1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.util;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.exception.ConvergenceException;
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Provides a generic means to evaluate continued fractions. Subclasses simply
|
---|
25 | * provided the a and b coefficients to evaluate the continued fraction.
|
---|
26 | *
|
---|
27 | * <p>
|
---|
28 | * References:
|
---|
29 | * <ul>
|
---|
30 | * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
|
---|
31 | * Continued Fraction</a></li>
|
---|
32 | * </ul>
|
---|
33 | * </p>
|
---|
34 | *
|
---|
35 | */
|
---|
36 | public abstract class ContinuedFraction {
|
---|
37 | /** Maximum allowed numerical error. */
|
---|
38 | private static final double DEFAULT_EPSILON = 10e-9;
|
---|
39 |
|
---|
40 | /**
|
---|
41 | * Default constructor.
|
---|
42 | */
|
---|
43 | protected ContinuedFraction() {
|
---|
44 | super();
|
---|
45 | }
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * Access the n-th a coefficient of the continued fraction. Since a can be
|
---|
49 | * a function of the evaluation point, x, that is passed in as well.
|
---|
50 | * @param n the coefficient index to retrieve.
|
---|
51 | * @param x the evaluation point.
|
---|
52 | * @return the n-th a coefficient.
|
---|
53 | */
|
---|
54 | protected abstract double getA(int n, double x);
|
---|
55 |
|
---|
56 | /**
|
---|
57 | * Access the n-th b coefficient of the continued fraction. Since b can be
|
---|
58 | * a function of the evaluation point, x, that is passed in as well.
|
---|
59 | * @param n the coefficient index to retrieve.
|
---|
60 | * @param x the evaluation point.
|
---|
61 | * @return the n-th b coefficient.
|
---|
62 | */
|
---|
63 | protected abstract double getB(int n, double x);
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * Evaluates the continued fraction at the value x.
|
---|
67 | * @param x the evaluation point.
|
---|
68 | * @return the value of the continued fraction evaluated at x.
|
---|
69 | * @throws ConvergenceException if the algorithm fails to converge.
|
---|
70 | */
|
---|
71 | public double evaluate(double x) throws ConvergenceException {
|
---|
72 | return evaluate(x, DEFAULT_EPSILON, Integer.MAX_VALUE);
|
---|
73 | }
|
---|
74 |
|
---|
75 | /**
|
---|
76 | * Evaluates the continued fraction at the value x.
|
---|
77 | * @param x the evaluation point.
|
---|
78 | * @param epsilon maximum error allowed.
|
---|
79 | * @return the value of the continued fraction evaluated at x.
|
---|
80 | * @throws ConvergenceException if the algorithm fails to converge.
|
---|
81 | */
|
---|
82 | public double evaluate(double x, double epsilon) throws ConvergenceException {
|
---|
83 | return evaluate(x, epsilon, Integer.MAX_VALUE);
|
---|
84 | }
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Evaluates the continued fraction at the value x.
|
---|
88 | * @param x the evaluation point.
|
---|
89 | * @param maxIterations maximum number of convergents
|
---|
90 | * @return the value of the continued fraction evaluated at x.
|
---|
91 | * @throws ConvergenceException if the algorithm fails to converge.
|
---|
92 | * @throws MaxCountExceededException if maximal number of iterations is reached
|
---|
93 | */
|
---|
94 | public double evaluate(double x, int maxIterations)
|
---|
95 | throws ConvergenceException, MaxCountExceededException {
|
---|
96 | return evaluate(x, DEFAULT_EPSILON, maxIterations);
|
---|
97 | }
|
---|
98 |
|
---|
99 | /**
|
---|
100 | * Evaluates the continued fraction at the value x.
|
---|
101 | * <p>
|
---|
102 | * The implementation of this method is based on the modified Lentz algorithm as described
|
---|
103 | * on page 18 ff. in:
|
---|
104 | * <ul>
|
---|
105 | * <li>
|
---|
106 | * I. J. Thompson, A. R. Barnett. "Coulomb and Bessel Functions of Complex Arguments and Order."
|
---|
107 | * <a target="_blank" href="http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf">
|
---|
108 | * http://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf</a>
|
---|
109 | * </li>
|
---|
110 | * </ul>
|
---|
111 | * <b>Note:</b> the implementation uses the terms a<sub>i</sub> and b<sub>i</sub> as defined in
|
---|
112 | * <a href="http://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction @ MathWorld</a>.
|
---|
113 | * </p>
|
---|
114 | *
|
---|
115 | * @param x the evaluation point.
|
---|
116 | * @param epsilon maximum error allowed.
|
---|
117 | * @param maxIterations maximum number of convergents
|
---|
118 | * @return the value of the continued fraction evaluated at x.
|
---|
119 | * @throws ConvergenceException if the algorithm fails to converge.
|
---|
120 | * @throws MaxCountExceededException if maximal number of iterations is reached
|
---|
121 | */
|
---|
122 | public double evaluate(double x, double epsilon, int maxIterations)
|
---|
123 | throws ConvergenceException, MaxCountExceededException {
|
---|
124 | final double small = 1e-50;
|
---|
125 | double hPrev = getA(0, x);
|
---|
126 |
|
---|
127 | // use the value of small as epsilon criteria for zero checks
|
---|
128 | if (Precision.equals(hPrev, 0.0, small)) {
|
---|
129 | hPrev = small;
|
---|
130 | }
|
---|
131 |
|
---|
132 | int n = 1;
|
---|
133 | double dPrev = 0.0;
|
---|
134 | double cPrev = hPrev;
|
---|
135 | double hN = hPrev;
|
---|
136 |
|
---|
137 | while (n < maxIterations) {
|
---|
138 | final double a = getA(n, x);
|
---|
139 | final double b = getB(n, x);
|
---|
140 |
|
---|
141 | double dN = a + b * dPrev;
|
---|
142 | if (Precision.equals(dN, 0.0, small)) {
|
---|
143 | dN = small;
|
---|
144 | }
|
---|
145 | double cN = a + b / cPrev;
|
---|
146 | if (Precision.equals(cN, 0.0, small)) {
|
---|
147 | cN = small;
|
---|
148 | }
|
---|
149 |
|
---|
150 | dN = 1 / dN;
|
---|
151 | final double deltaN = cN * dN;
|
---|
152 | hN = hPrev * deltaN;
|
---|
153 |
|
---|
154 | if (Double.isInfinite(hN)) {
|
---|
155 | throw new ConvergenceException(LocalizedFormats.CONTINUED_FRACTION_INFINITY_DIVERGENCE,
|
---|
156 | x);
|
---|
157 | }
|
---|
158 | if (Double.isNaN(hN)) {
|
---|
159 | throw new ConvergenceException(LocalizedFormats.CONTINUED_FRACTION_NAN_DIVERGENCE,
|
---|
160 | x);
|
---|
161 | }
|
---|
162 |
|
---|
163 | if (FastMath.abs(deltaN - 1.0) < epsilon) {
|
---|
164 | break;
|
---|
165 | }
|
---|
166 |
|
---|
167 | dPrev = dN;
|
---|
168 | cPrev = cN;
|
---|
169 | hPrev = hN;
|
---|
170 | n++;
|
---|
171 | }
|
---|
172 |
|
---|
173 | if (n >= maxIterations) {
|
---|
174 | throw new MaxCountExceededException(LocalizedFormats.NON_CONVERGENT_CONTINUED_FRACTION,
|
---|
175 | maxIterations, x);
|
---|
176 | }
|
---|
177 |
|
---|
178 | return hN;
|
---|
179 | }
|
---|
180 |
|
---|
181 | }
|
---|