1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.primes;
|
---|
18 |
|
---|
19 |
|
---|
20 | import java.math.BigInteger;
|
---|
21 | import java.util.ArrayList;
|
---|
22 | import java.util.List;
|
---|
23 |
|
---|
24 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * Utility methods to work on primes within the <code>int</code> range.
|
---|
28 | * @since 3.2
|
---|
29 | */
|
---|
30 | class SmallPrimes {
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * The first 512 prime numbers.
|
---|
34 | * <p>
|
---|
35 | * It contains all primes smaller or equal to the cubic square of Integer.MAX_VALUE.
|
---|
36 | * As a result, <code>int</code> numbers which are not reduced by those primes are guaranteed
|
---|
37 | * to be either prime or semi prime.
|
---|
38 | */
|
---|
39 | public static final int[] PRIMES = {2,
|
---|
40 | 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
|
---|
41 | 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
|
---|
42 | 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
|
---|
43 | 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
|
---|
44 | 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547,
|
---|
45 | 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661,
|
---|
46 | 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
|
---|
47 | 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947,
|
---|
48 | 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
|
---|
49 | 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229,
|
---|
50 | 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381,
|
---|
51 | 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
|
---|
52 | 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663,
|
---|
53 | 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823,
|
---|
54 | 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993,
|
---|
55 | 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
|
---|
56 | 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293,
|
---|
57 | 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437,
|
---|
58 | 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621,
|
---|
59 | 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749,
|
---|
60 | 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909,
|
---|
61 | 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083,
|
---|
62 | 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259,
|
---|
63 | 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433,
|
---|
64 | 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581,
|
---|
65 | 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671};
|
---|
66 |
|
---|
67 | /** The last number in PRIMES. */
|
---|
68 | public static final int PRIMES_LAST = PRIMES[PRIMES.length - 1];
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * Hide utility class.
|
---|
72 | */
|
---|
73 | private SmallPrimes() {
|
---|
74 | }
|
---|
75 |
|
---|
76 | /**
|
---|
77 | * Extract small factors.
|
---|
78 | * @param n the number to factor, must be > 0.
|
---|
79 | * @param factors the list where to add the factors.
|
---|
80 | * @return the part of n which remains to be factored, it is either a prime or a semi-prime
|
---|
81 | */
|
---|
82 | public static int smallTrialDivision(int n, final List<Integer> factors) {
|
---|
83 | for (int p : PRIMES) {
|
---|
84 | while (0 == n % p) {
|
---|
85 | n /= p;
|
---|
86 | factors.add(p);
|
---|
87 | }
|
---|
88 | }
|
---|
89 | return n;
|
---|
90 | }
|
---|
91 |
|
---|
92 | /**
|
---|
93 | * Extract factors in the range <code>PRIME_LAST+2</code> to <code>maxFactors</code>.
|
---|
94 | * @param n the number to factorize, must be >= PRIME_LAST+2 and must not contain any factor below PRIME_LAST+2
|
---|
95 | * @param maxFactor the upper bound of trial division: if it is reached, the method gives up and returns n.
|
---|
96 | * @param factors the list where to add the factors.
|
---|
97 | * @return n or 1 if factorization is completed.
|
---|
98 | */
|
---|
99 | public static int boundedTrialDivision(int n, int maxFactor, List<Integer> factors) {
|
---|
100 | int f = PRIMES_LAST + 2;
|
---|
101 | // no check is done about n >= f
|
---|
102 | while (f <= maxFactor) {
|
---|
103 | if (0 == n % f) {
|
---|
104 | n /= f;
|
---|
105 | factors.add(f);
|
---|
106 | break;
|
---|
107 | }
|
---|
108 | f += 4;
|
---|
109 | if (0 == n % f) {
|
---|
110 | n /= f;
|
---|
111 | factors.add(f);
|
---|
112 | break;
|
---|
113 | }
|
---|
114 | f += 2;
|
---|
115 | }
|
---|
116 | if (n != 1) {
|
---|
117 | factors.add(n);
|
---|
118 | }
|
---|
119 | return n;
|
---|
120 | }
|
---|
121 |
|
---|
122 | /**
|
---|
123 | * Factorization by trial division.
|
---|
124 | * @param n the number to factor
|
---|
125 | * @return the list of prime factors of n
|
---|
126 | */
|
---|
127 | public static List<Integer> trialDivision(int n){
|
---|
128 | final List<Integer> factors = new ArrayList<Integer>(32);
|
---|
129 | n = smallTrialDivision(n, factors);
|
---|
130 | if (1 == n) {
|
---|
131 | return factors;
|
---|
132 | }
|
---|
133 | // here we are sure that n is either a prime or a semi prime
|
---|
134 | final int bound = (int) FastMath.sqrt(n);
|
---|
135 | boundedTrialDivision(n, bound, factors);
|
---|
136 | return factors;
|
---|
137 | }
|
---|
138 |
|
---|
139 | /**
|
---|
140 | * Miller-Rabin probabilistic primality test for int type, used in such a way that a result is always guaranteed.
|
---|
141 | * <p>
|
---|
142 | * It uses the prime numbers as successive base therefore it is guaranteed to be always correct.
|
---|
143 | * (see Handbook of applied cryptography by Menezes, table 4.1)
|
---|
144 | *
|
---|
145 | * @param n number to test: an odd integer ≥ 3
|
---|
146 | * @return true if n is prime. false if n is definitely composite.
|
---|
147 | */
|
---|
148 | public static boolean millerRabinPrimeTest(final int n) {
|
---|
149 | final int nMinus1 = n - 1;
|
---|
150 | final int s = Integer.numberOfTrailingZeros(nMinus1);
|
---|
151 | final int r = nMinus1 >> s;
|
---|
152 | //r must be odd, it is not checked here
|
---|
153 | int t = 1;
|
---|
154 | if (n >= 2047) {
|
---|
155 | t = 2;
|
---|
156 | }
|
---|
157 | if (n >= 1373653) {
|
---|
158 | t = 3;
|
---|
159 | }
|
---|
160 | if (n >= 25326001) {
|
---|
161 | t = 4;
|
---|
162 | } // works up to 3.2 billion, int range stops at 2.7 so we are safe :-)
|
---|
163 | BigInteger br = BigInteger.valueOf(r);
|
---|
164 | BigInteger bn = BigInteger.valueOf(n);
|
---|
165 |
|
---|
166 | for (int i = 0; i < t; i++) {
|
---|
167 | BigInteger a = BigInteger.valueOf(SmallPrimes.PRIMES[i]);
|
---|
168 | BigInteger bPow = a.modPow(br, bn);
|
---|
169 | int y = bPow.intValue();
|
---|
170 | if ((1 != y) && (y != nMinus1)) {
|
---|
171 | int j = 1;
|
---|
172 | while ((j <= s - 1) && (nMinus1 != y)) {
|
---|
173 | long square = ((long) y) * y;
|
---|
174 | y = (int) (square % n);
|
---|
175 | if (1 == y) {
|
---|
176 | return false;
|
---|
177 | } // definitely composite
|
---|
178 | j++;
|
---|
179 | }
|
---|
180 | if (nMinus1 != y) {
|
---|
181 | return false;
|
---|
182 | } // definitely composite
|
---|
183 | }
|
---|
184 | }
|
---|
185 | return true; // definitely prime
|
---|
186 | }
|
---|
187 | }
|
---|
188 |
|
---|