source: src/main/java/agents/anac/y2019/harddealer/math3/special/Erf.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 9.6 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.anac.y2019.harddealer.math3.special;
18
19import agents.anac.y2019.harddealer.math3.util.FastMath;
20
21/**
22 * This is a utility class that provides computation methods related to the
23 * error functions.
24 *
25 */
26public class Erf {
27
28 /**
29 * The number {@code X_CRIT} is used by {@link #erf(double, double)} internally.
30 * This number solves {@code erf(x)=0.5} within 1ulp.
31 * More precisely, the current implementations of
32 * {@link #erf(double)} and {@link #erfc(double)} satisfy:<br/>
33 * {@code erf(X_CRIT) < 0.5},<br/>
34 * {@code erf(Math.nextUp(X_CRIT) > 0.5},<br/>
35 * {@code erfc(X_CRIT) = 0.5}, and<br/>
36 * {@code erfc(Math.nextUp(X_CRIT) < 0.5}
37 */
38 private static final double X_CRIT = 0.4769362762044697;
39
40 /**
41 * Default constructor. Prohibit instantiation.
42 */
43 private Erf() {}
44
45 /**
46 * Returns the error function.
47 *
48 * <p>erf(x) = 2/&radic;&pi; <sub>0</sub>&int;<sup>x</sup> e<sup>-t<sup>2</sup></sup>dt </p>
49 *
50 * <p>This implementation computes erf(x) using the
51 * {@link Gamma#regularizedGammaP(double, double, double, int) regularized gamma function},
52 * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3)</p>
53 *
54 * <p>The value returned is always between -1 and 1 (inclusive).
55 * If {@code abs(x) > 40}, then {@code erf(x)} is indistinguishable from
56 * either 1 or -1 as a double, so the appropriate extreme value is returned.
57 * </p>
58 *
59 * @param x the value.
60 * @return the error function erf(x)
61 * @throws agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException
62 * if the algorithm fails to converge.
63 * @see Gamma#regularizedGammaP(double, double, double, int)
64 */
65 public static double erf(double x) {
66 if (FastMath.abs(x) > 40) {
67 return x > 0 ? 1 : -1;
68 }
69 final double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000);
70 return x < 0 ? -ret : ret;
71 }
72
73 /**
74 * Returns the complementary error function.
75 *
76 * <p>erfc(x) = 2/&radic;&pi; <sub>x</sub>&int;<sup>&infin;</sup> e<sup>-t<sup>2</sup></sup>dt
77 * <br/>
78 * = 1 - {@link #erf(double) erf(x)} </p>
79 *
80 * <p>This implementation computes erfc(x) using the
81 * {@link Gamma#regularizedGammaQ(double, double, double, int) regularized gamma function},
82 * following <a href="http://mathworld.wolfram.com/Erf.html"> Erf</a>, equation (3).</p>
83 *
84 * <p>The value returned is always between 0 and 2 (inclusive).
85 * If {@code abs(x) > 40}, then {@code erf(x)} is indistinguishable from
86 * either 0 or 2 as a double, so the appropriate extreme value is returned.
87 * </p>
88 *
89 * @param x the value
90 * @return the complementary error function erfc(x)
91 * @throws agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException
92 * if the algorithm fails to converge.
93 * @see Gamma#regularizedGammaQ(double, double, double, int)
94 * @since 2.2
95 */
96 public static double erfc(double x) {
97 if (FastMath.abs(x) > 40) {
98 return x > 0 ? 0 : 2;
99 }
100 final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000);
101 return x < 0 ? 2 - ret : ret;
102 }
103
104 /**
105 * Returns the difference between erf(x1) and erf(x2).
106 *
107 * The implementation uses either erf(double) or erfc(double)
108 * depending on which provides the most precise result.
109 *
110 * @param x1 the first value
111 * @param x2 the second value
112 * @return erf(x2) - erf(x1)
113 */
114 public static double erf(double x1, double x2) {
115 if(x1 > x2) {
116 return -erf(x2, x1);
117 }
118
119 return
120 x1 < -X_CRIT ?
121 x2 < 0.0 ?
122 erfc(-x2) - erfc(-x1) :
123 erf(x2) - erf(x1) :
124 x2 > X_CRIT && x1 > 0.0 ?
125 erfc(x1) - erfc(x2) :
126 erf(x2) - erf(x1);
127 }
128
129 /**
130 * Returns the inverse erf.
131 * <p>
132 * This implementation is described in the paper:
133 * <a href="http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf">Approximating
134 * the erfinv function</a> by Mike Giles, Oxford-Man Institute of Quantitative Finance,
135 * which was published in GPU Computing Gems, volume 2, 2010.
136 * The source code is available <a href="http://gpucomputing.net/?q=node/1828">here</a>.
137 * </p>
138 * @param x the value
139 * @return t such that x = erf(t)
140 * @since 3.2
141 */
142 public static double erfInv(final double x) {
143
144 // beware that the logarithm argument must be
145 // commputed as (1.0 - x) * (1.0 + x),
146 // it must NOT be simplified as 1.0 - x * x as this
147 // would induce rounding errors near the boundaries +/-1
148 double w = - FastMath.log((1.0 - x) * (1.0 + x));
149 double p;
150
151 if (w < 6.25) {
152 w -= 3.125;
153 p = -3.6444120640178196996e-21;
154 p = -1.685059138182016589e-19 + p * w;
155 p = 1.2858480715256400167e-18 + p * w;
156 p = 1.115787767802518096e-17 + p * w;
157 p = -1.333171662854620906e-16 + p * w;
158 p = 2.0972767875968561637e-17 + p * w;
159 p = 6.6376381343583238325e-15 + p * w;
160 p = -4.0545662729752068639e-14 + p * w;
161 p = -8.1519341976054721522e-14 + p * w;
162 p = 2.6335093153082322977e-12 + p * w;
163 p = -1.2975133253453532498e-11 + p * w;
164 p = -5.4154120542946279317e-11 + p * w;
165 p = 1.051212273321532285e-09 + p * w;
166 p = -4.1126339803469836976e-09 + p * w;
167 p = -2.9070369957882005086e-08 + p * w;
168 p = 4.2347877827932403518e-07 + p * w;
169 p = -1.3654692000834678645e-06 + p * w;
170 p = -1.3882523362786468719e-05 + p * w;
171 p = 0.0001867342080340571352 + p * w;
172 p = -0.00074070253416626697512 + p * w;
173 p = -0.0060336708714301490533 + p * w;
174 p = 0.24015818242558961693 + p * w;
175 p = 1.6536545626831027356 + p * w;
176 } else if (w < 16.0) {
177 w = FastMath.sqrt(w) - 3.25;
178 p = 2.2137376921775787049e-09;
179 p = 9.0756561938885390979e-08 + p * w;
180 p = -2.7517406297064545428e-07 + p * w;
181 p = 1.8239629214389227755e-08 + p * w;
182 p = 1.5027403968909827627e-06 + p * w;
183 p = -4.013867526981545969e-06 + p * w;
184 p = 2.9234449089955446044e-06 + p * w;
185 p = 1.2475304481671778723e-05 + p * w;
186 p = -4.7318229009055733981e-05 + p * w;
187 p = 6.8284851459573175448e-05 + p * w;
188 p = 2.4031110387097893999e-05 + p * w;
189 p = -0.0003550375203628474796 + p * w;
190 p = 0.00095328937973738049703 + p * w;
191 p = -0.0016882755560235047313 + p * w;
192 p = 0.0024914420961078508066 + p * w;
193 p = -0.0037512085075692412107 + p * w;
194 p = 0.005370914553590063617 + p * w;
195 p = 1.0052589676941592334 + p * w;
196 p = 3.0838856104922207635 + p * w;
197 } else if (!Double.isInfinite(w)) {
198 w = FastMath.sqrt(w) - 5.0;
199 p = -2.7109920616438573243e-11;
200 p = -2.5556418169965252055e-10 + p * w;
201 p = 1.5076572693500548083e-09 + p * w;
202 p = -3.7894654401267369937e-09 + p * w;
203 p = 7.6157012080783393804e-09 + p * w;
204 p = -1.4960026627149240478e-08 + p * w;
205 p = 2.9147953450901080826e-08 + p * w;
206 p = -6.7711997758452339498e-08 + p * w;
207 p = 2.2900482228026654717e-07 + p * w;
208 p = -9.9298272942317002539e-07 + p * w;
209 p = 4.5260625972231537039e-06 + p * w;
210 p = -1.9681778105531670567e-05 + p * w;
211 p = 7.5995277030017761139e-05 + p * w;
212 p = -0.00021503011930044477347 + p * w;
213 p = -0.00013871931833623122026 + p * w;
214 p = 1.0103004648645343977 + p * w;
215 p = 4.8499064014085844221 + p * w;
216 } else {
217 // this branch does not appears in the original code, it
218 // was added because the previous branch does not handle
219 // x = +/-1 correctly. In this case, w is positive infinity
220 // and as the first coefficient (-2.71e-11) is negative.
221 // Once the first multiplication is done, p becomes negative
222 // infinity and remains so throughout the polynomial evaluation.
223 // So the branch above incorrectly returns negative infinity
224 // instead of the correct positive infinity.
225 p = Double.POSITIVE_INFINITY;
226 }
227
228 return p * x;
229
230 }
231
232 /**
233 * Returns the inverse erfc.
234 * @param x the value
235 * @return t such that x = erfc(t)
236 * @since 3.2
237 */
238 public static double erfcInv(final double x) {
239 return erfInv(1 - x);
240 }
241
242}
243
Note: See TracBrowser for help on using the repository browser.