1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.random;
|
---|
19 |
|
---|
20 | import java.io.Serializable;
|
---|
21 | import java.security.NoSuchAlgorithmException;
|
---|
22 | import java.security.NoSuchProviderException;
|
---|
23 | import java.util.Collection;
|
---|
24 |
|
---|
25 | import agents.anac.y2019.harddealer.math3.distribution.IntegerDistribution;
|
---|
26 | import agents.anac.y2019.harddealer.math3.distribution.RealDistribution;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.NotANumberException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.exception.NotFiniteNumberException;
|
---|
29 | import agents.anac.y2019.harddealer.math3.exception.NotPositiveException;
|
---|
30 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
31 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalArgumentException;
|
---|
32 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooLargeException;
|
---|
33 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
34 |
|
---|
35 | /**
|
---|
36 | * Generates random deviates and other random data using a {@link RandomGenerator}
|
---|
37 | * instance to generate non-secure data and a {@link java.security.SecureRandom}
|
---|
38 | * instance to provide data for the <code>nextSecureXxx</code> methods. If no
|
---|
39 | * <code>RandomGenerator</code> is provided in the constructor, the default is
|
---|
40 | * to use a {@link Well19937c} generator. To plug in a different
|
---|
41 | * implementation, either implement <code>RandomGenerator</code> directly or
|
---|
42 | * extend {@link AbstractRandomGenerator}.
|
---|
43 | * <p>
|
---|
44 | * Supports reseeding the underlying pseudo-random number generator (PRNG). The
|
---|
45 | * <code>SecurityProvider</code> and <code>Algorithm</code> used by the
|
---|
46 | * <code>SecureRandom</code> instance can also be reset.
|
---|
47 | * </p>
|
---|
48 | * <p>
|
---|
49 | * For details on the default PRNGs, see {@link java.util.Random} and
|
---|
50 | * {@link java.security.SecureRandom}.
|
---|
51 | * </p>
|
---|
52 | * <p>
|
---|
53 | * <strong>Usage Notes</strong>:
|
---|
54 | * <ul>
|
---|
55 | * <li>
|
---|
56 | * Instance variables are used to maintain <code>RandomGenerator</code> and
|
---|
57 | * <code>SecureRandom</code> instances used in data generation. Therefore, to
|
---|
58 | * generate a random sequence of values or strings, you should use just
|
---|
59 | * <strong>one</strong> <code>RandomDataGenerator</code> instance repeatedly.</li>
|
---|
60 | * <li>
|
---|
61 | * The "secure" methods are *much* slower. These should be used only when a
|
---|
62 | * cryptographically secure random sequence is required. A secure random
|
---|
63 | * sequence is a sequence of pseudo-random values which, in addition to being
|
---|
64 | * well-dispersed (so no subsequence of values is an any more likely than other
|
---|
65 | * subsequence of the the same length), also has the additional property that
|
---|
66 | * knowledge of values generated up to any point in the sequence does not make
|
---|
67 | * it any easier to predict subsequent values.</li>
|
---|
68 | * <li>
|
---|
69 | * When a new <code>RandomDataGenerator</code> is created, the underlying random
|
---|
70 | * number generators are <strong>not</strong> initialized. If you do not
|
---|
71 | * explicitly seed the default non-secure generator, it is seeded with the
|
---|
72 | * current time in milliseconds plus the system identity hash code on first use.
|
---|
73 | * The same holds for the secure generator. If you provide a <code>RandomGenerator</code>
|
---|
74 | * to the constructor, however, this generator is not reseeded by the constructor
|
---|
75 | * nor is it reseeded on first use.</li>
|
---|
76 | * <li>
|
---|
77 | * The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the
|
---|
78 | * corresponding methods on the underlying <code>RandomGenerator</code> and
|
---|
79 | * <code>SecureRandom</code> instances. Therefore, <code>reSeed(long)</code>
|
---|
80 | * fully resets the initial state of the non-secure random number generator (so
|
---|
81 | * that reseeding with a specific value always results in the same subsequent
|
---|
82 | * random sequence); whereas reSeedSecure(long) does <strong>not</strong>
|
---|
83 | * reinitialize the secure random number generator (so secure sequences started
|
---|
84 | * with calls to reseedSecure(long) won't be identical).</li>
|
---|
85 | * <li>
|
---|
86 | * This implementation is not synchronized. The underlying <code>RandomGenerator</code>
|
---|
87 | * or <code>SecureRandom</code> instances are not protected by synchronization and
|
---|
88 | * are not guaranteed to be thread-safe. Therefore, if an instance of this class
|
---|
89 | * is concurrently utilized by multiple threads, it is the responsibility of
|
---|
90 | * client code to synchronize access to seeding and data generation methods.
|
---|
91 | * </li>
|
---|
92 | * </ul>
|
---|
93 | * </p>
|
---|
94 | * @deprecated to be removed in 4.0. Use {@link RandomDataGenerator} instead
|
---|
95 | */
|
---|
96 | @Deprecated
|
---|
97 | public class RandomDataImpl implements RandomData, Serializable {
|
---|
98 |
|
---|
99 | /** Serializable version identifier */
|
---|
100 | private static final long serialVersionUID = -626730818244969716L;
|
---|
101 |
|
---|
102 | /** RandomDataGenerator delegate */
|
---|
103 | private final RandomDataGenerator delegate;
|
---|
104 |
|
---|
105 | /**
|
---|
106 | * Construct a RandomDataImpl, using a default random generator as the source
|
---|
107 | * of randomness.
|
---|
108 | *
|
---|
109 | * <p>The default generator is a {@link Well19937c} seeded
|
---|
110 | * with {@code System.currentTimeMillis() + System.identityHashCode(this))}.
|
---|
111 | * The generator is initialized and seeded on first use.</p>
|
---|
112 | */
|
---|
113 | public RandomDataImpl() {
|
---|
114 | delegate = new RandomDataGenerator();
|
---|
115 | }
|
---|
116 |
|
---|
117 | /**
|
---|
118 | * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as
|
---|
119 | * the source of (non-secure) random data.
|
---|
120 | *
|
---|
121 | * @param rand the source of (non-secure) random data
|
---|
122 | * (may be null, resulting in the default generator)
|
---|
123 | * @since 1.1
|
---|
124 | */
|
---|
125 | public RandomDataImpl(RandomGenerator rand) {
|
---|
126 | delegate = new RandomDataGenerator(rand);
|
---|
127 | }
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * @return the delegate object.
|
---|
131 | * @deprecated To be removed in 4.0.
|
---|
132 | */
|
---|
133 | @Deprecated
|
---|
134 | RandomDataGenerator getDelegate() {
|
---|
135 | return delegate;
|
---|
136 | }
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * {@inheritDoc}
|
---|
140 | * <p>
|
---|
141 | * <strong>Algorithm Description:</strong> hex strings are generated using a
|
---|
142 | * 2-step process.
|
---|
143 | * <ol>
|
---|
144 | * <li>{@code len / 2 + 1} binary bytes are generated using the underlying
|
---|
145 | * Random</li>
|
---|
146 | * <li>Each binary byte is translated into 2 hex digits</li>
|
---|
147 | * </ol>
|
---|
148 | * </p>
|
---|
149 | *
|
---|
150 | * @param len the desired string length.
|
---|
151 | * @return the random string.
|
---|
152 | * @throws NotStrictlyPositiveException if {@code len <= 0}.
|
---|
153 | */
|
---|
154 | public String nextHexString(int len) throws NotStrictlyPositiveException {
|
---|
155 | return delegate.nextHexString(len);
|
---|
156 | }
|
---|
157 |
|
---|
158 | /** {@inheritDoc} */
|
---|
159 | public int nextInt(int lower, int upper) throws NumberIsTooLargeException {
|
---|
160 | return delegate.nextInt(lower, upper);
|
---|
161 | }
|
---|
162 |
|
---|
163 | /** {@inheritDoc} */
|
---|
164 | public long nextLong(long lower, long upper) throws NumberIsTooLargeException {
|
---|
165 | return delegate.nextLong(lower, upper);
|
---|
166 | }
|
---|
167 |
|
---|
168 | /**
|
---|
169 | * {@inheritDoc}
|
---|
170 | * <p>
|
---|
171 | * <strong>Algorithm Description:</strong> hex strings are generated in
|
---|
172 | * 40-byte segments using a 3-step process.
|
---|
173 | * <ol>
|
---|
174 | * <li>
|
---|
175 | * 20 random bytes are generated using the underlying
|
---|
176 | * <code>SecureRandom</code>.</li>
|
---|
177 | * <li>
|
---|
178 | * SHA-1 hash is applied to yield a 20-byte binary digest.</li>
|
---|
179 | * <li>
|
---|
180 | * Each byte of the binary digest is converted to 2 hex digits.</li>
|
---|
181 | * </ol>
|
---|
182 | * </p>
|
---|
183 | */
|
---|
184 | public String nextSecureHexString(int len) throws NotStrictlyPositiveException {
|
---|
185 | return delegate.nextSecureHexString(len);
|
---|
186 | }
|
---|
187 |
|
---|
188 | /** {@inheritDoc} */
|
---|
189 | public int nextSecureInt(int lower, int upper) throws NumberIsTooLargeException {
|
---|
190 | return delegate.nextSecureInt(lower, upper);
|
---|
191 | }
|
---|
192 |
|
---|
193 | /** {@inheritDoc} */
|
---|
194 | public long nextSecureLong(long lower, long upper) throws NumberIsTooLargeException {
|
---|
195 | return delegate.nextSecureLong(lower,upper);
|
---|
196 | }
|
---|
197 |
|
---|
198 | /**
|
---|
199 | * {@inheritDoc}
|
---|
200 | * <p>
|
---|
201 | * <strong>Algorithm Description</strong>:
|
---|
202 | * <ul><li> For small means, uses simulation of a Poisson process
|
---|
203 | * using Uniform deviates, as described
|
---|
204 | * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
|
---|
205 | * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li>
|
---|
206 | *
|
---|
207 | * <li> For large means, uses the rejection algorithm described in <br/>
|
---|
208 | * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
|
---|
209 | * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
|
---|
210 | */
|
---|
211 | public long nextPoisson(double mean) throws NotStrictlyPositiveException {
|
---|
212 | return delegate.nextPoisson(mean);
|
---|
213 | }
|
---|
214 |
|
---|
215 | /** {@inheritDoc} */
|
---|
216 | public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
|
---|
217 | return delegate.nextGaussian(mu,sigma);
|
---|
218 | }
|
---|
219 |
|
---|
220 | /**
|
---|
221 | * {@inheritDoc}
|
---|
222 | *
|
---|
223 | * <p>
|
---|
224 | * <strong>Algorithm Description</strong>: Uses the Algorithm SA (Ahrens)
|
---|
225 | * from p. 876 in:
|
---|
226 | * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for
|
---|
227 | * sampling from the exponential and normal distributions.
|
---|
228 | * Communications of the ACM, 15, 873-882.
|
---|
229 | * </p>
|
---|
230 | */
|
---|
231 | public double nextExponential(double mean) throws NotStrictlyPositiveException {
|
---|
232 | return delegate.nextExponential(mean);
|
---|
233 | }
|
---|
234 |
|
---|
235 | /**
|
---|
236 | * {@inheritDoc}
|
---|
237 | *
|
---|
238 | * <p>
|
---|
239 | * <strong>Algorithm Description</strong>: scales the output of
|
---|
240 | * Random.nextDouble(), but rejects 0 values (i.e., will generate another
|
---|
241 | * random double if Random.nextDouble() returns 0). This is necessary to
|
---|
242 | * provide a symmetric output interval (both endpoints excluded).
|
---|
243 | * </p>
|
---|
244 | */
|
---|
245 | public double nextUniform(double lower, double upper)
|
---|
246 | throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
|
---|
247 | return delegate.nextUniform(lower, upper);
|
---|
248 | }
|
---|
249 |
|
---|
250 | /**
|
---|
251 | * {@inheritDoc}
|
---|
252 | *
|
---|
253 | * <p>
|
---|
254 | * <strong>Algorithm Description</strong>: if the lower bound is excluded,
|
---|
255 | * scales the output of Random.nextDouble(), but rejects 0 values (i.e.,
|
---|
256 | * will generate another random double if Random.nextDouble() returns 0).
|
---|
257 | * This is necessary to provide a symmetric output interval (both
|
---|
258 | * endpoints excluded).
|
---|
259 | * </p>
|
---|
260 | * @since 3.0
|
---|
261 | */
|
---|
262 | public double nextUniform(double lower, double upper, boolean lowerInclusive)
|
---|
263 | throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
|
---|
264 | return delegate.nextUniform(lower, upper, lowerInclusive);
|
---|
265 | }
|
---|
266 |
|
---|
267 | /**
|
---|
268 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.BetaDistribution Beta Distribution}.
|
---|
269 | * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
|
---|
270 | * to generate random values.
|
---|
271 | *
|
---|
272 | * @param alpha first distribution shape parameter
|
---|
273 | * @param beta second distribution shape parameter
|
---|
274 | * @return random value sampled from the beta(alpha, beta) distribution
|
---|
275 | * @since 2.2
|
---|
276 | */
|
---|
277 | public double nextBeta(double alpha, double beta) {
|
---|
278 | return delegate.nextBeta(alpha, beta);
|
---|
279 | }
|
---|
280 |
|
---|
281 | /**
|
---|
282 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.BinomialDistribution Binomial Distribution}.
|
---|
283 | * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
|
---|
284 | * to generate random values.
|
---|
285 | *
|
---|
286 | * @param numberOfTrials number of trials of the Binomial distribution
|
---|
287 | * @param probabilityOfSuccess probability of success of the Binomial distribution
|
---|
288 | * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
|
---|
289 | * @since 2.2
|
---|
290 | */
|
---|
291 | public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) {
|
---|
292 | return delegate.nextBinomial(numberOfTrials, probabilityOfSuccess);
|
---|
293 | }
|
---|
294 |
|
---|
295 | /**
|
---|
296 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.CauchyDistribution Cauchy Distribution}.
|
---|
297 | * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
|
---|
298 | * to generate random values.
|
---|
299 | *
|
---|
300 | * @param median the median of the Cauchy distribution
|
---|
301 | * @param scale the scale parameter of the Cauchy distribution
|
---|
302 | * @return random value sampled from the Cauchy(median, scale) distribution
|
---|
303 | * @since 2.2
|
---|
304 | */
|
---|
305 | public double nextCauchy(double median, double scale) {
|
---|
306 | return delegate.nextCauchy(median, scale);
|
---|
307 | }
|
---|
308 |
|
---|
309 | /**
|
---|
310 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.ChiSquaredDistribution ChiSquare Distribution}.
|
---|
311 | * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
|
---|
312 | * to generate random values.
|
---|
313 | *
|
---|
314 | * @param df the degrees of freedom of the ChiSquare distribution
|
---|
315 | * @return random value sampled from the ChiSquare(df) distribution
|
---|
316 | * @since 2.2
|
---|
317 | */
|
---|
318 | public double nextChiSquare(double df) {
|
---|
319 | return delegate.nextChiSquare(df);
|
---|
320 | }
|
---|
321 |
|
---|
322 | /**
|
---|
323 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.FDistribution F Distribution}.
|
---|
324 | * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
|
---|
325 | * to generate random values.
|
---|
326 | *
|
---|
327 | * @param numeratorDf the numerator degrees of freedom of the F distribution
|
---|
328 | * @param denominatorDf the denominator degrees of freedom of the F distribution
|
---|
329 | * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
|
---|
330 | * @throws NotStrictlyPositiveException if
|
---|
331 | * {@code numeratorDf <= 0} or {@code denominatorDf <= 0}.
|
---|
332 | * @since 2.2
|
---|
333 | */
|
---|
334 | public double nextF(double numeratorDf, double denominatorDf) throws NotStrictlyPositiveException {
|
---|
335 | return delegate.nextF(numeratorDf, denominatorDf);
|
---|
336 | }
|
---|
337 |
|
---|
338 | /**
|
---|
339 | * <p>Generates a random value from the
|
---|
340 | * {@link agents.anac.y2019.harddealer.math3.distribution.GammaDistribution Gamma Distribution}.</p>
|
---|
341 | *
|
---|
342 | * <p>This implementation uses the following algorithms: </p>
|
---|
343 | *
|
---|
344 | * <p>For 0 < shape < 1: <br/>
|
---|
345 | * Ahrens, J. H. and Dieter, U., <i>Computer methods for
|
---|
346 | * sampling from gamma, beta, Poisson and binomial distributions.</i>
|
---|
347 | * Computing, 12, 223-246, 1974.</p>
|
---|
348 | *
|
---|
349 | * <p>For shape >= 1: <br/>
|
---|
350 | * Marsaglia and Tsang, <i>A Simple Method for Generating
|
---|
351 | * Gamma Variables.</i> ACM Transactions on Mathematical Software,
|
---|
352 | * Volume 26 Issue 3, September, 2000.</p>
|
---|
353 | *
|
---|
354 | * @param shape the median of the Gamma distribution
|
---|
355 | * @param scale the scale parameter of the Gamma distribution
|
---|
356 | * @return random value sampled from the Gamma(shape, scale) distribution
|
---|
357 | * @throws NotStrictlyPositiveException if {@code shape <= 0} or
|
---|
358 | * {@code scale <= 0}.
|
---|
359 | * @since 2.2
|
---|
360 | */
|
---|
361 | public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException {
|
---|
362 | return delegate.nextGamma(shape, scale);
|
---|
363 | }
|
---|
364 |
|
---|
365 | /**
|
---|
366 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.HypergeometricDistribution Hypergeometric Distribution}.
|
---|
367 | * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
|
---|
368 | * to generate random values.
|
---|
369 | *
|
---|
370 | * @param populationSize the population size of the Hypergeometric distribution
|
---|
371 | * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution
|
---|
372 | * @param sampleSize the sample size of the Hypergeometric distribution
|
---|
373 | * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
|
---|
374 | * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize},
|
---|
375 | * or {@code sampleSize > populationSize}.
|
---|
376 | * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
|
---|
377 | * @throws NotPositiveException if {@code numberOfSuccesses < 0}.
|
---|
378 | * @since 2.2
|
---|
379 | */
|
---|
380 | public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)
|
---|
381 | throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
|
---|
382 | return delegate.nextHypergeometric(populationSize, numberOfSuccesses, sampleSize);
|
---|
383 | }
|
---|
384 |
|
---|
385 | /**
|
---|
386 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.PascalDistribution Pascal Distribution}.
|
---|
387 | * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
|
---|
388 | * to generate random values.
|
---|
389 | *
|
---|
390 | * @param r the number of successes of the Pascal distribution
|
---|
391 | * @param p the probability of success of the Pascal distribution
|
---|
392 | * @return random value sampled from the Pascal(r, p) distribution
|
---|
393 | * @since 2.2
|
---|
394 | * @throws NotStrictlyPositiveException if the number of successes is not positive
|
---|
395 | * @throws OutOfRangeException if the probability of success is not in the
|
---|
396 | * range {@code [0, 1]}.
|
---|
397 | */
|
---|
398 | public int nextPascal(int r, double p)
|
---|
399 | throws NotStrictlyPositiveException, OutOfRangeException {
|
---|
400 | return delegate.nextPascal(r, p);
|
---|
401 | }
|
---|
402 |
|
---|
403 | /**
|
---|
404 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.TDistribution T Distribution}.
|
---|
405 | * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
|
---|
406 | * to generate random values.
|
---|
407 | *
|
---|
408 | * @param df the degrees of freedom of the T distribution
|
---|
409 | * @return random value from the T(df) distribution
|
---|
410 | * @since 2.2
|
---|
411 | * @throws NotStrictlyPositiveException if {@code df <= 0}
|
---|
412 | */
|
---|
413 | public double nextT(double df) throws NotStrictlyPositiveException {
|
---|
414 | return delegate.nextT(df);
|
---|
415 | }
|
---|
416 |
|
---|
417 | /**
|
---|
418 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.WeibullDistribution Weibull Distribution}.
|
---|
419 | * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
|
---|
420 | * to generate random values.
|
---|
421 | *
|
---|
422 | * @param shape the shape parameter of the Weibull distribution
|
---|
423 | * @param scale the scale parameter of the Weibull distribution
|
---|
424 | * @return random value sampled from the Weibull(shape, size) distribution
|
---|
425 | * @since 2.2
|
---|
426 | * @throws NotStrictlyPositiveException if {@code shape <= 0} or
|
---|
427 | * {@code scale <= 0}.
|
---|
428 | */
|
---|
429 | public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException {
|
---|
430 | return delegate.nextWeibull(shape, scale);
|
---|
431 | }
|
---|
432 |
|
---|
433 | /**
|
---|
434 | * Generates a random value from the {@link agents.anac.y2019.harddealer.math3.distribution.ZipfDistribution Zipf Distribution}.
|
---|
435 | * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion}
|
---|
436 | * to generate random values.
|
---|
437 | *
|
---|
438 | * @param numberOfElements the number of elements of the ZipfDistribution
|
---|
439 | * @param exponent the exponent of the ZipfDistribution
|
---|
440 | * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
|
---|
441 | * @since 2.2
|
---|
442 | * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0}
|
---|
443 | * or {@code exponent <= 0}.
|
---|
444 | */
|
---|
445 | public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException {
|
---|
446 | return delegate.nextZipf(numberOfElements, exponent);
|
---|
447 | }
|
---|
448 |
|
---|
449 |
|
---|
450 | /**
|
---|
451 | * Reseeds the random number generator with the supplied seed.
|
---|
452 | * <p>
|
---|
453 | * Will create and initialize if null.
|
---|
454 | * </p>
|
---|
455 | *
|
---|
456 | * @param seed
|
---|
457 | * the seed value to use
|
---|
458 | */
|
---|
459 | public void reSeed(long seed) {
|
---|
460 | delegate.reSeed(seed);
|
---|
461 | }
|
---|
462 |
|
---|
463 | /**
|
---|
464 | * Reseeds the secure random number generator with the current time in
|
---|
465 | * milliseconds.
|
---|
466 | * <p>
|
---|
467 | * Will create and initialize if null.
|
---|
468 | * </p>
|
---|
469 | */
|
---|
470 | public void reSeedSecure() {
|
---|
471 | delegate.reSeedSecure();
|
---|
472 | }
|
---|
473 |
|
---|
474 | /**
|
---|
475 | * Reseeds the secure random number generator with the supplied seed.
|
---|
476 | * <p>
|
---|
477 | * Will create and initialize if null.
|
---|
478 | * </p>
|
---|
479 | *
|
---|
480 | * @param seed
|
---|
481 | * the seed value to use
|
---|
482 | */
|
---|
483 | public void reSeedSecure(long seed) {
|
---|
484 | delegate.reSeedSecure(seed);
|
---|
485 | }
|
---|
486 |
|
---|
487 | /**
|
---|
488 | * Reseeds the random number generator with
|
---|
489 | * {@code System.currentTimeMillis() + System.identityHashCode(this))}.
|
---|
490 | */
|
---|
491 | public void reSeed() {
|
---|
492 | delegate.reSeed();
|
---|
493 | }
|
---|
494 |
|
---|
495 | /**
|
---|
496 | * Sets the PRNG algorithm for the underlying SecureRandom instance using
|
---|
497 | * the Security Provider API. The Security Provider API is defined in <a
|
---|
498 | * href =
|
---|
499 | * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA">
|
---|
500 | * Java Cryptography Architecture API Specification & Reference.</a>
|
---|
501 | * <p>
|
---|
502 | * <strong>USAGE NOTE:</strong> This method carries <i>significant</i>
|
---|
503 | * overhead and may take several seconds to execute.
|
---|
504 | * </p>
|
---|
505 | *
|
---|
506 | * @param algorithm
|
---|
507 | * the name of the PRNG algorithm
|
---|
508 | * @param provider
|
---|
509 | * the name of the provider
|
---|
510 | * @throws NoSuchAlgorithmException
|
---|
511 | * if the specified algorithm is not available
|
---|
512 | * @throws NoSuchProviderException
|
---|
513 | * if the specified provider is not installed
|
---|
514 | */
|
---|
515 | public void setSecureAlgorithm(String algorithm, String provider)
|
---|
516 | throws NoSuchAlgorithmException, NoSuchProviderException {
|
---|
517 | delegate.setSecureAlgorithm(algorithm, provider);
|
---|
518 | }
|
---|
519 |
|
---|
520 | /**
|
---|
521 | * {@inheritDoc}
|
---|
522 | *
|
---|
523 | * <p>
|
---|
524 | * Uses a 2-cycle permutation shuffle. The shuffling process is described <a
|
---|
525 | * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
|
---|
526 | * here</a>.
|
---|
527 | * </p>
|
---|
528 | */
|
---|
529 | public int[] nextPermutation(int n, int k)
|
---|
530 | throws NotStrictlyPositiveException, NumberIsTooLargeException {
|
---|
531 | return delegate.nextPermutation(n, k);
|
---|
532 | }
|
---|
533 |
|
---|
534 | /**
|
---|
535 | * {@inheritDoc}
|
---|
536 | *
|
---|
537 | * <p>
|
---|
538 | * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation
|
---|
539 | * shuffle to generate a random permutation of <code>c.size()</code> and
|
---|
540 | * then returns the elements whose indexes correspond to the elements of the
|
---|
541 | * generated permutation. This technique is described, and proven to
|
---|
542 | * generate random samples <a
|
---|
543 | * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">
|
---|
544 | * here</a>
|
---|
545 | * </p>
|
---|
546 | */
|
---|
547 | public Object[] nextSample(Collection<?> c, int k)
|
---|
548 | throws NotStrictlyPositiveException, NumberIsTooLargeException {
|
---|
549 | return delegate.nextSample(c, k);
|
---|
550 | }
|
---|
551 |
|
---|
552 | /**
|
---|
553 | * Generate a random deviate from the given distribution using the
|
---|
554 | * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
|
---|
555 | *
|
---|
556 | * @param distribution Continuous distribution to generate a random value from
|
---|
557 | * @return a random value sampled from the given distribution
|
---|
558 | * @throws MathIllegalArgumentException if the underlynig distribution throws one
|
---|
559 | * @since 2.2
|
---|
560 | * @deprecated use the distribution's sample() method
|
---|
561 | */
|
---|
562 | @Deprecated
|
---|
563 | public double nextInversionDeviate(RealDistribution distribution)
|
---|
564 | throws MathIllegalArgumentException {
|
---|
565 | return distribution.inverseCumulativeProbability(nextUniform(0, 1));
|
---|
566 |
|
---|
567 | }
|
---|
568 |
|
---|
569 | /**
|
---|
570 | * Generate a random deviate from the given distribution using the
|
---|
571 | * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
|
---|
572 | *
|
---|
573 | * @param distribution Integer distribution to generate a random value from
|
---|
574 | * @return a random value sampled from the given distribution
|
---|
575 | * @throws MathIllegalArgumentException if the underlynig distribution throws one
|
---|
576 | * @since 2.2
|
---|
577 | * @deprecated use the distribution's sample() method
|
---|
578 | */
|
---|
579 | @Deprecated
|
---|
580 | public int nextInversionDeviate(IntegerDistribution distribution)
|
---|
581 | throws MathIllegalArgumentException {
|
---|
582 | return distribution.inverseCumulativeProbability(nextUniform(0, 1));
|
---|
583 | }
|
---|
584 |
|
---|
585 | }
|
---|