1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.stat.inference;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.distribution.TDistribution;
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalArgumentException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.exception.NoDataException;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooSmallException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
29 | import agents.anac.y2019.harddealer.math3.stat.StatUtils;
|
---|
30 | import agents.anac.y2019.harddealer.math3.stat.descriptive.StatisticalSummary;
|
---|
31 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * An implementation for Student's t-tests.
|
---|
35 | * <p>
|
---|
36 | * Tests can be:<ul>
|
---|
37 | * <li>One-sample or two-sample</li>
|
---|
38 | * <li>One-sided or two-sided</li>
|
---|
39 | * <li>Paired or unpaired (for two-sample tests)</li>
|
---|
40 | * <li>Homoscedastic (equal variance assumption) or heteroscedastic
|
---|
41 | * (for two sample tests)</li>
|
---|
42 | * <li>Fixed significance level (boolean-valued) or returning p-values.
|
---|
43 | * </li></ul></p>
|
---|
44 | * <p>
|
---|
45 | * Test statistics are available for all tests. Methods including "Test" in
|
---|
46 | * in their names perform tests, all other methods return t-statistics. Among
|
---|
47 | * the "Test" methods, <code>double-</code>valued methods return p-values;
|
---|
48 | * <code>boolean-</code>valued methods perform fixed significance level tests.
|
---|
49 | * Significance levels are always specified as numbers between 0 and 0.5
|
---|
50 | * (e.g. tests at the 95% level use <code>alpha=0.05</code>).</p>
|
---|
51 | * <p>
|
---|
52 | * Input to tests can be either <code>double[]</code> arrays or
|
---|
53 | * {@link StatisticalSummary} instances.</p><p>
|
---|
54 | * Uses commons-math {@link agents.anac.y2019.harddealer.math3.distribution.TDistribution}
|
---|
55 | * implementation to estimate exact p-values.</p>
|
---|
56 | *
|
---|
57 | */
|
---|
58 | public class TTest {
|
---|
59 | /**
|
---|
60 | * Computes a paired, 2-sample t-statistic based on the data in the input
|
---|
61 | * arrays. The t-statistic returned is equivalent to what would be returned by
|
---|
62 | * computing the one-sample t-statistic {@link #t(double, double[])}, with
|
---|
63 | * <code>mu = 0</code> and the sample array consisting of the (signed)
|
---|
64 | * differences between corresponding entries in <code>sample1</code> and
|
---|
65 | * <code>sample2.</code>
|
---|
66 | * <p>
|
---|
67 | * <strong>Preconditions</strong>: <ul>
|
---|
68 | * <li>The input arrays must have the same length and their common length
|
---|
69 | * must be at least 2.
|
---|
70 | * </li></ul></p>
|
---|
71 | *
|
---|
72 | * @param sample1 array of sample data values
|
---|
73 | * @param sample2 array of sample data values
|
---|
74 | * @return t statistic
|
---|
75 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
76 | * @throws NoDataException if the arrays are empty
|
---|
77 | * @throws DimensionMismatchException if the length of the arrays is not equal
|
---|
78 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
79 | */
|
---|
80 | public double pairedT(final double[] sample1, final double[] sample2)
|
---|
81 | throws NullArgumentException, NoDataException,
|
---|
82 | DimensionMismatchException, NumberIsTooSmallException {
|
---|
83 |
|
---|
84 | checkSampleData(sample1);
|
---|
85 | checkSampleData(sample2);
|
---|
86 | double meanDifference = StatUtils.meanDifference(sample1, sample2);
|
---|
87 | return t(meanDifference, 0,
|
---|
88 | StatUtils.varianceDifference(sample1, sample2, meanDifference),
|
---|
89 | sample1.length);
|
---|
90 |
|
---|
91 | }
|
---|
92 |
|
---|
93 | /**
|
---|
94 | * Returns the <i>observed significance level</i>, or
|
---|
95 | * <i> p-value</i>, associated with a paired, two-sample, two-tailed t-test
|
---|
96 | * based on the data in the input arrays.
|
---|
97 | * <p>
|
---|
98 | * The number returned is the smallest significance level
|
---|
99 | * at which one can reject the null hypothesis that the mean of the paired
|
---|
100 | * differences is 0 in favor of the two-sided alternative that the mean paired
|
---|
101 | * difference is not equal to 0. For a one-sided test, divide the returned
|
---|
102 | * value by 2.</p>
|
---|
103 | * <p>
|
---|
104 | * This test is equivalent to a one-sample t-test computed using
|
---|
105 | * {@link #tTest(double, double[])} with <code>mu = 0</code> and the sample
|
---|
106 | * array consisting of the signed differences between corresponding elements of
|
---|
107 | * <code>sample1</code> and <code>sample2.</code></p>
|
---|
108 | * <p>
|
---|
109 | * <strong>Usage Note:</strong><br>
|
---|
110 | * The validity of the p-value depends on the assumptions of the parametric
|
---|
111 | * t-test procedure, as discussed
|
---|
112 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
113 | * here</a></p>
|
---|
114 | * <p>
|
---|
115 | * <strong>Preconditions</strong>: <ul>
|
---|
116 | * <li>The input array lengths must be the same and their common length must
|
---|
117 | * be at least 2.
|
---|
118 | * </li></ul></p>
|
---|
119 | *
|
---|
120 | * @param sample1 array of sample data values
|
---|
121 | * @param sample2 array of sample data values
|
---|
122 | * @return p-value for t-test
|
---|
123 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
124 | * @throws NoDataException if the arrays are empty
|
---|
125 | * @throws DimensionMismatchException if the length of the arrays is not equal
|
---|
126 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
127 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
128 | */
|
---|
129 | public double pairedTTest(final double[] sample1, final double[] sample2)
|
---|
130 | throws NullArgumentException, NoDataException, DimensionMismatchException,
|
---|
131 | NumberIsTooSmallException, MaxCountExceededException {
|
---|
132 |
|
---|
133 | double meanDifference = StatUtils.meanDifference(sample1, sample2);
|
---|
134 | return tTest(meanDifference, 0,
|
---|
135 | StatUtils.varianceDifference(sample1, sample2, meanDifference),
|
---|
136 | sample1.length);
|
---|
137 |
|
---|
138 | }
|
---|
139 |
|
---|
140 | /**
|
---|
141 | * Performs a paired t-test evaluating the null hypothesis that the
|
---|
142 | * mean of the paired differences between <code>sample1</code> and
|
---|
143 | * <code>sample2</code> is 0 in favor of the two-sided alternative that the
|
---|
144 | * mean paired difference is not equal to 0, with significance level
|
---|
145 | * <code>alpha</code>.
|
---|
146 | * <p>
|
---|
147 | * Returns <code>true</code> iff the null hypothesis can be rejected with
|
---|
148 | * confidence <code>1 - alpha</code>. To perform a 1-sided test, use
|
---|
149 | * <code>alpha * 2</code></p>
|
---|
150 | * <p>
|
---|
151 | * <strong>Usage Note:</strong><br>
|
---|
152 | * The validity of the test depends on the assumptions of the parametric
|
---|
153 | * t-test procedure, as discussed
|
---|
154 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
155 | * here</a></p>
|
---|
156 | * <p>
|
---|
157 | * <strong>Preconditions</strong>: <ul>
|
---|
158 | * <li>The input array lengths must be the same and their common length
|
---|
159 | * must be at least 2.
|
---|
160 | * </li>
|
---|
161 | * <li> <code> 0 < alpha < 0.5 </code>
|
---|
162 | * </li></ul></p>
|
---|
163 | *
|
---|
164 | * @param sample1 array of sample data values
|
---|
165 | * @param sample2 array of sample data values
|
---|
166 | * @param alpha significance level of the test
|
---|
167 | * @return true if the null hypothesis can be rejected with
|
---|
168 | * confidence 1 - alpha
|
---|
169 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
170 | * @throws NoDataException if the arrays are empty
|
---|
171 | * @throws DimensionMismatchException if the length of the arrays is not equal
|
---|
172 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
173 | * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
|
---|
174 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
175 | */
|
---|
176 | public boolean pairedTTest(final double[] sample1, final double[] sample2,
|
---|
177 | final double alpha)
|
---|
178 | throws NullArgumentException, NoDataException, DimensionMismatchException,
|
---|
179 | NumberIsTooSmallException, OutOfRangeException, MaxCountExceededException {
|
---|
180 |
|
---|
181 | checkSignificanceLevel(alpha);
|
---|
182 | return pairedTTest(sample1, sample2) < alpha;
|
---|
183 |
|
---|
184 | }
|
---|
185 |
|
---|
186 | /**
|
---|
187 | * Computes a <a href="http://www.itl.nist.gov/div898/handbook/prc/section2/prc22.htm#formula">
|
---|
188 | * t statistic </a> given observed values and a comparison constant.
|
---|
189 | * <p>
|
---|
190 | * This statistic can be used to perform a one sample t-test for the mean.
|
---|
191 | * </p><p>
|
---|
192 | * <strong>Preconditions</strong>: <ul>
|
---|
193 | * <li>The observed array length must be at least 2.
|
---|
194 | * </li></ul></p>
|
---|
195 | *
|
---|
196 | * @param mu comparison constant
|
---|
197 | * @param observed array of values
|
---|
198 | * @return t statistic
|
---|
199 | * @throws NullArgumentException if <code>observed</code> is <code>null</code>
|
---|
200 | * @throws NumberIsTooSmallException if the length of <code>observed</code> is < 2
|
---|
201 | */
|
---|
202 | public double t(final double mu, final double[] observed)
|
---|
203 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
204 |
|
---|
205 | checkSampleData(observed);
|
---|
206 | // No try-catch or advertised exception because args have just been checked
|
---|
207 | return t(StatUtils.mean(observed), mu, StatUtils.variance(observed),
|
---|
208 | observed.length);
|
---|
209 |
|
---|
210 | }
|
---|
211 |
|
---|
212 | /**
|
---|
213 | * Computes a <a href="http://www.itl.nist.gov/div898/handbook/prc/section2/prc22.htm#formula">
|
---|
214 | * t statistic </a> to use in comparing the mean of the dataset described by
|
---|
215 | * <code>sampleStats</code> to <code>mu</code>.
|
---|
216 | * <p>
|
---|
217 | * This statistic can be used to perform a one sample t-test for the mean.
|
---|
218 | * </p><p>
|
---|
219 | * <strong>Preconditions</strong>: <ul>
|
---|
220 | * <li><code>observed.getN() ≥ 2</code>.
|
---|
221 | * </li></ul></p>
|
---|
222 | *
|
---|
223 | * @param mu comparison constant
|
---|
224 | * @param sampleStats DescriptiveStatistics holding sample summary statitstics
|
---|
225 | * @return t statistic
|
---|
226 | * @throws NullArgumentException if <code>sampleStats</code> is <code>null</code>
|
---|
227 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
228 | */
|
---|
229 | public double t(final double mu, final StatisticalSummary sampleStats)
|
---|
230 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
231 |
|
---|
232 | checkSampleData(sampleStats);
|
---|
233 | return t(sampleStats.getMean(), mu, sampleStats.getVariance(),
|
---|
234 | sampleStats.getN());
|
---|
235 |
|
---|
236 | }
|
---|
237 |
|
---|
238 | /**
|
---|
239 | * Computes a 2-sample t statistic, under the hypothesis of equal
|
---|
240 | * subpopulation variances. To compute a t-statistic without the
|
---|
241 | * equal variances hypothesis, use {@link #t(double[], double[])}.
|
---|
242 | * <p>
|
---|
243 | * This statistic can be used to perform a (homoscedastic) two-sample
|
---|
244 | * t-test to compare sample means.</p>
|
---|
245 | * <p>
|
---|
246 | * The t-statistic is</p>
|
---|
247 | * <p>
|
---|
248 | * <code> t = (m1 - m2) / (sqrt(1/n1 +1/n2) sqrt(var))</code>
|
---|
249 | * </p><p>
|
---|
250 | * where <strong><code>n1</code></strong> is the size of first sample;
|
---|
251 | * <strong><code> n2</code></strong> is the size of second sample;
|
---|
252 | * <strong><code> m1</code></strong> is the mean of first sample;
|
---|
253 | * <strong><code> m2</code></strong> is the mean of second sample</li>
|
---|
254 | * </ul>
|
---|
255 | * and <strong><code>var</code></strong> is the pooled variance estimate:
|
---|
256 | * </p><p>
|
---|
257 | * <code>var = sqrt(((n1 - 1)var1 + (n2 - 1)var2) / ((n1-1) + (n2-1)))</code>
|
---|
258 | * </p><p>
|
---|
259 | * with <strong><code>var1</code></strong> the variance of the first sample and
|
---|
260 | * <strong><code>var2</code></strong> the variance of the second sample.
|
---|
261 | * </p><p>
|
---|
262 | * <strong>Preconditions</strong>: <ul>
|
---|
263 | * <li>The observed array lengths must both be at least 2.
|
---|
264 | * </li></ul></p>
|
---|
265 | *
|
---|
266 | * @param sample1 array of sample data values
|
---|
267 | * @param sample2 array of sample data values
|
---|
268 | * @return t statistic
|
---|
269 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
270 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
271 | */
|
---|
272 | public double homoscedasticT(final double[] sample1, final double[] sample2)
|
---|
273 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
274 |
|
---|
275 | checkSampleData(sample1);
|
---|
276 | checkSampleData(sample2);
|
---|
277 | // No try-catch or advertised exception because args have just been checked
|
---|
278 | return homoscedasticT(StatUtils.mean(sample1), StatUtils.mean(sample2),
|
---|
279 | StatUtils.variance(sample1), StatUtils.variance(sample2),
|
---|
280 | sample1.length, sample2.length);
|
---|
281 |
|
---|
282 | }
|
---|
283 |
|
---|
284 | /**
|
---|
285 | * Computes a 2-sample t statistic, without the hypothesis of equal
|
---|
286 | * subpopulation variances. To compute a t-statistic assuming equal
|
---|
287 | * variances, use {@link #homoscedasticT(double[], double[])}.
|
---|
288 | * <p>
|
---|
289 | * This statistic can be used to perform a two-sample t-test to compare
|
---|
290 | * sample means.</p>
|
---|
291 | * <p>
|
---|
292 | * The t-statistic is</p>
|
---|
293 | * <p>
|
---|
294 | * <code> t = (m1 - m2) / sqrt(var1/n1 + var2/n2)</code>
|
---|
295 | * </p><p>
|
---|
296 | * where <strong><code>n1</code></strong> is the size of the first sample
|
---|
297 | * <strong><code> n2</code></strong> is the size of the second sample;
|
---|
298 | * <strong><code> m1</code></strong> is the mean of the first sample;
|
---|
299 | * <strong><code> m2</code></strong> is the mean of the second sample;
|
---|
300 | * <strong><code> var1</code></strong> is the variance of the first sample;
|
---|
301 | * <strong><code> var2</code></strong> is the variance of the second sample;
|
---|
302 | * </p><p>
|
---|
303 | * <strong>Preconditions</strong>: <ul>
|
---|
304 | * <li>The observed array lengths must both be at least 2.
|
---|
305 | * </li></ul></p>
|
---|
306 | *
|
---|
307 | * @param sample1 array of sample data values
|
---|
308 | * @param sample2 array of sample data values
|
---|
309 | * @return t statistic
|
---|
310 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
311 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
312 | */
|
---|
313 | public double t(final double[] sample1, final double[] sample2)
|
---|
314 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
315 |
|
---|
316 | checkSampleData(sample1);
|
---|
317 | checkSampleData(sample2);
|
---|
318 | // No try-catch or advertised exception because args have just been checked
|
---|
319 | return t(StatUtils.mean(sample1), StatUtils.mean(sample2),
|
---|
320 | StatUtils.variance(sample1), StatUtils.variance(sample2),
|
---|
321 | sample1.length, sample2.length);
|
---|
322 |
|
---|
323 | }
|
---|
324 |
|
---|
325 | /**
|
---|
326 | * Computes a 2-sample t statistic </a>, comparing the means of the datasets
|
---|
327 | * described by two {@link StatisticalSummary} instances, without the
|
---|
328 | * assumption of equal subpopulation variances. Use
|
---|
329 | * {@link #homoscedasticT(StatisticalSummary, StatisticalSummary)} to
|
---|
330 | * compute a t-statistic under the equal variances assumption.
|
---|
331 | * <p>
|
---|
332 | * This statistic can be used to perform a two-sample t-test to compare
|
---|
333 | * sample means.</p>
|
---|
334 | * <p>
|
---|
335 | * The returned t-statistic is</p>
|
---|
336 | * <p>
|
---|
337 | * <code> t = (m1 - m2) / sqrt(var1/n1 + var2/n2)</code>
|
---|
338 | * </p><p>
|
---|
339 | * where <strong><code>n1</code></strong> is the size of the first sample;
|
---|
340 | * <strong><code> n2</code></strong> is the size of the second sample;
|
---|
341 | * <strong><code> m1</code></strong> is the mean of the first sample;
|
---|
342 | * <strong><code> m2</code></strong> is the mean of the second sample
|
---|
343 | * <strong><code> var1</code></strong> is the variance of the first sample;
|
---|
344 | * <strong><code> var2</code></strong> is the variance of the second sample
|
---|
345 | * </p><p>
|
---|
346 | * <strong>Preconditions</strong>: <ul>
|
---|
347 | * <li>The datasets described by the two Univariates must each contain
|
---|
348 | * at least 2 observations.
|
---|
349 | * </li></ul></p>
|
---|
350 | *
|
---|
351 | * @param sampleStats1 StatisticalSummary describing data from the first sample
|
---|
352 | * @param sampleStats2 StatisticalSummary describing data from the second sample
|
---|
353 | * @return t statistic
|
---|
354 | * @throws NullArgumentException if the sample statistics are <code>null</code>
|
---|
355 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
356 | */
|
---|
357 | public double t(final StatisticalSummary sampleStats1,
|
---|
358 | final StatisticalSummary sampleStats2)
|
---|
359 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
360 |
|
---|
361 | checkSampleData(sampleStats1);
|
---|
362 | checkSampleData(sampleStats2);
|
---|
363 | return t(sampleStats1.getMean(), sampleStats2.getMean(),
|
---|
364 | sampleStats1.getVariance(), sampleStats2.getVariance(),
|
---|
365 | sampleStats1.getN(), sampleStats2.getN());
|
---|
366 |
|
---|
367 | }
|
---|
368 |
|
---|
369 | /**
|
---|
370 | * Computes a 2-sample t statistic, comparing the means of the datasets
|
---|
371 | * described by two {@link StatisticalSummary} instances, under the
|
---|
372 | * assumption of equal subpopulation variances. To compute a t-statistic
|
---|
373 | * without the equal variances assumption, use
|
---|
374 | * {@link #t(StatisticalSummary, StatisticalSummary)}.
|
---|
375 | * <p>
|
---|
376 | * This statistic can be used to perform a (homoscedastic) two-sample
|
---|
377 | * t-test to compare sample means.</p>
|
---|
378 | * <p>
|
---|
379 | * The t-statistic returned is</p>
|
---|
380 | * <p>
|
---|
381 | * <code> t = (m1 - m2) / (sqrt(1/n1 +1/n2) sqrt(var))</code>
|
---|
382 | * </p><p>
|
---|
383 | * where <strong><code>n1</code></strong> is the size of first sample;
|
---|
384 | * <strong><code> n2</code></strong> is the size of second sample;
|
---|
385 | * <strong><code> m1</code></strong> is the mean of first sample;
|
---|
386 | * <strong><code> m2</code></strong> is the mean of second sample
|
---|
387 | * and <strong><code>var</code></strong> is the pooled variance estimate:
|
---|
388 | * </p><p>
|
---|
389 | * <code>var = sqrt(((n1 - 1)var1 + (n2 - 1)var2) / ((n1-1) + (n2-1)))</code>
|
---|
390 | * </p><p>
|
---|
391 | * with <strong><code>var1</code></strong> the variance of the first sample and
|
---|
392 | * <strong><code>var2</code></strong> the variance of the second sample.
|
---|
393 | * </p><p>
|
---|
394 | * <strong>Preconditions</strong>: <ul>
|
---|
395 | * <li>The datasets described by the two Univariates must each contain
|
---|
396 | * at least 2 observations.
|
---|
397 | * </li></ul></p>
|
---|
398 | *
|
---|
399 | * @param sampleStats1 StatisticalSummary describing data from the first sample
|
---|
400 | * @param sampleStats2 StatisticalSummary describing data from the second sample
|
---|
401 | * @return t statistic
|
---|
402 | * @throws NullArgumentException if the sample statistics are <code>null</code>
|
---|
403 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
404 | */
|
---|
405 | public double homoscedasticT(final StatisticalSummary sampleStats1,
|
---|
406 | final StatisticalSummary sampleStats2)
|
---|
407 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
408 |
|
---|
409 | checkSampleData(sampleStats1);
|
---|
410 | checkSampleData(sampleStats2);
|
---|
411 | return homoscedasticT(sampleStats1.getMean(), sampleStats2.getMean(),
|
---|
412 | sampleStats1.getVariance(), sampleStats2.getVariance(),
|
---|
413 | sampleStats1.getN(), sampleStats2.getN());
|
---|
414 |
|
---|
415 | }
|
---|
416 |
|
---|
417 | /**
|
---|
418 | * Returns the <i>observed significance level</i>, or
|
---|
419 | * <i>p-value</i>, associated with a one-sample, two-tailed t-test
|
---|
420 | * comparing the mean of the input array with the constant <code>mu</code>.
|
---|
421 | * <p>
|
---|
422 | * The number returned is the smallest significance level
|
---|
423 | * at which one can reject the null hypothesis that the mean equals
|
---|
424 | * <code>mu</code> in favor of the two-sided alternative that the mean
|
---|
425 | * is different from <code>mu</code>. For a one-sided test, divide the
|
---|
426 | * returned value by 2.</p>
|
---|
427 | * <p>
|
---|
428 | * <strong>Usage Note:</strong><br>
|
---|
429 | * The validity of the test depends on the assumptions of the parametric
|
---|
430 | * t-test procedure, as discussed
|
---|
431 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">here</a>
|
---|
432 | * </p><p>
|
---|
433 | * <strong>Preconditions</strong>: <ul>
|
---|
434 | * <li>The observed array length must be at least 2.
|
---|
435 | * </li></ul></p>
|
---|
436 | *
|
---|
437 | * @param mu constant value to compare sample mean against
|
---|
438 | * @param sample array of sample data values
|
---|
439 | * @return p-value
|
---|
440 | * @throws NullArgumentException if the sample array is <code>null</code>
|
---|
441 | * @throws NumberIsTooSmallException if the length of the array is < 2
|
---|
442 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
443 | */
|
---|
444 | public double tTest(final double mu, final double[] sample)
|
---|
445 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
446 | MaxCountExceededException {
|
---|
447 |
|
---|
448 | checkSampleData(sample);
|
---|
449 | // No try-catch or advertised exception because args have just been checked
|
---|
450 | return tTest(StatUtils.mean(sample), mu, StatUtils.variance(sample),
|
---|
451 | sample.length);
|
---|
452 |
|
---|
453 | }
|
---|
454 |
|
---|
455 | /**
|
---|
456 | * Performs a <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">
|
---|
457 | * two-sided t-test</a> evaluating the null hypothesis that the mean of the population from
|
---|
458 | * which <code>sample</code> is drawn equals <code>mu</code>.
|
---|
459 | * <p>
|
---|
460 | * Returns <code>true</code> iff the null hypothesis can be
|
---|
461 | * rejected with confidence <code>1 - alpha</code>. To
|
---|
462 | * perform a 1-sided test, use <code>alpha * 2</code></p>
|
---|
463 | * <p>
|
---|
464 | * <strong>Examples:</strong><br><ol>
|
---|
465 | * <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
|
---|
466 | * the 95% level, use <br><code>tTest(mu, sample, 0.05) </code>
|
---|
467 | * </li>
|
---|
468 | * <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
|
---|
469 | * at the 99% level, first verify that the measured sample mean is less
|
---|
470 | * than <code>mu</code> and then use
|
---|
471 | * <br><code>tTest(mu, sample, 0.02) </code>
|
---|
472 | * </li></ol></p>
|
---|
473 | * <p>
|
---|
474 | * <strong>Usage Note:</strong><br>
|
---|
475 | * The validity of the test depends on the assumptions of the one-sample
|
---|
476 | * parametric t-test procedure, as discussed
|
---|
477 | * <a href="http://www.basic.nwu.edu/statguidefiles/sg_glos.html#one-sample">here</a>
|
---|
478 | * </p><p>
|
---|
479 | * <strong>Preconditions</strong>: <ul>
|
---|
480 | * <li>The observed array length must be at least 2.
|
---|
481 | * </li></ul></p>
|
---|
482 | *
|
---|
483 | * @param mu constant value to compare sample mean against
|
---|
484 | * @param sample array of sample data values
|
---|
485 | * @param alpha significance level of the test
|
---|
486 | * @return p-value
|
---|
487 | * @throws NullArgumentException if the sample array is <code>null</code>
|
---|
488 | * @throws NumberIsTooSmallException if the length of the array is < 2
|
---|
489 | * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
|
---|
490 | * @throws MaxCountExceededException if an error computing the p-value
|
---|
491 | */
|
---|
492 | public boolean tTest(final double mu, final double[] sample, final double alpha)
|
---|
493 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
494 | OutOfRangeException, MaxCountExceededException {
|
---|
495 |
|
---|
496 | checkSignificanceLevel(alpha);
|
---|
497 | return tTest(mu, sample) < alpha;
|
---|
498 |
|
---|
499 | }
|
---|
500 |
|
---|
501 | /**
|
---|
502 | * Returns the <i>observed significance level</i>, or
|
---|
503 | * <i>p-value</i>, associated with a one-sample, two-tailed t-test
|
---|
504 | * comparing the mean of the dataset described by <code>sampleStats</code>
|
---|
505 | * with the constant <code>mu</code>.
|
---|
506 | * <p>
|
---|
507 | * The number returned is the smallest significance level
|
---|
508 | * at which one can reject the null hypothesis that the mean equals
|
---|
509 | * <code>mu</code> in favor of the two-sided alternative that the mean
|
---|
510 | * is different from <code>mu</code>. For a one-sided test, divide the
|
---|
511 | * returned value by 2.</p>
|
---|
512 | * <p>
|
---|
513 | * <strong>Usage Note:</strong><br>
|
---|
514 | * The validity of the test depends on the assumptions of the parametric
|
---|
515 | * t-test procedure, as discussed
|
---|
516 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
517 | * here</a></p>
|
---|
518 | * <p>
|
---|
519 | * <strong>Preconditions</strong>: <ul>
|
---|
520 | * <li>The sample must contain at least 2 observations.
|
---|
521 | * </li></ul></p>
|
---|
522 | *
|
---|
523 | * @param mu constant value to compare sample mean against
|
---|
524 | * @param sampleStats StatisticalSummary describing sample data
|
---|
525 | * @return p-value
|
---|
526 | * @throws NullArgumentException if <code>sampleStats</code> is <code>null</code>
|
---|
527 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
528 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
529 | */
|
---|
530 | public double tTest(final double mu, final StatisticalSummary sampleStats)
|
---|
531 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
532 | MaxCountExceededException {
|
---|
533 |
|
---|
534 | checkSampleData(sampleStats);
|
---|
535 | return tTest(sampleStats.getMean(), mu, sampleStats.getVariance(),
|
---|
536 | sampleStats.getN());
|
---|
537 |
|
---|
538 | }
|
---|
539 |
|
---|
540 | /**
|
---|
541 | * Performs a <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">
|
---|
542 | * two-sided t-test</a> evaluating the null hypothesis that the mean of the
|
---|
543 | * population from which the dataset described by <code>stats</code> is
|
---|
544 | * drawn equals <code>mu</code>.
|
---|
545 | * <p>
|
---|
546 | * Returns <code>true</code> iff the null hypothesis can be rejected with
|
---|
547 | * confidence <code>1 - alpha</code>. To perform a 1-sided test, use
|
---|
548 | * <code>alpha * 2.</code></p>
|
---|
549 | * <p>
|
---|
550 | * <strong>Examples:</strong><br><ol>
|
---|
551 | * <li>To test the (2-sided) hypothesis <code>sample mean = mu </code> at
|
---|
552 | * the 95% level, use <br><code>tTest(mu, sampleStats, 0.05) </code>
|
---|
553 | * </li>
|
---|
554 | * <li>To test the (one-sided) hypothesis <code> sample mean < mu </code>
|
---|
555 | * at the 99% level, first verify that the measured sample mean is less
|
---|
556 | * than <code>mu</code> and then use
|
---|
557 | * <br><code>tTest(mu, sampleStats, 0.02) </code>
|
---|
558 | * </li></ol></p>
|
---|
559 | * <p>
|
---|
560 | * <strong>Usage Note:</strong><br>
|
---|
561 | * The validity of the test depends on the assumptions of the one-sample
|
---|
562 | * parametric t-test procedure, as discussed
|
---|
563 | * <a href="http://www.basic.nwu.edu/statguidefiles/sg_glos.html#one-sample">here</a>
|
---|
564 | * </p><p>
|
---|
565 | * <strong>Preconditions</strong>: <ul>
|
---|
566 | * <li>The sample must include at least 2 observations.
|
---|
567 | * </li></ul></p>
|
---|
568 | *
|
---|
569 | * @param mu constant value to compare sample mean against
|
---|
570 | * @param sampleStats StatisticalSummary describing sample data values
|
---|
571 | * @param alpha significance level of the test
|
---|
572 | * @return p-value
|
---|
573 | * @throws NullArgumentException if <code>sampleStats</code> is <code>null</code>
|
---|
574 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
575 | * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
|
---|
576 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
577 | */
|
---|
578 | public boolean tTest(final double mu, final StatisticalSummary sampleStats,
|
---|
579 | final double alpha)
|
---|
580 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
581 | OutOfRangeException, MaxCountExceededException {
|
---|
582 |
|
---|
583 | checkSignificanceLevel(alpha);
|
---|
584 | return tTest(mu, sampleStats) < alpha;
|
---|
585 |
|
---|
586 | }
|
---|
587 |
|
---|
588 | /**
|
---|
589 | * Returns the <i>observed significance level</i>, or
|
---|
590 | * <i>p-value</i>, associated with a two-sample, two-tailed t-test
|
---|
591 | * comparing the means of the input arrays.
|
---|
592 | * <p>
|
---|
593 | * The number returned is the smallest significance level
|
---|
594 | * at which one can reject the null hypothesis that the two means are
|
---|
595 | * equal in favor of the two-sided alternative that they are different.
|
---|
596 | * For a one-sided test, divide the returned value by 2.</p>
|
---|
597 | * <p>
|
---|
598 | * The test does not assume that the underlying popuation variances are
|
---|
599 | * equal and it uses approximated degrees of freedom computed from the
|
---|
600 | * sample data to compute the p-value. The t-statistic used is as defined in
|
---|
601 | * {@link #t(double[], double[])} and the Welch-Satterthwaite approximation
|
---|
602 | * to the degrees of freedom is used,
|
---|
603 | * as described
|
---|
604 | * <a href="http://www.itl.nist.gov/div898/handbook/prc/section3/prc31.htm">
|
---|
605 | * here.</a> To perform the test under the assumption of equal subpopulation
|
---|
606 | * variances, use {@link #homoscedasticTTest(double[], double[])}.</p>
|
---|
607 | * <p>
|
---|
608 | * <strong>Usage Note:</strong><br>
|
---|
609 | * The validity of the p-value depends on the assumptions of the parametric
|
---|
610 | * t-test procedure, as discussed
|
---|
611 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
612 | * here</a></p>
|
---|
613 | * <p>
|
---|
614 | * <strong>Preconditions</strong>: <ul>
|
---|
615 | * <li>The observed array lengths must both be at least 2.
|
---|
616 | * </li></ul></p>
|
---|
617 | *
|
---|
618 | * @param sample1 array of sample data values
|
---|
619 | * @param sample2 array of sample data values
|
---|
620 | * @return p-value for t-test
|
---|
621 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
622 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
623 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
624 | */
|
---|
625 | public double tTest(final double[] sample1, final double[] sample2)
|
---|
626 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
627 | MaxCountExceededException {
|
---|
628 |
|
---|
629 | checkSampleData(sample1);
|
---|
630 | checkSampleData(sample2);
|
---|
631 | // No try-catch or advertised exception because args have just been checked
|
---|
632 | return tTest(StatUtils.mean(sample1), StatUtils.mean(sample2),
|
---|
633 | StatUtils.variance(sample1), StatUtils.variance(sample2),
|
---|
634 | sample1.length, sample2.length);
|
---|
635 |
|
---|
636 | }
|
---|
637 |
|
---|
638 | /**
|
---|
639 | * Returns the <i>observed significance level</i>, or
|
---|
640 | * <i>p-value</i>, associated with a two-sample, two-tailed t-test
|
---|
641 | * comparing the means of the input arrays, under the assumption that
|
---|
642 | * the two samples are drawn from subpopulations with equal variances.
|
---|
643 | * To perform the test without the equal variances assumption, use
|
---|
644 | * {@link #tTest(double[], double[])}.</p>
|
---|
645 | * <p>
|
---|
646 | * The number returned is the smallest significance level
|
---|
647 | * at which one can reject the null hypothesis that the two means are
|
---|
648 | * equal in favor of the two-sided alternative that they are different.
|
---|
649 | * For a one-sided test, divide the returned value by 2.</p>
|
---|
650 | * <p>
|
---|
651 | * A pooled variance estimate is used to compute the t-statistic. See
|
---|
652 | * {@link #homoscedasticT(double[], double[])}. The sum of the sample sizes
|
---|
653 | * minus 2 is used as the degrees of freedom.</p>
|
---|
654 | * <p>
|
---|
655 | * <strong>Usage Note:</strong><br>
|
---|
656 | * The validity of the p-value depends on the assumptions of the parametric
|
---|
657 | * t-test procedure, as discussed
|
---|
658 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
659 | * here</a></p>
|
---|
660 | * <p>
|
---|
661 | * <strong>Preconditions</strong>: <ul>
|
---|
662 | * <li>The observed array lengths must both be at least 2.
|
---|
663 | * </li></ul></p>
|
---|
664 | *
|
---|
665 | * @param sample1 array of sample data values
|
---|
666 | * @param sample2 array of sample data values
|
---|
667 | * @return p-value for t-test
|
---|
668 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
669 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
670 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
671 | */
|
---|
672 | public double homoscedasticTTest(final double[] sample1, final double[] sample2)
|
---|
673 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
674 | MaxCountExceededException {
|
---|
675 |
|
---|
676 | checkSampleData(sample1);
|
---|
677 | checkSampleData(sample2);
|
---|
678 | // No try-catch or advertised exception because args have just been checked
|
---|
679 | return homoscedasticTTest(StatUtils.mean(sample1),
|
---|
680 | StatUtils.mean(sample2),
|
---|
681 | StatUtils.variance(sample1),
|
---|
682 | StatUtils.variance(sample2),
|
---|
683 | sample1.length, sample2.length);
|
---|
684 |
|
---|
685 | }
|
---|
686 |
|
---|
687 | /**
|
---|
688 | * Performs a
|
---|
689 | * <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">
|
---|
690 | * two-sided t-test</a> evaluating the null hypothesis that <code>sample1</code>
|
---|
691 | * and <code>sample2</code> are drawn from populations with the same mean,
|
---|
692 | * with significance level <code>alpha</code>. This test does not assume
|
---|
693 | * that the subpopulation variances are equal. To perform the test assuming
|
---|
694 | * equal variances, use
|
---|
695 | * {@link #homoscedasticTTest(double[], double[], double)}.
|
---|
696 | * <p>
|
---|
697 | * Returns <code>true</code> iff the null hypothesis that the means are
|
---|
698 | * equal can be rejected with confidence <code>1 - alpha</code>. To
|
---|
699 | * perform a 1-sided test, use <code>alpha * 2</code></p>
|
---|
700 | * <p>
|
---|
701 | * See {@link #t(double[], double[])} for the formula used to compute the
|
---|
702 | * t-statistic. Degrees of freedom are approximated using the
|
---|
703 | * <a href="http://www.itl.nist.gov/div898/handbook/prc/section3/prc31.htm">
|
---|
704 | * Welch-Satterthwaite approximation.</a></p>
|
---|
705 | * <p>
|
---|
706 | * <strong>Examples:</strong><br><ol>
|
---|
707 | * <li>To test the (2-sided) hypothesis <code>mean 1 = mean 2 </code> at
|
---|
708 | * the 95% level, use
|
---|
709 | * <br><code>tTest(sample1, sample2, 0.05). </code>
|
---|
710 | * </li>
|
---|
711 | * <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>,
|
---|
712 | * at the 99% level, first verify that the measured mean of <code>sample 1</code>
|
---|
713 | * is less than the mean of <code>sample 2</code> and then use
|
---|
714 | * <br><code>tTest(sample1, sample2, 0.02) </code>
|
---|
715 | * </li></ol></p>
|
---|
716 | * <p>
|
---|
717 | * <strong>Usage Note:</strong><br>
|
---|
718 | * The validity of the test depends on the assumptions of the parametric
|
---|
719 | * t-test procedure, as discussed
|
---|
720 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
721 | * here</a></p>
|
---|
722 | * <p>
|
---|
723 | * <strong>Preconditions</strong>: <ul>
|
---|
724 | * <li>The observed array lengths must both be at least 2.
|
---|
725 | * </li>
|
---|
726 | * <li> <code> 0 < alpha < 0.5 </code>
|
---|
727 | * </li></ul></p>
|
---|
728 | *
|
---|
729 | * @param sample1 array of sample data values
|
---|
730 | * @param sample2 array of sample data values
|
---|
731 | * @param alpha significance level of the test
|
---|
732 | * @return true if the null hypothesis can be rejected with
|
---|
733 | * confidence 1 - alpha
|
---|
734 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
735 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
736 | * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
|
---|
737 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
738 | */
|
---|
739 | public boolean tTest(final double[] sample1, final double[] sample2,
|
---|
740 | final double alpha)
|
---|
741 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
742 | OutOfRangeException, MaxCountExceededException {
|
---|
743 |
|
---|
744 | checkSignificanceLevel(alpha);
|
---|
745 | return tTest(sample1, sample2) < alpha;
|
---|
746 |
|
---|
747 | }
|
---|
748 |
|
---|
749 | /**
|
---|
750 | * Performs a
|
---|
751 | * <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">
|
---|
752 | * two-sided t-test</a> evaluating the null hypothesis that <code>sample1</code>
|
---|
753 | * and <code>sample2</code> are drawn from populations with the same mean,
|
---|
754 | * with significance level <code>alpha</code>, assuming that the
|
---|
755 | * subpopulation variances are equal. Use
|
---|
756 | * {@link #tTest(double[], double[], double)} to perform the test without
|
---|
757 | * the assumption of equal variances.
|
---|
758 | * <p>
|
---|
759 | * Returns <code>true</code> iff the null hypothesis that the means are
|
---|
760 | * equal can be rejected with confidence <code>1 - alpha</code>. To
|
---|
761 | * perform a 1-sided test, use <code>alpha * 2.</code> To perform the test
|
---|
762 | * without the assumption of equal subpopulation variances, use
|
---|
763 | * {@link #tTest(double[], double[], double)}.</p>
|
---|
764 | * <p>
|
---|
765 | * A pooled variance estimate is used to compute the t-statistic. See
|
---|
766 | * {@link #t(double[], double[])} for the formula. The sum of the sample
|
---|
767 | * sizes minus 2 is used as the degrees of freedom.</p>
|
---|
768 | * <p>
|
---|
769 | * <strong>Examples:</strong><br><ol>
|
---|
770 | * <li>To test the (2-sided) hypothesis <code>mean 1 = mean 2 </code> at
|
---|
771 | * the 95% level, use <br><code>tTest(sample1, sample2, 0.05). </code>
|
---|
772 | * </li>
|
---|
773 | * <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2, </code>
|
---|
774 | * at the 99% level, first verify that the measured mean of
|
---|
775 | * <code>sample 1</code> is less than the mean of <code>sample 2</code>
|
---|
776 | * and then use
|
---|
777 | * <br><code>tTest(sample1, sample2, 0.02) </code>
|
---|
778 | * </li></ol></p>
|
---|
779 | * <p>
|
---|
780 | * <strong>Usage Note:</strong><br>
|
---|
781 | * The validity of the test depends on the assumptions of the parametric
|
---|
782 | * t-test procedure, as discussed
|
---|
783 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
784 | * here</a></p>
|
---|
785 | * <p>
|
---|
786 | * <strong>Preconditions</strong>: <ul>
|
---|
787 | * <li>The observed array lengths must both be at least 2.
|
---|
788 | * </li>
|
---|
789 | * <li> <code> 0 < alpha < 0.5 </code>
|
---|
790 | * </li></ul></p>
|
---|
791 | *
|
---|
792 | * @param sample1 array of sample data values
|
---|
793 | * @param sample2 array of sample data values
|
---|
794 | * @param alpha significance level of the test
|
---|
795 | * @return true if the null hypothesis can be rejected with
|
---|
796 | * confidence 1 - alpha
|
---|
797 | * @throws NullArgumentException if the arrays are <code>null</code>
|
---|
798 | * @throws NumberIsTooSmallException if the length of the arrays is < 2
|
---|
799 | * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
|
---|
800 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
801 | */
|
---|
802 | public boolean homoscedasticTTest(final double[] sample1, final double[] sample2,
|
---|
803 | final double alpha)
|
---|
804 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
805 | OutOfRangeException, MaxCountExceededException {
|
---|
806 |
|
---|
807 | checkSignificanceLevel(alpha);
|
---|
808 | return homoscedasticTTest(sample1, sample2) < alpha;
|
---|
809 |
|
---|
810 | }
|
---|
811 |
|
---|
812 | /**
|
---|
813 | * Returns the <i>observed significance level</i>, or
|
---|
814 | * <i>p-value</i>, associated with a two-sample, two-tailed t-test
|
---|
815 | * comparing the means of the datasets described by two StatisticalSummary
|
---|
816 | * instances.
|
---|
817 | * <p>
|
---|
818 | * The number returned is the smallest significance level
|
---|
819 | * at which one can reject the null hypothesis that the two means are
|
---|
820 | * equal in favor of the two-sided alternative that they are different.
|
---|
821 | * For a one-sided test, divide the returned value by 2.</p>
|
---|
822 | * <p>
|
---|
823 | * The test does not assume that the underlying population variances are
|
---|
824 | * equal and it uses approximated degrees of freedom computed from the
|
---|
825 | * sample data to compute the p-value. To perform the test assuming
|
---|
826 | * equal variances, use
|
---|
827 | * {@link #homoscedasticTTest(StatisticalSummary, StatisticalSummary)}.</p>
|
---|
828 | * <p>
|
---|
829 | * <strong>Usage Note:</strong><br>
|
---|
830 | * The validity of the p-value depends on the assumptions of the parametric
|
---|
831 | * t-test procedure, as discussed
|
---|
832 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
833 | * here</a></p>
|
---|
834 | * <p>
|
---|
835 | * <strong>Preconditions</strong>: <ul>
|
---|
836 | * <li>The datasets described by the two Univariates must each contain
|
---|
837 | * at least 2 observations.
|
---|
838 | * </li></ul></p>
|
---|
839 | *
|
---|
840 | * @param sampleStats1 StatisticalSummary describing data from the first sample
|
---|
841 | * @param sampleStats2 StatisticalSummary describing data from the second sample
|
---|
842 | * @return p-value for t-test
|
---|
843 | * @throws NullArgumentException if the sample statistics are <code>null</code>
|
---|
844 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
845 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
846 | */
|
---|
847 | public double tTest(final StatisticalSummary sampleStats1,
|
---|
848 | final StatisticalSummary sampleStats2)
|
---|
849 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
850 | MaxCountExceededException {
|
---|
851 |
|
---|
852 | checkSampleData(sampleStats1);
|
---|
853 | checkSampleData(sampleStats2);
|
---|
854 | return tTest(sampleStats1.getMean(), sampleStats2.getMean(),
|
---|
855 | sampleStats1.getVariance(), sampleStats2.getVariance(),
|
---|
856 | sampleStats1.getN(), sampleStats2.getN());
|
---|
857 |
|
---|
858 | }
|
---|
859 |
|
---|
860 | /**
|
---|
861 | * Returns the <i>observed significance level</i>, or
|
---|
862 | * <i>p-value</i>, associated with a two-sample, two-tailed t-test
|
---|
863 | * comparing the means of the datasets described by two StatisticalSummary
|
---|
864 | * instances, under the hypothesis of equal subpopulation variances. To
|
---|
865 | * perform a test without the equal variances assumption, use
|
---|
866 | * {@link #tTest(StatisticalSummary, StatisticalSummary)}.
|
---|
867 | * <p>
|
---|
868 | * The number returned is the smallest significance level
|
---|
869 | * at which one can reject the null hypothesis that the two means are
|
---|
870 | * equal in favor of the two-sided alternative that they are different.
|
---|
871 | * For a one-sided test, divide the returned value by 2.</p>
|
---|
872 | * <p>
|
---|
873 | * See {@link #homoscedasticT(double[], double[])} for the formula used to
|
---|
874 | * compute the t-statistic. The sum of the sample sizes minus 2 is used as
|
---|
875 | * the degrees of freedom.</p>
|
---|
876 | * <p>
|
---|
877 | * <strong>Usage Note:</strong><br>
|
---|
878 | * The validity of the p-value depends on the assumptions of the parametric
|
---|
879 | * t-test procedure, as discussed
|
---|
880 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">here</a>
|
---|
881 | * </p><p>
|
---|
882 | * <strong>Preconditions</strong>: <ul>
|
---|
883 | * <li>The datasets described by the two Univariates must each contain
|
---|
884 | * at least 2 observations.
|
---|
885 | * </li></ul></p>
|
---|
886 | *
|
---|
887 | * @param sampleStats1 StatisticalSummary describing data from the first sample
|
---|
888 | * @param sampleStats2 StatisticalSummary describing data from the second sample
|
---|
889 | * @return p-value for t-test
|
---|
890 | * @throws NullArgumentException if the sample statistics are <code>null</code>
|
---|
891 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
892 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
893 | */
|
---|
894 | public double homoscedasticTTest(final StatisticalSummary sampleStats1,
|
---|
895 | final StatisticalSummary sampleStats2)
|
---|
896 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
897 | MaxCountExceededException {
|
---|
898 |
|
---|
899 | checkSampleData(sampleStats1);
|
---|
900 | checkSampleData(sampleStats2);
|
---|
901 | return homoscedasticTTest(sampleStats1.getMean(),
|
---|
902 | sampleStats2.getMean(),
|
---|
903 | sampleStats1.getVariance(),
|
---|
904 | sampleStats2.getVariance(),
|
---|
905 | sampleStats1.getN(), sampleStats2.getN());
|
---|
906 |
|
---|
907 | }
|
---|
908 |
|
---|
909 | /**
|
---|
910 | * Performs a
|
---|
911 | * <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm">
|
---|
912 | * two-sided t-test</a> evaluating the null hypothesis that
|
---|
913 | * <code>sampleStats1</code> and <code>sampleStats2</code> describe
|
---|
914 | * datasets drawn from populations with the same mean, with significance
|
---|
915 | * level <code>alpha</code>. This test does not assume that the
|
---|
916 | * subpopulation variances are equal. To perform the test under the equal
|
---|
917 | * variances assumption, use
|
---|
918 | * {@link #homoscedasticTTest(StatisticalSummary, StatisticalSummary)}.
|
---|
919 | * <p>
|
---|
920 | * Returns <code>true</code> iff the null hypothesis that the means are
|
---|
921 | * equal can be rejected with confidence <code>1 - alpha</code>. To
|
---|
922 | * perform a 1-sided test, use <code>alpha * 2</code></p>
|
---|
923 | * <p>
|
---|
924 | * See {@link #t(double[], double[])} for the formula used to compute the
|
---|
925 | * t-statistic. Degrees of freedom are approximated using the
|
---|
926 | * <a href="http://www.itl.nist.gov/div898/handbook/prc/section3/prc31.htm">
|
---|
927 | * Welch-Satterthwaite approximation.</a></p>
|
---|
928 | * <p>
|
---|
929 | * <strong>Examples:</strong><br><ol>
|
---|
930 | * <li>To test the (2-sided) hypothesis <code>mean 1 = mean 2 </code> at
|
---|
931 | * the 95%, use
|
---|
932 | * <br><code>tTest(sampleStats1, sampleStats2, 0.05) </code>
|
---|
933 | * </li>
|
---|
934 | * <li>To test the (one-sided) hypothesis <code> mean 1 < mean 2 </code>
|
---|
935 | * at the 99% level, first verify that the measured mean of
|
---|
936 | * <code>sample 1</code> is less than the mean of <code>sample 2</code>
|
---|
937 | * and then use
|
---|
938 | * <br><code>tTest(sampleStats1, sampleStats2, 0.02) </code>
|
---|
939 | * </li></ol></p>
|
---|
940 | * <p>
|
---|
941 | * <strong>Usage Note:</strong><br>
|
---|
942 | * The validity of the test depends on the assumptions of the parametric
|
---|
943 | * t-test procedure, as discussed
|
---|
944 | * <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
---|
945 | * here</a></p>
|
---|
946 | * <p>
|
---|
947 | * <strong>Preconditions</strong>: <ul>
|
---|
948 | * <li>The datasets described by the two Univariates must each contain
|
---|
949 | * at least 2 observations.
|
---|
950 | * </li>
|
---|
951 | * <li> <code> 0 < alpha < 0.5 </code>
|
---|
952 | * </li></ul></p>
|
---|
953 | *
|
---|
954 | * @param sampleStats1 StatisticalSummary describing sample data values
|
---|
955 | * @param sampleStats2 StatisticalSummary describing sample data values
|
---|
956 | * @param alpha significance level of the test
|
---|
957 | * @return true if the null hypothesis can be rejected with
|
---|
958 | * confidence 1 - alpha
|
---|
959 | * @throws NullArgumentException if the sample statistics are <code>null</code>
|
---|
960 | * @throws NumberIsTooSmallException if the number of samples is < 2
|
---|
961 | * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
|
---|
962 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
963 | */
|
---|
964 | public boolean tTest(final StatisticalSummary sampleStats1,
|
---|
965 | final StatisticalSummary sampleStats2,
|
---|
966 | final double alpha)
|
---|
967 | throws NullArgumentException, NumberIsTooSmallException,
|
---|
968 | OutOfRangeException, MaxCountExceededException {
|
---|
969 |
|
---|
970 | checkSignificanceLevel(alpha);
|
---|
971 | return tTest(sampleStats1, sampleStats2) < alpha;
|
---|
972 |
|
---|
973 | }
|
---|
974 |
|
---|
975 | //----------------------------------------------- Protected methods
|
---|
976 |
|
---|
977 | /**
|
---|
978 | * Computes approximate degrees of freedom for 2-sample t-test.
|
---|
979 | *
|
---|
980 | * @param v1 first sample variance
|
---|
981 | * @param v2 second sample variance
|
---|
982 | * @param n1 first sample n
|
---|
983 | * @param n2 second sample n
|
---|
984 | * @return approximate degrees of freedom
|
---|
985 | */
|
---|
986 | protected double df(double v1, double v2, double n1, double n2) {
|
---|
987 | return (((v1 / n1) + (v2 / n2)) * ((v1 / n1) + (v2 / n2))) /
|
---|
988 | ((v1 * v1) / (n1 * n1 * (n1 - 1d)) + (v2 * v2) /
|
---|
989 | (n2 * n2 * (n2 - 1d)));
|
---|
990 | }
|
---|
991 |
|
---|
992 | /**
|
---|
993 | * Computes t test statistic for 1-sample t-test.
|
---|
994 | *
|
---|
995 | * @param m sample mean
|
---|
996 | * @param mu constant to test against
|
---|
997 | * @param v sample variance
|
---|
998 | * @param n sample n
|
---|
999 | * @return t test statistic
|
---|
1000 | */
|
---|
1001 | protected double t(final double m, final double mu,
|
---|
1002 | final double v, final double n) {
|
---|
1003 | return (m - mu) / FastMath.sqrt(v / n);
|
---|
1004 | }
|
---|
1005 |
|
---|
1006 | /**
|
---|
1007 | * Computes t test statistic for 2-sample t-test.
|
---|
1008 | * <p>
|
---|
1009 | * Does not assume that subpopulation variances are equal.</p>
|
---|
1010 | *
|
---|
1011 | * @param m1 first sample mean
|
---|
1012 | * @param m2 second sample mean
|
---|
1013 | * @param v1 first sample variance
|
---|
1014 | * @param v2 second sample variance
|
---|
1015 | * @param n1 first sample n
|
---|
1016 | * @param n2 second sample n
|
---|
1017 | * @return t test statistic
|
---|
1018 | */
|
---|
1019 | protected double t(final double m1, final double m2,
|
---|
1020 | final double v1, final double v2,
|
---|
1021 | final double n1, final double n2) {
|
---|
1022 | return (m1 - m2) / FastMath.sqrt((v1 / n1) + (v2 / n2));
|
---|
1023 | }
|
---|
1024 |
|
---|
1025 | /**
|
---|
1026 | * Computes t test statistic for 2-sample t-test under the hypothesis
|
---|
1027 | * of equal subpopulation variances.
|
---|
1028 | *
|
---|
1029 | * @param m1 first sample mean
|
---|
1030 | * @param m2 second sample mean
|
---|
1031 | * @param v1 first sample variance
|
---|
1032 | * @param v2 second sample variance
|
---|
1033 | * @param n1 first sample n
|
---|
1034 | * @param n2 second sample n
|
---|
1035 | * @return t test statistic
|
---|
1036 | */
|
---|
1037 | protected double homoscedasticT(final double m1, final double m2,
|
---|
1038 | final double v1, final double v2,
|
---|
1039 | final double n1, final double n2) {
|
---|
1040 | final double pooledVariance = ((n1 - 1) * v1 + (n2 -1) * v2 ) / (n1 + n2 - 2);
|
---|
1041 | return (m1 - m2) / FastMath.sqrt(pooledVariance * (1d / n1 + 1d / n2));
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | /**
|
---|
1045 | * Computes p-value for 2-sided, 1-sample t-test.
|
---|
1046 | *
|
---|
1047 | * @param m sample mean
|
---|
1048 | * @param mu constant to test against
|
---|
1049 | * @param v sample variance
|
---|
1050 | * @param n sample n
|
---|
1051 | * @return p-value
|
---|
1052 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
1053 | * @throws MathIllegalArgumentException if n is not greater than 1
|
---|
1054 | */
|
---|
1055 | protected double tTest(final double m, final double mu,
|
---|
1056 | final double v, final double n)
|
---|
1057 | throws MaxCountExceededException, MathIllegalArgumentException {
|
---|
1058 |
|
---|
1059 | final double t = FastMath.abs(t(m, mu, v, n));
|
---|
1060 | // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
---|
1061 | final TDistribution distribution = new TDistribution(null, n - 1);
|
---|
1062 | return 2.0 * distribution.cumulativeProbability(-t);
|
---|
1063 |
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | /**
|
---|
1067 | * Computes p-value for 2-sided, 2-sample t-test.
|
---|
1068 | * <p>
|
---|
1069 | * Does not assume subpopulation variances are equal. Degrees of freedom
|
---|
1070 | * are estimated from the data.</p>
|
---|
1071 | *
|
---|
1072 | * @param m1 first sample mean
|
---|
1073 | * @param m2 second sample mean
|
---|
1074 | * @param v1 first sample variance
|
---|
1075 | * @param v2 second sample variance
|
---|
1076 | * @param n1 first sample n
|
---|
1077 | * @param n2 second sample n
|
---|
1078 | * @return p-value
|
---|
1079 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
1080 | * @throws NotStrictlyPositiveException if the estimated degrees of freedom is not
|
---|
1081 | * strictly positive
|
---|
1082 | */
|
---|
1083 | protected double tTest(final double m1, final double m2,
|
---|
1084 | final double v1, final double v2,
|
---|
1085 | final double n1, final double n2)
|
---|
1086 | throws MaxCountExceededException, NotStrictlyPositiveException {
|
---|
1087 |
|
---|
1088 | final double t = FastMath.abs(t(m1, m2, v1, v2, n1, n2));
|
---|
1089 | final double degreesOfFreedom = df(v1, v2, n1, n2);
|
---|
1090 | // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
---|
1091 | final TDistribution distribution = new TDistribution(null, degreesOfFreedom);
|
---|
1092 | return 2.0 * distribution.cumulativeProbability(-t);
|
---|
1093 |
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 | /**
|
---|
1097 | * Computes p-value for 2-sided, 2-sample t-test, under the assumption
|
---|
1098 | * of equal subpopulation variances.
|
---|
1099 | * <p>
|
---|
1100 | * The sum of the sample sizes minus 2 is used as degrees of freedom.</p>
|
---|
1101 | *
|
---|
1102 | * @param m1 first sample mean
|
---|
1103 | * @param m2 second sample mean
|
---|
1104 | * @param v1 first sample variance
|
---|
1105 | * @param v2 second sample variance
|
---|
1106 | * @param n1 first sample n
|
---|
1107 | * @param n2 second sample n
|
---|
1108 | * @return p-value
|
---|
1109 | * @throws MaxCountExceededException if an error occurs computing the p-value
|
---|
1110 | * @throws NotStrictlyPositiveException if the estimated degrees of freedom is not
|
---|
1111 | * strictly positive
|
---|
1112 | */
|
---|
1113 | protected double homoscedasticTTest(double m1, double m2,
|
---|
1114 | double v1, double v2,
|
---|
1115 | double n1, double n2)
|
---|
1116 | throws MaxCountExceededException, NotStrictlyPositiveException {
|
---|
1117 |
|
---|
1118 | final double t = FastMath.abs(homoscedasticT(m1, m2, v1, v2, n1, n2));
|
---|
1119 | final double degreesOfFreedom = n1 + n2 - 2;
|
---|
1120 | // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
---|
1121 | final TDistribution distribution = new TDistribution(null, degreesOfFreedom);
|
---|
1122 | return 2.0 * distribution.cumulativeProbability(-t);
|
---|
1123 |
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 | /**
|
---|
1127 | * Check significance level.
|
---|
1128 | *
|
---|
1129 | * @param alpha significance level
|
---|
1130 | * @throws OutOfRangeException if the significance level is out of bounds.
|
---|
1131 | */
|
---|
1132 | private void checkSignificanceLevel(final double alpha)
|
---|
1133 | throws OutOfRangeException {
|
---|
1134 |
|
---|
1135 | if (alpha <= 0 || alpha > 0.5) {
|
---|
1136 | throw new OutOfRangeException(LocalizedFormats.SIGNIFICANCE_LEVEL,
|
---|
1137 | alpha, 0.0, 0.5);
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | }
|
---|
1141 |
|
---|
1142 | /**
|
---|
1143 | * Check sample data.
|
---|
1144 | *
|
---|
1145 | * @param data Sample data.
|
---|
1146 | * @throws NullArgumentException if {@code data} is {@code null}.
|
---|
1147 | * @throws NumberIsTooSmallException if there is not enough sample data.
|
---|
1148 | */
|
---|
1149 | private void checkSampleData(final double[] data)
|
---|
1150 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
1151 |
|
---|
1152 | if (data == null) {
|
---|
1153 | throw new NullArgumentException();
|
---|
1154 | }
|
---|
1155 | if (data.length < 2) {
|
---|
1156 | throw new NumberIsTooSmallException(
|
---|
1157 | LocalizedFormats.INSUFFICIENT_DATA_FOR_T_STATISTIC,
|
---|
1158 | data.length, 2, true);
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | }
|
---|
1162 |
|
---|
1163 | /**
|
---|
1164 | * Check sample data.
|
---|
1165 | *
|
---|
1166 | * @param stat Statistical summary.
|
---|
1167 | * @throws NullArgumentException if {@code data} is {@code null}.
|
---|
1168 | * @throws NumberIsTooSmallException if there is not enough sample data.
|
---|
1169 | */
|
---|
1170 | private void checkSampleData(final StatisticalSummary stat)
|
---|
1171 | throws NullArgumentException, NumberIsTooSmallException {
|
---|
1172 |
|
---|
1173 | if (stat == null) {
|
---|
1174 | throw new NullArgumentException();
|
---|
1175 | }
|
---|
1176 | if (stat.getN() < 2) {
|
---|
1177 | throw new NumberIsTooSmallException(
|
---|
1178 | LocalizedFormats.INSUFFICIENT_DATA_FOR_T_STATISTIC,
|
---|
1179 | stat.getN(), 2, true);
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 | }
|
---|