1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.optimization.univariate;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.util.Incrementor;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.TooManyEvaluationsException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
24 | import agents.anac.y2019.harddealer.math3.analysis.UnivariateFunction;
|
---|
25 | import agents.anac.y2019.harddealer.math3.optimization.GoalType;
|
---|
26 | import agents.anac.y2019.harddealer.math3.optimization.ConvergenceChecker;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * Provide a default implementation for several functions useful to generic
|
---|
30 | * optimizers.
|
---|
31 | *
|
---|
32 | * @deprecated As of 3.1 (to be removed in 4.0).
|
---|
33 | * @since 2.0
|
---|
34 | */
|
---|
35 | @Deprecated
|
---|
36 | public abstract class BaseAbstractUnivariateOptimizer
|
---|
37 | implements UnivariateOptimizer {
|
---|
38 | /** Convergence checker. */
|
---|
39 | private final ConvergenceChecker<UnivariatePointValuePair> checker;
|
---|
40 | /** Evaluations counter. */
|
---|
41 | private final Incrementor evaluations = new Incrementor();
|
---|
42 | /** Optimization type */
|
---|
43 | private GoalType goal;
|
---|
44 | /** Lower end of search interval. */
|
---|
45 | private double searchMin;
|
---|
46 | /** Higher end of search interval. */
|
---|
47 | private double searchMax;
|
---|
48 | /** Initial guess . */
|
---|
49 | private double searchStart;
|
---|
50 | /** Function to optimize. */
|
---|
51 | private UnivariateFunction function;
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * @param checker Convergence checking procedure.
|
---|
55 | */
|
---|
56 | protected BaseAbstractUnivariateOptimizer(ConvergenceChecker<UnivariatePointValuePair> checker) {
|
---|
57 | this.checker = checker;
|
---|
58 | }
|
---|
59 |
|
---|
60 | /** {@inheritDoc} */
|
---|
61 | public int getMaxEvaluations() {
|
---|
62 | return evaluations.getMaximalCount();
|
---|
63 | }
|
---|
64 |
|
---|
65 | /** {@inheritDoc} */
|
---|
66 | public int getEvaluations() {
|
---|
67 | return evaluations.getCount();
|
---|
68 | }
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * @return the optimization type.
|
---|
72 | */
|
---|
73 | public GoalType getGoalType() {
|
---|
74 | return goal;
|
---|
75 | }
|
---|
76 | /**
|
---|
77 | * @return the lower end of the search interval.
|
---|
78 | */
|
---|
79 | public double getMin() {
|
---|
80 | return searchMin;
|
---|
81 | }
|
---|
82 | /**
|
---|
83 | * @return the higher end of the search interval.
|
---|
84 | */
|
---|
85 | public double getMax() {
|
---|
86 | return searchMax;
|
---|
87 | }
|
---|
88 | /**
|
---|
89 | * @return the initial guess.
|
---|
90 | */
|
---|
91 | public double getStartValue() {
|
---|
92 | return searchStart;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * Compute the objective function value.
|
---|
97 | *
|
---|
98 | * @param point Point at which the objective function must be evaluated.
|
---|
99 | * @return the objective function value at specified point.
|
---|
100 | * @throws TooManyEvaluationsException if the maximal number of evaluations
|
---|
101 | * is exceeded.
|
---|
102 | */
|
---|
103 | protected double computeObjectiveValue(double point) {
|
---|
104 | try {
|
---|
105 | evaluations.incrementCount();
|
---|
106 | } catch (MaxCountExceededException e) {
|
---|
107 | throw new TooManyEvaluationsException(e.getMax());
|
---|
108 | }
|
---|
109 | return function.value(point);
|
---|
110 | }
|
---|
111 |
|
---|
112 | /** {@inheritDoc} */
|
---|
113 | public UnivariatePointValuePair optimize(int maxEval, UnivariateFunction f,
|
---|
114 | GoalType goalType,
|
---|
115 | double min, double max,
|
---|
116 | double startValue) {
|
---|
117 | // Checks.
|
---|
118 | if (f == null) {
|
---|
119 | throw new NullArgumentException();
|
---|
120 | }
|
---|
121 | if (goalType == null) {
|
---|
122 | throw new NullArgumentException();
|
---|
123 | }
|
---|
124 |
|
---|
125 | // Reset.
|
---|
126 | searchMin = min;
|
---|
127 | searchMax = max;
|
---|
128 | searchStart = startValue;
|
---|
129 | goal = goalType;
|
---|
130 | function = f;
|
---|
131 | evaluations.setMaximalCount(maxEval);
|
---|
132 | evaluations.resetCount();
|
---|
133 |
|
---|
134 | // Perform computation.
|
---|
135 | return doOptimize();
|
---|
136 | }
|
---|
137 |
|
---|
138 | /** {@inheritDoc} */
|
---|
139 | public UnivariatePointValuePair optimize(int maxEval,
|
---|
140 | UnivariateFunction f,
|
---|
141 | GoalType goalType,
|
---|
142 | double min, double max){
|
---|
143 | return optimize(maxEval, f, goalType, min, max, min + 0.5 * (max - min));
|
---|
144 | }
|
---|
145 |
|
---|
146 | /**
|
---|
147 | * {@inheritDoc}
|
---|
148 | */
|
---|
149 | public ConvergenceChecker<UnivariatePointValuePair> getConvergenceChecker() {
|
---|
150 | return checker;
|
---|
151 | }
|
---|
152 |
|
---|
153 | /**
|
---|
154 | * Method for implementing actual optimization algorithms in derived
|
---|
155 | * classes.
|
---|
156 | *
|
---|
157 | * @return the optimum and its corresponding function value.
|
---|
158 | * @throws TooManyEvaluationsException if the maximal number of evaluations
|
---|
159 | * is exceeded.
|
---|
160 | */
|
---|
161 | protected abstract UnivariatePointValuePair doOptimize();
|
---|
162 | }
|
---|