < 255) {
|
---|
3312 | return Float.intBitsToFloat(sign | (scaledExponent << 23) | mantissa);
|
---|
3313 | } else {
|
---|
3314 | return (sign == 0) ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
---|
3315 | }
|
---|
3316 | }
|
---|
3317 |
|
---|
3318 | }
|
---|
3319 |
|
---|
3320 | /**
|
---|
3321 | * Get the next machine representable number after a number, moving
|
---|
3322 | * in the direction of another number.
|
---|
3323 | * <p>
|
---|
3324 | * The ordering is as follows (increasing):
|
---|
3325 | * <ul>
|
---|
3326 | * <li>-INFINITY</li>
|
---|
3327 | * <li>-MAX_VALUE</li>
|
---|
3328 | * <li>-MIN_VALUE</li>
|
---|
3329 | * <li>-0.0</li>
|
---|
3330 | * <li>+0.0</li>
|
---|
3331 | * <li>+MIN_VALUE</li>
|
---|
3332 | * <li>+MAX_VALUE</li>
|
---|
3333 | * <li>+INFINITY</li>
|
---|
3334 | * <li></li>
|
---|
3335 | * <p>
|
---|
3336 | * If arguments compare equal, then the second argument is returned.
|
---|
3337 | * <p>
|
---|
3338 | * If {@code direction} is greater than {@code d},
|
---|
3339 | * the smallest machine representable number strictly greater than
|
---|
3340 | * {@code d} is returned; if less, then the largest representable number
|
---|
3341 | * strictly less than {@code d} is returned.</p>
|
---|
3342 | * <p>
|
---|
3343 | * If {@code d} is infinite and direction does not
|
---|
3344 | * bring it back to finite numbers, it is returned unchanged.</p>
|
---|
3345 | *
|
---|
3346 | * @param d base number
|
---|
3347 | * @param direction (the only important thing is whether
|
---|
3348 | * {@code direction} is greater or smaller than {@code d})
|
---|
3349 | * @return the next machine representable number in the specified direction
|
---|
3350 | */
|
---|
3351 | public static double nextAfter(double d, double direction) {
|
---|
3352 |
|
---|
3353 | // handling of some important special cases
|
---|
3354 | if (Double.isNaN(d) || Double.isNaN(direction)) {
|
---|
3355 | return Double.NaN;
|
---|
3356 | } else if (d == direction) {
|
---|
3357 | return direction;
|
---|
3358 | } else if (Double.isInfinite(d)) {
|
---|
3359 | return (d < 0) ? -Double.MAX_VALUE : Double.MAX_VALUE;
|
---|
3360 | } else if (d == 0) {
|
---|
3361 | return (direction < 0) ? -Double.MIN_VALUE : Double.MIN_VALUE;
|
---|
3362 | }
|
---|
3363 | // special cases MAX_VALUE to infinity and MIN_VALUE to 0
|
---|
3364 | // are handled just as normal numbers
|
---|
3365 | // can use raw bits since already dealt with infinity and NaN
|
---|
3366 | final long bits = Double.doubleToRawLongBits(d);
|
---|
3367 | final long sign = bits & 0x8000000000000000L;
|
---|
3368 | if ((direction < d) ^ (sign == 0L)) {
|
---|
3369 | return Double.longBitsToDouble(sign | ((bits & 0x7fffffffffffffffL) + 1));
|
---|
3370 | } else {
|
---|
3371 | return Double.longBitsToDouble(sign | ((bits & 0x7fffffffffffffffL) - 1));
|
---|
3372 | }
|
---|
3373 |
|
---|
3374 | }
|
---|
3375 |
|
---|
3376 | /**
|
---|
3377 | * Get the next machine representable number after a number, moving
|
---|
3378 | * in the direction of another number.
|
---|
3379 | * <p>
|
---|
3380 | * The ordering is as follows (increasing):
|
---|
3381 | * <ul>
|
---|
3382 | * <li>-INFINITY</li>
|
---|
3383 | * <li>-MAX_VALUE</li>
|
---|
3384 | * <li>-MIN_VALUE</li>
|
---|
3385 | * <li>-0.0</li>
|
---|
3386 | * <li>+0.0</li>
|
---|
3387 | * <li>+MIN_VALUE</li>
|
---|
3388 | * <li>+MAX_VALUE</li>
|
---|
3389 | * <li>+INFINITY</li>
|
---|
3390 | * <li></li>
|
---|
3391 | * <p>
|
---|
3392 | * If arguments compare equal, then the second argument is returned.
|
---|
3393 | * <p>
|
---|
3394 | * If {@code direction} is greater than {@code f},
|
---|
3395 | * the smallest machine representable number strictly greater than
|
---|
3396 | * {@code f} is returned; if less, then the largest representable number
|
---|
3397 | * strictly less than {@code f} is returned.</p>
|
---|
3398 | * <p>
|
---|
3399 | * If {@code f} is infinite and direction does not
|
---|
3400 | * bring it back to finite numbers, it is returned unchanged.</p>
|
---|
3401 | *
|
---|
3402 | * @param f base number
|
---|
3403 | * @param direction (the only important thing is whether
|
---|
3404 | * {@code direction} is greater or smaller than {@code f})
|
---|
3405 | * @return the next machine representable number in the specified direction
|
---|
3406 | */
|
---|
3407 | public static float nextAfter(final float f, final double direction) {
|
---|
3408 |
|
---|
3409 | // handling of some important special cases
|
---|
3410 | if (Double.isNaN(f) || Double.isNaN(direction)) {
|
---|
3411 | return Float.NaN;
|
---|
3412 | } else if (f == direction) {
|
---|
3413 | return (float) direction;
|
---|
3414 | } else if (Float.isInfinite(f)) {
|
---|
3415 | return (f < 0f) ? -Float.MAX_VALUE : Float.MAX_VALUE;
|
---|
3416 | } else if (f == 0f) {
|
---|
3417 | return (direction < 0) ? -Float.MIN_VALUE : Float.MIN_VALUE;
|
---|
3418 | }
|
---|
3419 | // special cases MAX_VALUE to infinity and MIN_VALUE to 0
|
---|
3420 | // are handled just as normal numbers
|
---|
3421 |
|
---|
3422 | final int bits = Float.floatToIntBits(f);
|
---|
3423 | final int sign = bits & 0x80000000;
|
---|
3424 | if ((direction < f) ^ (sign == 0)) {
|
---|
3425 | return Float.intBitsToFloat(sign | ((bits & 0x7fffffff) + 1));
|
---|
3426 | } else {
|
---|
3427 | return Float.intBitsToFloat(sign | ((bits & 0x7fffffff) - 1));
|
---|
3428 | }
|
---|
3429 |
|
---|
3430 | }
|
---|
3431 |
|
---|
3432 | /** Get the largest whole number smaller than x.
|
---|
3433 | * @param x number from which floor is requested
|
---|
3434 | * @return a double number f such that f is an integer f <= x < f + 1.0
|
---|
3435 | */
|
---|
3436 | public static double floor(double x) {
|
---|
3437 | long y;
|
---|
3438 |
|
---|
3439 | if (x != x) { // NaN
|
---|
3440 | return x;
|
---|
3441 | }
|
---|
3442 |
|
---|
3443 | if (x >= TWO_POWER_52 || x <= -TWO_POWER_52) {
|
---|
3444 | return x;
|
---|
3445 | }
|
---|
3446 |
|
---|
3447 | y = (long) x;
|
---|
3448 | if (x < 0 && y != x) {
|
---|
3449 | y--;
|
---|
3450 | }
|
---|
3451 |
|
---|
3452 | if (y == 0) {
|
---|
3453 | return x*y;
|
---|
3454 | }
|
---|
3455 |
|
---|
3456 | return y;
|
---|
3457 | }
|
---|
3458 |
|
---|
3459 | /** Get the smallest whole number larger than x.
|
---|
3460 | * @param x number from which ceil is requested
|
---|
3461 | * @return a double number c such that c is an integer c - 1.0 < x <= c
|
---|
3462 | */
|
---|
3463 | public static double ceil(double x) {
|
---|
3464 | double y;
|
---|
3465 |
|
---|
3466 | if (x != x) { // NaN
|
---|
3467 | return x;
|
---|
3468 | }
|
---|
3469 |
|
---|
3470 | y = floor(x);
|
---|
3471 | if (y == x) {
|
---|
3472 | return y;
|
---|
3473 | }
|
---|
3474 |
|
---|
3475 | y += 1.0;
|
---|
3476 |
|
---|
3477 | if (y == 0) {
|
---|
3478 | return x*y;
|
---|
3479 | }
|
---|
3480 |
|
---|
3481 | return y;
|
---|
3482 | }
|
---|
3483 |
|
---|
3484 | /** Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.
|
---|
3485 | * @param x number from which nearest whole number is requested
|
---|
3486 | * @return a double number r such that r is an integer r - 0.5 <= x <= r + 0.5
|
---|
3487 | */
|
---|
3488 | public static double rint(double x) {
|
---|
3489 | double y = floor(x);
|
---|
3490 | double d = x - y;
|
---|
3491 |
|
---|
3492 | if (d > 0.5) {
|
---|
3493 | if (y == -1.0) {
|
---|
3494 | return -0.0; // Preserve sign of operand
|
---|
3495 | }
|
---|
3496 | return y+1.0;
|
---|
3497 | }
|
---|
3498 | if (d < 0.5) {
|
---|
3499 | return y;
|
---|
3500 | }
|
---|
3501 |
|
---|
3502 | /* half way, round to even */
|
---|
3503 | long z = (long) y;
|
---|
3504 | return (z & 1) == 0 ? y : y + 1.0;
|
---|
3505 | }
|
---|
3506 |
|
---|
3507 | /** Get the closest long to x.
|
---|
3508 | * @param x number from which closest long is requested
|
---|
3509 | * @return closest long to x
|
---|
3510 | */
|
---|
3511 | public static long round(double x) {
|
---|
3512 | return (long) floor(x + 0.5);
|
---|
3513 | }
|
---|
3514 |
|
---|
3515 | /** Get the closest int to x.
|
---|
3516 | * @param x number from which closest int is requested
|
---|
3517 | * @return closest int to x
|
---|
3518 | */
|
---|
3519 | public static int round(final float x) {
|
---|
3520 | return (int) floor(x + 0.5f);
|
---|
3521 | }
|
---|
3522 |
|
---|
3523 | /** Compute the minimum of two values
|
---|
3524 | * @param a first value
|
---|
3525 | * @param b second value
|
---|
3526 | * @return a if a is lesser or equal to b, b otherwise
|
---|
3527 | */
|
---|
3528 | public static int min(final int a, final int b) {
|
---|
3529 | return (a <= b) ? a : b;
|
---|
3530 | }
|
---|
3531 |
|
---|
3532 | /** Compute the minimum of two values
|
---|
3533 | * @param a first value
|
---|
3534 | * @param b second value
|
---|
3535 | * @return a if a is lesser or equal to b, b otherwise
|
---|
3536 | */
|
---|
3537 | public static long min(final long a, final long b) {
|
---|
3538 | return (a <= b) ? a : b;
|
---|
3539 | }
|
---|
3540 |
|
---|
3541 | /** Compute the minimum of two values
|
---|
3542 | * @param a first value
|
---|
3543 | * @param b second value
|
---|
3544 | * @return a if a is lesser or equal to b, b otherwise
|
---|
3545 | */
|
---|
3546 | public static float min(final float a, final float b) {
|
---|
3547 | if (a > b) {
|
---|
3548 | return b;
|
---|
3549 | }
|
---|
3550 | if (a < b) {
|
---|
3551 | return a;
|
---|
3552 | }
|
---|
3553 | /* if either arg is NaN, return NaN */
|
---|
3554 | if (a != b) {
|
---|
3555 | return Float.NaN;
|
---|
3556 | }
|
---|
3557 | /* min(+0.0,-0.0) == -0.0 */
|
---|
3558 | /* 0x80000000 == Float.floatToRawIntBits(-0.0d) */
|
---|
3559 | int bits = Float.floatToRawIntBits(a);
|
---|
3560 | if (bits == 0x80000000) {
|
---|
3561 | return a;
|
---|
3562 | }
|
---|
3563 | return b;
|
---|
3564 | }
|
---|
3565 |
|
---|
3566 | /** Compute the minimum of two values
|
---|
3567 | * @param a first value
|
---|
3568 | * @param b second value
|
---|
3569 | * @return a if a is lesser or equal to b, b otherwise
|
---|
3570 | */
|
---|
3571 | public static double min(final double a, final double b) {
|
---|
3572 | if (a > b) {
|
---|
3573 | return b;
|
---|
3574 | }
|
---|
3575 | if (a < b) {
|
---|
3576 | return a;
|
---|
3577 | }
|
---|
3578 | /* if either arg is NaN, return NaN */
|
---|
3579 | if (a != b) {
|
---|
3580 | return Double.NaN;
|
---|
3581 | }
|
---|
3582 | /* min(+0.0,-0.0) == -0.0 */
|
---|
3583 | /* 0x8000000000000000L == Double.doubleToRawLongBits(-0.0d) */
|
---|
3584 | long bits = Double.doubleToRawLongBits(a);
|
---|
3585 | if (bits == 0x8000000000000000L) {
|
---|
3586 | return a;
|
---|
3587 | }
|
---|
3588 | return b;
|
---|
3589 | }
|
---|
3590 |
|
---|
3591 | /** Compute the maximum of two values
|
---|
3592 | * @param a first value
|
---|
3593 | * @param b second value
|
---|
3594 | * @return b if a is lesser or equal to b, a otherwise
|
---|
3595 | */
|
---|
3596 | public static int max(final int a, final int b) {
|
---|
3597 | return (a <= b) ? b : a;
|
---|
3598 | }
|
---|
3599 |
|
---|
3600 | /** Compute the maximum of two values
|
---|
3601 | * @param a first value
|
---|
3602 | * @param b second value
|
---|
3603 | * @return b if a is lesser or equal to b, a otherwise
|
---|
3604 | */
|
---|
3605 | public static long max(final long a, final long b) {
|
---|
3606 | return (a <= b) ? b : a;
|
---|
3607 | }
|
---|
3608 |
|
---|
3609 | /** Compute the maximum of two values
|
---|
3610 | * @param a first value
|
---|
3611 | * @param b second value
|
---|
3612 | * @return b if a is lesser or equal to b, a otherwise
|
---|
3613 | */
|
---|
3614 | public static float max(final float a, final float b) {
|
---|
3615 | if (a > b) {
|
---|
3616 | return a;
|
---|
3617 | }
|
---|
3618 | if (a < b) {
|
---|
3619 | return b;
|
---|
3620 | }
|
---|
3621 | /* if either arg is NaN, return NaN */
|
---|
3622 | if (a != b) {
|
---|
3623 | return Float.NaN;
|
---|
3624 | }
|
---|
3625 | /* min(+0.0,-0.0) == -0.0 */
|
---|
3626 | /* 0x80000000 == Float.floatToRawIntBits(-0.0d) */
|
---|
3627 | int bits = Float.floatToRawIntBits(a);
|
---|
3628 | if (bits == 0x80000000) {
|
---|
3629 | return b;
|
---|
3630 | }
|
---|
3631 | return a;
|
---|
3632 | }
|
---|
3633 |
|
---|
3634 | /** Compute the maximum of two values
|
---|
3635 | * @param a first value
|
---|
3636 | * @param b second value
|
---|
3637 | * @return b if a is lesser or equal to b, a otherwise
|
---|
3638 | */
|
---|
3639 | public static double max(final double a, final double b) {
|
---|
3640 | if (a > b) {
|
---|
3641 | return a;
|
---|
3642 | }
|
---|
3643 | if (a < b) {
|
---|
3644 | return b;
|
---|
3645 | }
|
---|
3646 | /* if either arg is NaN, return NaN */
|
---|
3647 | if (a != b) {
|
---|
3648 | return Double.NaN;
|
---|
3649 | }
|
---|
3650 | /* min(+0.0,-0.0) == -0.0 */
|
---|
3651 | /* 0x8000000000000000L == Double.doubleToRawLongBits(-0.0d) */
|
---|
3652 | long bits = Double.doubleToRawLongBits(a);
|
---|
3653 | if (bits == 0x8000000000000000L) {
|
---|
3654 | return b;
|
---|
3655 | }
|
---|
3656 | return a;
|
---|
3657 | }
|
---|
3658 |
|
---|
3659 | /**
|
---|
3660 | * Returns the hypotenuse of a triangle with sides {@code x} and {@code y}
|
---|
3661 | * - sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)<br/>
|
---|
3662 | * avoiding intermediate overflow or underflow.
|
---|
3663 | *
|
---|
3664 | * <ul>
|
---|
3665 | * <li> If either argument is infinite, then the result is positive infinity.</li>
|
---|
3666 | * <li> else, if either argument is NaN then the result is NaN.</li>
|
---|
3667 | * </ul>
|
---|
3668 | *
|
---|
3669 | * @param x a value
|
---|
3670 | * @param y a value
|
---|
3671 | * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
|
---|
3672 | */
|
---|
3673 | public static double hypot(final double x, final double y) {
|
---|
3674 | if (Double.isInfinite(x) || Double.isInfinite(y)) {
|
---|
3675 | return Double.POSITIVE_INFINITY;
|
---|
3676 | } else if (Double.isNaN(x) || Double.isNaN(y)) {
|
---|
3677 | return Double.NaN;
|
---|
3678 | } else {
|
---|
3679 |
|
---|
3680 | final int expX = getExponent(x);
|
---|
3681 | final int expY = getExponent(y);
|
---|
3682 | if (expX > expY + 27) {
|
---|
3683 | // y is neglectible with respect to x
|
---|
3684 | return abs(x);
|
---|
3685 | } else if (expY > expX + 27) {
|
---|
3686 | // x is neglectible with respect to y
|
---|
3687 | return abs(y);
|
---|
3688 | } else {
|
---|
3689 |
|
---|
3690 | // find an intermediate scale to avoid both overflow and underflow
|
---|
3691 | final int middleExp = (expX + expY) / 2;
|
---|
3692 |
|
---|
3693 | // scale parameters without losing precision
|
---|
3694 | final double scaledX = scalb(x, -middleExp);
|
---|
3695 | final double scaledY = scalb(y, -middleExp);
|
---|
3696 |
|
---|
3697 | // compute scaled hypotenuse
|
---|
3698 | final double scaledH = sqrt(scaledX * scaledX + scaledY * scaledY);
|
---|
3699 |
|
---|
3700 | // remove scaling
|
---|
3701 | return scalb(scaledH, middleExp);
|
---|
3702 |
|
---|
3703 | }
|
---|
3704 |
|
---|
3705 | }
|
---|
3706 | }
|
---|
3707 |
|
---|
3708 | /**
|
---|
3709 | * Computes the remainder as prescribed by the IEEE 754 standard.
|
---|
3710 | * The remainder value is mathematically equal to {@code x - y*n}
|
---|
3711 | * where {@code n} is the mathematical integer closest to the exact mathematical value
|
---|
3712 | * of the quotient {@code x/y}.
|
---|
3713 | * If two mathematical integers are equally close to {@code x/y} then
|
---|
3714 | * {@code n} is the integer that is even.
|
---|
3715 | * <p>
|
---|
3716 | * <ul>
|
---|
3717 | * <li>If either operand is NaN, the result is NaN.</li>
|
---|
3718 | * <li>If the result is not NaN, the sign of the result equals the sign of the dividend.</li>
|
---|
3719 | * <li>If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.</li>
|
---|
3720 | * <li>If the dividend is finite and the divisor is an infinity, the result equals the dividend.</li>
|
---|
3721 | * <li>If the dividend is a zero and the divisor is finite, the result equals the dividend.</li>
|
---|
3722 | * </ul>
|
---|
3723 | * <p><b>Note:</b> this implementation currently delegates to {@link StrictMath#IEEEremainder}
|
---|
3724 | * @param dividend the number to be divided
|
---|
3725 | * @param divisor the number by which to divide
|
---|
3726 | * @return the remainder, rounded
|
---|
3727 | */
|
---|
3728 | public static double IEEEremainder(double dividend, double divisor) {
|
---|
3729 | return StrictMath.IEEEremainder(dividend, divisor); // TODO provide our own implementation
|
---|
3730 | }
|
---|
3731 |
|
---|
3732 | /** Convert a long to interger, detecting overflows
|
---|
3733 | * @param n number to convert to int
|
---|
3734 | * @return integer with same valie as n if no overflows occur
|
---|
3735 | * @exception MathArithmeticException if n cannot fit into an int
|
---|
3736 | * @since 3.4
|
---|
3737 | */
|
---|
3738 | public static int toIntExact(final long n) throws MathArithmeticException {
|
---|
3739 | if (n < Integer.MIN_VALUE || n > Integer.MAX_VALUE) {
|
---|
3740 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW);
|
---|
3741 | }
|
---|
3742 | return (int) n;
|
---|
3743 | }
|
---|
3744 |
|
---|
3745 | /** Increment a number, detecting overflows.
|
---|
3746 | * @param n number to increment
|
---|
3747 | * @return n+1 if no overflows occur
|
---|
3748 | * @exception MathArithmeticException if an overflow occurs
|
---|
3749 | * @since 3.4
|
---|
3750 | */
|
---|
3751 | public static int incrementExact(final int n) throws MathArithmeticException {
|
---|
3752 |
|
---|
3753 | if (n == Integer.MAX_VALUE) {
|
---|
3754 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, n, 1);
|
---|
3755 | }
|
---|
3756 |
|
---|
3757 | return n + 1;
|
---|
3758 |
|
---|
3759 | }
|
---|
3760 |
|
---|
3761 | /** Increment a number, detecting overflows.
|
---|
3762 | * @param n number to increment
|
---|
3763 | * @return n+1 if no overflows occur
|
---|
3764 | * @exception MathArithmeticException if an overflow occurs
|
---|
3765 | * @since 3.4
|
---|
3766 | */
|
---|
3767 | public static long incrementExact(final long n) throws MathArithmeticException {
|
---|
3768 |
|
---|
3769 | if (n == Long.MAX_VALUE) {
|
---|
3770 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, n, 1);
|
---|
3771 | }
|
---|
3772 |
|
---|
3773 | return n + 1;
|
---|
3774 |
|
---|
3775 | }
|
---|
3776 |
|
---|
3777 | /** Decrement a number, detecting overflows.
|
---|
3778 | * @param n number to decrement
|
---|
3779 | * @return n-1 if no overflows occur
|
---|
3780 | * @exception MathArithmeticException if an overflow occurs
|
---|
3781 | * @since 3.4
|
---|
3782 | */
|
---|
3783 | public static int decrementExact(final int n) throws MathArithmeticException {
|
---|
3784 |
|
---|
3785 | if (n == Integer.MIN_VALUE) {
|
---|
3786 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, n, 1);
|
---|
3787 | }
|
---|
3788 |
|
---|
3789 | return n - 1;
|
---|
3790 |
|
---|
3791 | }
|
---|
3792 |
|
---|
3793 | /** Decrement a number, detecting overflows.
|
---|
3794 | * @param n number to decrement
|
---|
3795 | * @return n-1 if no overflows occur
|
---|
3796 | * @exception MathArithmeticException if an overflow occurs
|
---|
3797 | * @since 3.4
|
---|
3798 | */
|
---|
3799 | public static long decrementExact(final long n) throws MathArithmeticException {
|
---|
3800 |
|
---|
3801 | if (n == Long.MIN_VALUE) {
|
---|
3802 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, n, 1);
|
---|
3803 | }
|
---|
3804 |
|
---|
3805 | return n - 1;
|
---|
3806 |
|
---|
3807 | }
|
---|
3808 |
|
---|
3809 | /** Add two numbers, detecting overflows.
|
---|
3810 | * @param a first number to add
|
---|
3811 | * @param b second number to add
|
---|
3812 | * @return a+b if no overflows occur
|
---|
3813 | * @exception MathArithmeticException if an overflow occurs
|
---|
3814 | * @since 3.4
|
---|
3815 | */
|
---|
3816 | public static int addExact(final int a, final int b) throws MathArithmeticException {
|
---|
3817 |
|
---|
3818 | // compute sum
|
---|
3819 | final int sum = a + b;
|
---|
3820 |
|
---|
3821 | // check for overflow
|
---|
3822 | if ((a ^ b) >= 0 && (sum ^ b) < 0) {
|
---|
3823 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, b);
|
---|
3824 | }
|
---|
3825 |
|
---|
3826 | return sum;
|
---|
3827 |
|
---|
3828 | }
|
---|
3829 |
|
---|
3830 | /** Add two numbers, detecting overflows.
|
---|
3831 | * @param a first number to add
|
---|
3832 | * @param b second number to add
|
---|
3833 | * @return a+b if no overflows occur
|
---|
3834 | * @exception MathArithmeticException if an overflow occurs
|
---|
3835 | * @since 3.4
|
---|
3836 | */
|
---|
3837 | public static long addExact(final long a, final long b) throws MathArithmeticException {
|
---|
3838 |
|
---|
3839 | // compute sum
|
---|
3840 | final long sum = a + b;
|
---|
3841 |
|
---|
3842 | // check for overflow
|
---|
3843 | if ((a ^ b) >= 0 && (sum ^ b) < 0) {
|
---|
3844 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, b);
|
---|
3845 | }
|
---|
3846 |
|
---|
3847 | return sum;
|
---|
3848 |
|
---|
3849 | }
|
---|
3850 |
|
---|
3851 | /** Subtract two numbers, detecting overflows.
|
---|
3852 | * @param a first number
|
---|
3853 | * @param b second number to subtract from a
|
---|
3854 | * @return a-b if no overflows occur
|
---|
3855 | * @exception MathArithmeticException if an overflow occurs
|
---|
3856 | * @since 3.4
|
---|
3857 | */
|
---|
3858 | public static int subtractExact(final int a, final int b) {
|
---|
3859 |
|
---|
3860 | // compute subtraction
|
---|
3861 | final int sub = a - b;
|
---|
3862 |
|
---|
3863 | // check for overflow
|
---|
3864 | if ((a ^ b) < 0 && (sub ^ b) >= 0) {
|
---|
3865 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, a, b);
|
---|
3866 | }
|
---|
3867 |
|
---|
3868 | return sub;
|
---|
3869 |
|
---|
3870 | }
|
---|
3871 |
|
---|
3872 | /** Subtract two numbers, detecting overflows.
|
---|
3873 | * @param a first number
|
---|
3874 | * @param b second number to subtract from a
|
---|
3875 | * @return a-b if no overflows occur
|
---|
3876 | * @exception MathArithmeticException if an overflow occurs
|
---|
3877 | * @since 3.4
|
---|
3878 | */
|
---|
3879 | public static long subtractExact(final long a, final long b) {
|
---|
3880 |
|
---|
3881 | // compute subtraction
|
---|
3882 | final long sub = a - b;
|
---|
3883 |
|
---|
3884 | // check for overflow
|
---|
3885 | if ((a ^ b) < 0 && (sub ^ b) >= 0) {
|
---|
3886 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, a, b);
|
---|
3887 | }
|
---|
3888 |
|
---|
3889 | return sub;
|
---|
3890 |
|
---|
3891 | }
|
---|
3892 |
|
---|
3893 | /** Multiply two numbers, detecting overflows.
|
---|
3894 | * @param a first number to multiply
|
---|
3895 | * @param b second number to multiply
|
---|
3896 | * @return a*b if no overflows occur
|
---|
3897 | * @exception MathArithmeticException if an overflow occurs
|
---|
3898 | * @since 3.4
|
---|
3899 | */
|
---|
3900 | public static int multiplyExact(final int a, final int b) {
|
---|
3901 | if (((b > 0) && (a > Integer.MAX_VALUE / b || a < Integer.MIN_VALUE / b)) ||
|
---|
3902 | ((b < -1) && (a > Integer.MIN_VALUE / b || a < Integer.MAX_VALUE / b)) ||
|
---|
3903 | ((b == -1) && (a == Integer.MIN_VALUE))) {
|
---|
3904 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_MULTIPLICATION, a, b);
|
---|
3905 | }
|
---|
3906 | return a * b;
|
---|
3907 | }
|
---|
3908 |
|
---|
3909 | /** Multiply two numbers, detecting overflows.
|
---|
3910 | * @param a first number to multiply
|
---|
3911 | * @param b second number to multiply
|
---|
3912 | * @return a*b if no overflows occur
|
---|
3913 | * @exception MathArithmeticException if an overflow occurs
|
---|
3914 | * @since 3.4
|
---|
3915 | */
|
---|
3916 | public static long multiplyExact(final long a, final long b) {
|
---|
3917 | if (((b > 0l) && (a > Long.MAX_VALUE / b || a < Long.MIN_VALUE / b)) ||
|
---|
3918 | ((b < -1l) && (a > Long.MIN_VALUE / b || a < Long.MAX_VALUE / b)) ||
|
---|
3919 | ((b == -1l) && (a == Long.MIN_VALUE))) {
|
---|
3920 | throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_MULTIPLICATION, a, b);
|
---|
3921 | }
|
---|
3922 | return a * b;
|
---|
3923 | }
|
---|
3924 |
|
---|
3925 | /** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
|
---|
3926 | * <p>
|
---|
3927 | * This methods returns the same value as integer division when
|
---|
3928 | * a and b are same signs, but returns a different value when
|
---|
3929 | * they are opposite (i.e. q is negative).
|
---|
3930 | * </p>
|
---|
3931 | * @param a dividend
|
---|
3932 | * @param b divisor
|
---|
3933 | * @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
|
---|
3934 | * @exception MathArithmeticException if b == 0
|
---|
3935 | * @see #floorMod(int, int)
|
---|
3936 | * @since 3.4
|
---|
3937 | */
|
---|
3938 | public static int floorDiv(final int a, final int b) throws MathArithmeticException {
|
---|
3939 |
|
---|
3940 | if (b == 0) {
|
---|
3941 | throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
---|
3942 | }
|
---|
3943 |
|
---|
3944 | final int m = a % b;
|
---|
3945 | if ((a ^ b) >= 0 || m == 0) {
|
---|
3946 | // a an b have same sign, or division is exact
|
---|
3947 | return a / b;
|
---|
3948 | } else {
|
---|
3949 | // a and b have opposite signs and division is not exact
|
---|
3950 | return (a / b) - 1;
|
---|
3951 | }
|
---|
3952 |
|
---|
3953 | }
|
---|
3954 |
|
---|
3955 | /** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
|
---|
3956 | * <p>
|
---|
3957 | * This methods returns the same value as integer division when
|
---|
3958 | * a and b are same signs, but returns a different value when
|
---|
3959 | * they are opposite (i.e. q is negative).
|
---|
3960 | * </p>
|
---|
3961 | * @param a dividend
|
---|
3962 | * @param b divisor
|
---|
3963 | * @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
|
---|
3964 | * @exception MathArithmeticException if b == 0
|
---|
3965 | * @see #floorMod(long, long)
|
---|
3966 | * @since 3.4
|
---|
3967 | */
|
---|
3968 | public static long floorDiv(final long a, final long b) throws MathArithmeticException {
|
---|
3969 |
|
---|
3970 | if (b == 0l) {
|
---|
3971 | throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
---|
3972 | }
|
---|
3973 |
|
---|
3974 | final long m = a % b;
|
---|
3975 | if ((a ^ b) >= 0l || m == 0l) {
|
---|
3976 | // a an b have same sign, or division is exact
|
---|
3977 | return a / b;
|
---|
3978 | } else {
|
---|
3979 | // a and b have opposite signs and division is not exact
|
---|
3980 | return (a / b) - 1l;
|
---|
3981 | }
|
---|
3982 |
|
---|
3983 | }
|
---|
3984 |
|
---|
3985 | /** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
|
---|
3986 | * <p>
|
---|
3987 | * This methods returns the same value as integer modulo when
|
---|
3988 | * a and b are same signs, but returns a different value when
|
---|
3989 | * they are opposite (i.e. q is negative).
|
---|
3990 | * </p>
|
---|
3991 | * @param a dividend
|
---|
3992 | * @param b divisor
|
---|
3993 | * @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
|
---|
3994 | * @exception MathArithmeticException if b == 0
|
---|
3995 | * @see #floorDiv(int, int)
|
---|
3996 | * @since 3.4
|
---|
3997 | */
|
---|
3998 | public static int floorMod(final int a, final int b) throws MathArithmeticException {
|
---|
3999 |
|
---|
4000 | if (b == 0) {
|
---|
4001 | throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
---|
4002 | }
|
---|
4003 |
|
---|
4004 | final int m = a % b;
|
---|
4005 | if ((a ^ b) >= 0 || m == 0) {
|
---|
4006 | // a an b have same sign, or division is exact
|
---|
4007 | return m;
|
---|
4008 | } else {
|
---|
4009 | // a and b have opposite signs and division is not exact
|
---|
4010 | return b + m;
|
---|
4011 | }
|
---|
4012 |
|
---|
4013 | }
|
---|
4014 |
|
---|
4015 | /** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0.
|
---|
4016 | * <p>
|
---|
4017 | * This methods returns the same value as integer modulo when
|
---|
4018 | * a and b are same signs, but returns a different value when
|
---|
4019 | * they are opposite (i.e. q is negative).
|
---|
4020 | * </p>
|
---|
4021 | * @param a dividend
|
---|
4022 | * @param b divisor
|
---|
4023 | * @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b < 0
|
---|
4024 | * @exception MathArithmeticException if b == 0
|
---|
4025 | * @see #floorDiv(long, long)
|
---|
4026 | * @since 3.4
|
---|
4027 | */
|
---|
4028 | public static long floorMod(final long a, final long b) {
|
---|
4029 |
|
---|
4030 | if (b == 0l) {
|
---|
4031 | throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
---|
4032 | }
|
---|
4033 |
|
---|
4034 | final long m = a % b;
|
---|
4035 | if ((a ^ b) >= 0l || m == 0l) {
|
---|
4036 | // a an b have same sign, or division is exact
|
---|
4037 | return m;
|
---|
4038 | } else {
|
---|
4039 | // a and b have opposite signs and division is not exact
|
---|
4040 | return b + m;
|
---|
4041 | }
|
---|
4042 |
|
---|
4043 | }
|
---|
4044 |
|
---|
4045 | /**
|
---|
4046 | * Returns the first argument with the sign of the second argument.
|
---|
4047 | * A NaN {@code sign} argument is treated as positive.
|
---|
4048 | *
|
---|
4049 | * @param magnitude the value to return
|
---|
4050 | * @param sign the sign for the returned value
|
---|
4051 | * @return the magnitude with the same sign as the {@code sign} argument
|
---|
4052 | */
|
---|
4053 | public static double copySign(double magnitude, double sign){
|
---|
4054 | // The highest order bit is going to be zero if the
|
---|
4055 | // highest order bit of m and s is the same and one otherwise.
|
---|
4056 | // So (m^s) will be positive if both m and s have the same sign
|
---|
4057 | // and negative otherwise.
|
---|
4058 | final long m = Double.doubleToRawLongBits(magnitude); // don't care about NaN
|
---|
4059 | final long s = Double.doubleToRawLongBits(sign);
|
---|
4060 | if ((m^s) >= 0) {
|
---|
4061 | return magnitude;
|
---|
4062 | }
|
---|
4063 | return -magnitude; // flip sign
|
---|
4064 | }
|
---|
4065 |
|
---|
4066 | /**
|
---|
4067 | * Returns the first argument with the sign of the second argument.
|
---|
4068 | * A NaN {@code sign} argument is treated as positive.
|
---|
4069 | *
|
---|
4070 | * @param magnitude the value to return
|
---|
4071 | * @param sign the sign for the returned value
|
---|
4072 | * @return the magnitude with the same sign as the {@code sign} argument
|
---|
4073 | */
|
---|
4074 | public static float copySign(float magnitude, float sign){
|
---|
4075 | // The highest order bit is going to be zero if the
|
---|
4076 | // highest order bit of m and s is the same and one otherwise.
|
---|
4077 | // So (m^s) will be positive if both m and s have the same sign
|
---|
4078 | // and negative otherwise.
|
---|
4079 | final int m = Float.floatToRawIntBits(magnitude);
|
---|
4080 | final int s = Float.floatToRawIntBits(sign);
|
---|
4081 | if ((m^s) >= 0) {
|
---|
4082 | return magnitude;
|
---|
4083 | }
|
---|
4084 | return -magnitude; // flip sign
|
---|
4085 | }
|
---|
4086 |
|
---|
4087 | /**
|
---|
4088 | * Return the exponent of a double number, removing the bias.
|
---|
4089 | * <p>
|
---|
4090 | * For double numbers of the form 2<sup>x</sup>, the unbiased
|
---|
4091 | * exponent is exactly x.
|
---|
4092 | * </p>
|
---|
4093 | * @param d number from which exponent is requested
|
---|
4094 | * @return exponent for d in IEEE754 representation, without bias
|
---|
4095 | */
|
---|
4096 | public static int getExponent(final double d) {
|
---|
4097 | // NaN and Infinite will return 1024 anywho so can use raw bits
|
---|
4098 | return (int) ((Double.doubleToRawLongBits(d) >>> 52) & 0x7ff) - 1023;
|
---|
4099 | }
|
---|
4100 |
|
---|
4101 | /**
|
---|
4102 | * Return the exponent of a float number, removing the bias.
|
---|
4103 | * <p>
|
---|
4104 | * For float numbers of the form 2<sup>x</sup>, the unbiased
|
---|
4105 | * exponent is exactly x.
|
---|
4106 | * </p>
|
---|
4107 | * @param f number from which exponent is requested
|
---|
4108 | * @return exponent for d in IEEE754 representation, without bias
|
---|
4109 | */
|
---|
4110 | public static int getExponent(final float f) {
|
---|
4111 | // NaN and Infinite will return the same exponent anywho so can use raw bits
|
---|
4112 | return ((Float.floatToRawIntBits(f) >>> 23) & 0xff) - 127;
|
---|
4113 | }
|
---|
4114 |
|
---|
4115 | /**
|
---|
4116 | * Print out contents of arrays, and check the length.
|
---|
4117 | * <p>used to generate the preset arrays originally.</p>
|
---|
4118 | * @param a unused
|
---|
4119 | */
|
---|
4120 | public static void main(String[] a) {
|
---|
4121 | PrintStream out = System.out;
|
---|
4122 | FastMathCalc.printarray(out, "EXP_INT_TABLE_A", EXP_INT_TABLE_LEN, ExpIntTable.EXP_INT_TABLE_A);
|
---|
4123 | FastMathCalc.printarray(out, "EXP_INT_TABLE_B", EXP_INT_TABLE_LEN, ExpIntTable.EXP_INT_TABLE_B);
|
---|
4124 | FastMathCalc.printarray(out, "EXP_FRAC_TABLE_A", EXP_FRAC_TABLE_LEN, ExpFracTable.EXP_FRAC_TABLE_A);
|
---|
4125 | FastMathCalc.printarray(out, "EXP_FRAC_TABLE_B", EXP_FRAC_TABLE_LEN, ExpFracTable.EXP_FRAC_TABLE_B);
|
---|
4126 | FastMathCalc.printarray(out, "LN_MANT",LN_MANT_LEN, lnMant.LN_MANT);
|
---|
4127 | FastMathCalc.printarray(out, "SINE_TABLE_A", SINE_TABLE_LEN, SINE_TABLE_A);
|
---|
4128 | FastMathCalc.printarray(out, "SINE_TABLE_B", SINE_TABLE_LEN, SINE_TABLE_B);
|
---|
4129 | FastMathCalc.printarray(out, "COSINE_TABLE_A", SINE_TABLE_LEN, COSINE_TABLE_A);
|
---|
4130 | FastMathCalc.printarray(out, "COSINE_TABLE_B", SINE_TABLE_LEN, COSINE_TABLE_B);
|
---|
4131 | FastMathCalc.printarray(out, "TANGENT_TABLE_A", SINE_TABLE_LEN, TANGENT_TABLE_A);
|
---|
4132 | FastMathCalc.printarray(out, "TANGENT_TABLE_B", SINE_TABLE_LEN, TANGENT_TABLE_B);
|
---|
4133 | }
|
---|
4134 |
|
---|
4135 | /** Enclose large data table in nested static class so it's only loaded on first access. */
|
---|
4136 | private static class ExpIntTable {
|
---|
4137 | /** Exponential evaluated at integer values,
|
---|
4138 | * exp(x) = expIntTableA[x + EXP_INT_TABLE_MAX_INDEX] + expIntTableB[x+EXP_INT_TABLE_MAX_INDEX].
|
---|
4139 | */
|
---|
4140 | private static final double[] EXP_INT_TABLE_A;
|
---|
4141 | /** Exponential evaluated at integer values,
|
---|
4142 | * exp(x) = expIntTableA[x + EXP_INT_TABLE_MAX_INDEX] + expIntTableB[x+EXP_INT_TABLE_MAX_INDEX]
|
---|
4143 | */
|
---|
4144 | private static final double[] EXP_INT_TABLE_B;
|
---|
4145 |
|
---|
4146 | static {
|
---|
4147 | if (RECOMPUTE_TABLES_AT_RUNTIME) {
|
---|
4148 | EXP_INT_TABLE_A = new double[FastMath.EXP_INT_TABLE_LEN];
|
---|
4149 | EXP_INT_TABLE_B = new double[FastMath.EXP_INT_TABLE_LEN];
|
---|
4150 |
|
---|
4151 | final double tmp[] = new double[2];
|
---|
4152 | final double recip[] = new double[2];
|
---|
4153 |
|
---|
4154 | // Populate expIntTable
|
---|
4155 | for (int i = 0; i < FastMath.EXP_INT_TABLE_MAX_INDEX; i++) {
|
---|
4156 | FastMathCalc.expint(i, tmp);
|
---|
4157 | EXP_INT_TABLE_A[i + FastMath.EXP_INT_TABLE_MAX_INDEX] = tmp[0];
|
---|
4158 | EXP_INT_TABLE_B[i + FastMath.EXP_INT_TABLE_MAX_INDEX] = tmp[1];
|
---|
4159 |
|
---|
4160 | if (i != 0) {
|
---|
4161 | // Negative integer powers
|
---|
4162 | FastMathCalc.splitReciprocal(tmp, recip);
|
---|
4163 | EXP_INT_TABLE_A[FastMath.EXP_INT_TABLE_MAX_INDEX - i] = recip[0];
|
---|
4164 | EXP_INT_TABLE_B[FastMath.EXP_INT_TABLE_MAX_INDEX - i] = recip[1];
|
---|
4165 | }
|
---|
4166 | }
|
---|
4167 | } else {
|
---|
4168 | EXP_INT_TABLE_A = FastMathLiteralArrays.loadExpIntA();
|
---|
4169 | EXP_INT_TABLE_B = FastMathLiteralArrays.loadExpIntB();
|
---|
4170 | }
|
---|
4171 | }
|
---|
4172 | }
|
---|
4173 |
|
---|
4174 | /** Enclose large data table in nested static class so it's only loaded on first access. */
|
---|
4175 | private static class ExpFracTable {
|
---|
4176 | /** Exponential over the range of 0 - 1 in increments of 2^-10
|
---|
4177 | * exp(x/1024) = expFracTableA[x] + expFracTableB[x].
|
---|
4178 | * 1024 = 2^10
|
---|
4179 | */
|
---|
4180 | private static final double[] EXP_FRAC_TABLE_A;
|
---|
4181 | /** Exponential over the range of 0 - 1 in increments of 2^-10
|
---|
4182 | * exp(x/1024) = expFracTableA[x] + expFracTableB[x].
|
---|
4183 | */
|
---|
4184 | private static final double[] EXP_FRAC_TABLE_B;
|
---|
4185 |
|
---|
4186 | static {
|
---|
4187 | if (RECOMPUTE_TABLES_AT_RUNTIME) {
|
---|
4188 | EXP_FRAC_TABLE_A = new double[FastMath.EXP_FRAC_TABLE_LEN];
|
---|
4189 | EXP_FRAC_TABLE_B = new double[FastMath.EXP_FRAC_TABLE_LEN];
|
---|
4190 |
|
---|
4191 | final double tmp[] = new double[2];
|
---|
4192 |
|
---|
4193 | // Populate expFracTable
|
---|
4194 | final double factor = 1d / (EXP_FRAC_TABLE_LEN - 1);
|
---|
4195 | for (int i = 0; i < EXP_FRAC_TABLE_A.length; i++) {
|
---|
4196 | FastMathCalc.slowexp(i * factor, tmp);
|
---|
4197 | EXP_FRAC_TABLE_A[i] = tmp[0];
|
---|
4198 | EXP_FRAC_TABLE_B[i] = tmp[1];
|
---|
4199 | }
|
---|
4200 | } else {
|
---|
4201 | EXP_FRAC_TABLE_A = FastMathLiteralArrays.loadExpFracA();
|
---|
4202 | EXP_FRAC_TABLE_B = FastMathLiteralArrays.loadExpFracB();
|
---|
4203 | }
|
---|
4204 | }
|
---|
4205 | }
|
---|
4206 |
|
---|
4207 | /** Enclose large data table in nested static class so it's only loaded on first access. */
|
---|
4208 | private static class lnMant {
|
---|
4209 | /** Extended precision logarithm table over the range 1 - 2 in increments of 2^-10. */
|
---|
4210 | private static final double[][] LN_MANT;
|
---|
4211 |
|
---|
4212 | static {
|
---|
4213 | if (RECOMPUTE_TABLES_AT_RUNTIME) {
|
---|
4214 | LN_MANT = new double[FastMath.LN_MANT_LEN][];
|
---|
4215 |
|
---|
4216 | // Populate lnMant table
|
---|
4217 | for (int i = 0; i < LN_MANT.length; i++) {
|
---|
4218 | final double d = Double.longBitsToDouble( (((long) i) << 42) | 0x3ff0000000000000L );
|
---|
4219 | LN_MANT[i] = FastMathCalc.slowLog(d);
|
---|
4220 | }
|
---|
4221 | } else {
|
---|
4222 | LN_MANT = FastMathLiteralArrays.loadLnMant();
|
---|
4223 | }
|
---|
4224 | }
|
---|
4225 | }
|
---|
4226 |
|
---|
4227 | /** Enclose the Cody/Waite reduction (used in "sin", "cos" and "tan"). */
|
---|
4228 | private static class CodyWaite {
|
---|
4229 | /** k */
|
---|
4230 | private final int finalK;
|
---|
4231 | /** remA */
|
---|
4232 | private final double finalRemA;
|
---|
4233 | /** remB */
|
---|
4234 | private final double finalRemB;
|
---|
4235 |
|
---|
4236 | /**
|
---|
4237 | * @param xa Argument.
|
---|
4238 | */
|
---|
4239 | CodyWaite(double xa) {
|
---|
4240 | // Estimate k.
|
---|
4241 | //k = (int)(xa / 1.5707963267948966);
|
---|
4242 | int k = (int)(xa * 0.6366197723675814);
|
---|
4243 |
|
---|
4244 | // Compute remainder.
|
---|
4245 | double remA;
|
---|
4246 | double remB;
|
---|
4247 | while (true) {
|
---|
4248 | double a = -k * 1.570796251296997;
|
---|
4249 | remA = xa + a;
|
---|
4250 | remB = -(remA - xa - a);
|
---|
4251 |
|
---|
4252 | a = -k * 7.549789948768648E-8;
|
---|
4253 | double b = remA;
|
---|
4254 | remA = a + b;
|
---|
4255 | remB += -(remA - b - a);
|
---|
4256 |
|
---|
4257 | a = -k * 6.123233995736766E-17;
|
---|
4258 | b = remA;
|
---|
4259 | remA = a + b;
|
---|
4260 | remB += -(remA - b - a);
|
---|
4261 |
|
---|
4262 | if (remA > 0) {
|
---|
4263 | break;
|
---|
4264 | }
|
---|
4265 |
|
---|
4266 | // Remainder is negative, so decrement k and try again.
|
---|
4267 | // This should only happen if the input is very close
|
---|
4268 | // to an even multiple of pi/2.
|
---|
4269 | --k;
|
---|
4270 | }
|
---|
4271 |
|
---|
4272 | this.finalK = k;
|
---|
4273 | this.finalRemA = remA;
|
---|
4274 | this.finalRemB = remB;
|
---|
4275 | }
|
---|
4276 |
|
---|
4277 | /**
|
---|
4278 | * @return k
|
---|
4279 | */
|
---|
4280 | int getK() {
|
---|
4281 | return finalK;
|
---|
4282 | }
|
---|
4283 | /**
|
---|
4284 | * @return remA
|
---|
4285 | */
|
---|
4286 | double getRemA() {
|
---|
4287 | return finalRemA;
|
---|
4288 | }
|
---|
4289 | /**
|
---|
4290 | * @return remB
|
---|
4291 | */
|
---|
4292 | double getRemB() {
|
---|
4293 | return finalRemB;
|
---|
4294 | }
|
---|
4295 | }
|
---|
4296 | }
|
---|