1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.stat.regression;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalArgumentException;
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.NoDataException;
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * An interface for regression models allowing for dynamic updating of the data.
|
---|
24 | * That is, the entire data set need not be loaded into memory. As observations
|
---|
25 | * become available, they can be added to the regression model and an updated
|
---|
26 | * estimate regression statistics can be calculated.
|
---|
27 | *
|
---|
28 | * @since 3.0
|
---|
29 | */
|
---|
30 | public interface UpdatingMultipleLinearRegression {
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * Returns true if a constant has been included false otherwise.
|
---|
34 | *
|
---|
35 | * @return true if constant exists, false otherwise
|
---|
36 | */
|
---|
37 | boolean hasIntercept();
|
---|
38 |
|
---|
39 | /**
|
---|
40 | * Returns the number of observations added to the regression model.
|
---|
41 | *
|
---|
42 | * @return Number of observations
|
---|
43 | */
|
---|
44 | long getN();
|
---|
45 |
|
---|
46 | /**
|
---|
47 | * Adds one observation to the regression model.
|
---|
48 | *
|
---|
49 | * @param x the independent variables which form the design matrix
|
---|
50 | * @param y the dependent or response variable
|
---|
51 | * @throws ModelSpecificationException if the length of {@code x} does not equal
|
---|
52 | * the number of independent variables in the model
|
---|
53 | */
|
---|
54 | void addObservation(double[] x, double y) throws ModelSpecificationException;
|
---|
55 |
|
---|
56 | /**
|
---|
57 | * Adds a series of observations to the regression model. The lengths of
|
---|
58 | * x and y must be the same and x must be rectangular.
|
---|
59 | *
|
---|
60 | * @param x a series of observations on the independent variables
|
---|
61 | * @param y a series of observations on the dependent variable
|
---|
62 | * The length of x and y must be the same
|
---|
63 | * @throws ModelSpecificationException if {@code x} is not rectangular, does not match
|
---|
64 | * the length of {@code y} or does not contain sufficient data to estimate the model
|
---|
65 | */
|
---|
66 | void addObservations(double[][] x, double[] y) throws ModelSpecificationException;
|
---|
67 |
|
---|
68 | /**
|
---|
69 | * Clears internal buffers and resets the regression model. This means all
|
---|
70 | * data and derived values are initialized
|
---|
71 | */
|
---|
72 | void clear();
|
---|
73 |
|
---|
74 |
|
---|
75 | /**
|
---|
76 | * Performs a regression on data present in buffers and outputs a RegressionResults object
|
---|
77 | * @return RegressionResults acts as a container of regression output
|
---|
78 | * @throws ModelSpecificationException if the model is not correctly specified
|
---|
79 | * @throws NoDataException if there is not sufficient data in the model to
|
---|
80 | * estimate the regression parameters
|
---|
81 | */
|
---|
82 | RegressionResults regress() throws ModelSpecificationException, NoDataException;
|
---|
83 |
|
---|
84 | /**
|
---|
85 | * Performs a regression on data present in buffers including only regressors
|
---|
86 | * indexed in variablesToInclude and outputs a RegressionResults object
|
---|
87 | * @param variablesToInclude an array of indices of regressors to include
|
---|
88 | * @return RegressionResults acts as a container of regression output
|
---|
89 | * @throws ModelSpecificationException if the model is not correctly specified
|
---|
90 | * @throws MathIllegalArgumentException if the variablesToInclude array is null or zero length
|
---|
91 | */
|
---|
92 | RegressionResults regress(int[] variablesToInclude) throws ModelSpecificationException, MathIllegalArgumentException;
|
---|
93 | }
|
---|