1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.optimization.direct;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.util.Incrementor;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.TooManyEvaluationsException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.analysis.MultivariateFunction;
|
---|
24 | import agents.anac.y2019.harddealer.math3.optimization.BaseMultivariateOptimizer;
|
---|
25 | import agents.anac.y2019.harddealer.math3.optimization.OptimizationData;
|
---|
26 | import agents.anac.y2019.harddealer.math3.optimization.GoalType;
|
---|
27 | import agents.anac.y2019.harddealer.math3.optimization.InitialGuess;
|
---|
28 | import agents.anac.y2019.harddealer.math3.optimization.SimpleBounds;
|
---|
29 | import agents.anac.y2019.harddealer.math3.optimization.ConvergenceChecker;
|
---|
30 | import agents.anac.y2019.harddealer.math3.optimization.PointValuePair;
|
---|
31 | import agents.anac.y2019.harddealer.math3.optimization.SimpleValueChecker;
|
---|
32 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
33 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooSmallException;
|
---|
34 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooLargeException;
|
---|
35 |
|
---|
36 | /**
|
---|
37 | * Base class for implementing optimizers for multivariate scalar functions.
|
---|
38 | * This base class handles the boiler-plate methods associated to thresholds,
|
---|
39 | * evaluations counting, initial guess and simple bounds settings.
|
---|
40 | *
|
---|
41 | * @param <FUNC> Type of the objective function to be optimized.
|
---|
42 | *
|
---|
43 | * @deprecated As of 3.1 (to be removed in 4.0).
|
---|
44 | * @since 2.2
|
---|
45 | */
|
---|
46 | @Deprecated
|
---|
47 | public abstract class BaseAbstractMultivariateOptimizer<FUNC extends MultivariateFunction>
|
---|
48 | implements BaseMultivariateOptimizer<FUNC> {
|
---|
49 | /** Evaluations counter. */
|
---|
50 | protected final Incrementor evaluations = new Incrementor();
|
---|
51 | /** Convergence checker. */
|
---|
52 | private ConvergenceChecker<PointValuePair> checker;
|
---|
53 | /** Type of optimization. */
|
---|
54 | private GoalType goal;
|
---|
55 | /** Initial guess. */
|
---|
56 | private double[] start;
|
---|
57 | /** Lower bounds. */
|
---|
58 | private double[] lowerBound;
|
---|
59 | /** Upper bounds. */
|
---|
60 | private double[] upperBound;
|
---|
61 | /** Objective function. */
|
---|
62 | private MultivariateFunction function;
|
---|
63 |
|
---|
64 | /**
|
---|
65 | * Simple constructor with default settings.
|
---|
66 | * The convergence check is set to a {@link SimpleValueChecker}.
|
---|
67 | * @deprecated See {@link SimpleValueChecker#SimpleValueChecker()}
|
---|
68 | */
|
---|
69 | @Deprecated
|
---|
70 | protected BaseAbstractMultivariateOptimizer() {
|
---|
71 | this(new SimpleValueChecker());
|
---|
72 | }
|
---|
73 | /**
|
---|
74 | * @param checker Convergence checker.
|
---|
75 | */
|
---|
76 | protected BaseAbstractMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker) {
|
---|
77 | this.checker = checker;
|
---|
78 | }
|
---|
79 |
|
---|
80 | /** {@inheritDoc} */
|
---|
81 | public int getMaxEvaluations() {
|
---|
82 | return evaluations.getMaximalCount();
|
---|
83 | }
|
---|
84 |
|
---|
85 | /** {@inheritDoc} */
|
---|
86 | public int getEvaluations() {
|
---|
87 | return evaluations.getCount();
|
---|
88 | }
|
---|
89 |
|
---|
90 | /** {@inheritDoc} */
|
---|
91 | public ConvergenceChecker<PointValuePair> getConvergenceChecker() {
|
---|
92 | return checker;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * Compute the objective function value.
|
---|
97 | *
|
---|
98 | * @param point Point at which the objective function must be evaluated.
|
---|
99 | * @return the objective function value at the specified point.
|
---|
100 | * @throws TooManyEvaluationsException if the maximal number of
|
---|
101 | * evaluations is exceeded.
|
---|
102 | */
|
---|
103 | protected double computeObjectiveValue(double[] point) {
|
---|
104 | try {
|
---|
105 | evaluations.incrementCount();
|
---|
106 | } catch (MaxCountExceededException e) {
|
---|
107 | throw new TooManyEvaluationsException(e.getMax());
|
---|
108 | }
|
---|
109 | return function.value(point);
|
---|
110 | }
|
---|
111 |
|
---|
112 | /**
|
---|
113 | * {@inheritDoc}
|
---|
114 | *
|
---|
115 | * @deprecated As of 3.1. Please use
|
---|
116 | * {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
|
---|
117 | * instead.
|
---|
118 | */
|
---|
119 | @Deprecated
|
---|
120 | public PointValuePair optimize(int maxEval, FUNC f, GoalType goalType,
|
---|
121 | double[] startPoint) {
|
---|
122 | return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint));
|
---|
123 | }
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Optimize an objective function.
|
---|
127 | *
|
---|
128 | * @param maxEval Allowed number of evaluations of the objective function.
|
---|
129 | * @param f Objective function.
|
---|
130 | * @param goalType Optimization type.
|
---|
131 | * @param optData Optimization data. The following data will be looked for:
|
---|
132 | * <ul>
|
---|
133 | * <li>{@link InitialGuess}</li>
|
---|
134 | * <li>{@link SimpleBounds}</li>
|
---|
135 | * </ul>
|
---|
136 | * @return the point/value pair giving the optimal value of the objective
|
---|
137 | * function.
|
---|
138 | * @since 3.1
|
---|
139 | */
|
---|
140 | public PointValuePair optimize(int maxEval,
|
---|
141 | FUNC f,
|
---|
142 | GoalType goalType,
|
---|
143 | OptimizationData... optData) {
|
---|
144 | return optimizeInternal(maxEval, f, goalType, optData);
|
---|
145 | }
|
---|
146 |
|
---|
147 | /**
|
---|
148 | * Optimize an objective function.
|
---|
149 | *
|
---|
150 | * @param f Objective function.
|
---|
151 | * @param goalType Type of optimization goal: either
|
---|
152 | * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}.
|
---|
153 | * @param startPoint Start point for optimization.
|
---|
154 | * @param maxEval Maximum number of function evaluations.
|
---|
155 | * @return the point/value pair giving the optimal value for objective
|
---|
156 | * function.
|
---|
157 | * @throws agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException
|
---|
158 | * if the start point dimension is wrong.
|
---|
159 | * @throws agents.anac.y2019.harddealer.math3.exception.TooManyEvaluationsException
|
---|
160 | * if the maximal number of evaluations is exceeded.
|
---|
161 | * @throws agents.anac.y2019.harddealer.math3.exception.NullArgumentException if
|
---|
162 | * any argument is {@code null}.
|
---|
163 | * @deprecated As of 3.1. Please use
|
---|
164 | * {@link #optimize(int,MultivariateFunction,GoalType,OptimizationData[])}
|
---|
165 | * instead.
|
---|
166 | */
|
---|
167 | @Deprecated
|
---|
168 | protected PointValuePair optimizeInternal(int maxEval, FUNC f, GoalType goalType,
|
---|
169 | double[] startPoint) {
|
---|
170 | return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint));
|
---|
171 | }
|
---|
172 |
|
---|
173 | /**
|
---|
174 | * Optimize an objective function.
|
---|
175 | *
|
---|
176 | * @param maxEval Allowed number of evaluations of the objective function.
|
---|
177 | * @param f Objective function.
|
---|
178 | * @param goalType Optimization type.
|
---|
179 | * @param optData Optimization data. The following data will be looked for:
|
---|
180 | * <ul>
|
---|
181 | * <li>{@link InitialGuess}</li>
|
---|
182 | * <li>{@link SimpleBounds}</li>
|
---|
183 | * </ul>
|
---|
184 | * @return the point/value pair giving the optimal value of the objective
|
---|
185 | * function.
|
---|
186 | * @throws TooManyEvaluationsException if the maximal number of
|
---|
187 | * evaluations is exceeded.
|
---|
188 | * @since 3.1
|
---|
189 | */
|
---|
190 | protected PointValuePair optimizeInternal(int maxEval,
|
---|
191 | FUNC f,
|
---|
192 | GoalType goalType,
|
---|
193 | OptimizationData... optData)
|
---|
194 | throws TooManyEvaluationsException {
|
---|
195 | // Set internal state.
|
---|
196 | evaluations.setMaximalCount(maxEval);
|
---|
197 | evaluations.resetCount();
|
---|
198 | function = f;
|
---|
199 | goal = goalType;
|
---|
200 | // Retrieve other settings.
|
---|
201 | parseOptimizationData(optData);
|
---|
202 | // Check input consistency.
|
---|
203 | checkParameters();
|
---|
204 | // Perform computation.
|
---|
205 | return doOptimize();
|
---|
206 | }
|
---|
207 |
|
---|
208 | /**
|
---|
209 | * Scans the list of (required and optional) optimization data that
|
---|
210 | * characterize the problem.
|
---|
211 | *
|
---|
212 | * @param optData Optimization data. The following data will be looked for:
|
---|
213 | * <ul>
|
---|
214 | * <li>{@link InitialGuess}</li>
|
---|
215 | * <li>{@link SimpleBounds}</li>
|
---|
216 | * </ul>
|
---|
217 | */
|
---|
218 | private void parseOptimizationData(OptimizationData... optData) {
|
---|
219 | // The existing values (as set by the previous call) are reused if
|
---|
220 | // not provided in the argument list.
|
---|
221 | for (OptimizationData data : optData) {
|
---|
222 | if (data instanceof InitialGuess) {
|
---|
223 | start = ((InitialGuess) data).getInitialGuess();
|
---|
224 | continue;
|
---|
225 | }
|
---|
226 | if (data instanceof SimpleBounds) {
|
---|
227 | final SimpleBounds bounds = (SimpleBounds) data;
|
---|
228 | lowerBound = bounds.getLower();
|
---|
229 | upperBound = bounds.getUpper();
|
---|
230 | continue;
|
---|
231 | }
|
---|
232 | }
|
---|
233 | }
|
---|
234 |
|
---|
235 | /**
|
---|
236 | * @return the optimization type.
|
---|
237 | */
|
---|
238 | public GoalType getGoalType() {
|
---|
239 | return goal;
|
---|
240 | }
|
---|
241 |
|
---|
242 | /**
|
---|
243 | * @return the initial guess.
|
---|
244 | */
|
---|
245 | public double[] getStartPoint() {
|
---|
246 | return start == null ? null : start.clone();
|
---|
247 | }
|
---|
248 | /**
|
---|
249 | * @return the lower bounds.
|
---|
250 | * @since 3.1
|
---|
251 | */
|
---|
252 | public double[] getLowerBound() {
|
---|
253 | return lowerBound == null ? null : lowerBound.clone();
|
---|
254 | }
|
---|
255 | /**
|
---|
256 | * @return the upper bounds.
|
---|
257 | * @since 3.1
|
---|
258 | */
|
---|
259 | public double[] getUpperBound() {
|
---|
260 | return upperBound == null ? null : upperBound.clone();
|
---|
261 | }
|
---|
262 |
|
---|
263 | /**
|
---|
264 | * Perform the bulk of the optimization algorithm.
|
---|
265 | *
|
---|
266 | * @return the point/value pair giving the optimal value of the
|
---|
267 | * objective function.
|
---|
268 | */
|
---|
269 | protected abstract PointValuePair doOptimize();
|
---|
270 |
|
---|
271 | /**
|
---|
272 | * Check parameters consistency.
|
---|
273 | */
|
---|
274 | private void checkParameters() {
|
---|
275 | if (start != null) {
|
---|
276 | final int dim = start.length;
|
---|
277 | if (lowerBound != null) {
|
---|
278 | if (lowerBound.length != dim) {
|
---|
279 | throw new DimensionMismatchException(lowerBound.length, dim);
|
---|
280 | }
|
---|
281 | for (int i = 0; i < dim; i++) {
|
---|
282 | final double v = start[i];
|
---|
283 | final double lo = lowerBound[i];
|
---|
284 | if (v < lo) {
|
---|
285 | throw new NumberIsTooSmallException(v, lo, true);
|
---|
286 | }
|
---|
287 | }
|
---|
288 | }
|
---|
289 | if (upperBound != null) {
|
---|
290 | if (upperBound.length != dim) {
|
---|
291 | throw new DimensionMismatchException(upperBound.length, dim);
|
---|
292 | }
|
---|
293 | for (int i = 0; i < dim; i++) {
|
---|
294 | final double v = start[i];
|
---|
295 | final double hi = upperBound[i];
|
---|
296 | if (v > hi) {
|
---|
297 | throw new NumberIsTooLargeException(v, hi, true);
|
---|
298 | }
|
---|
299 | }
|
---|
300 | }
|
---|
301 |
|
---|
302 | // If the bounds were not specified, the allowed interval is
|
---|
303 | // assumed to be [-inf, +inf].
|
---|
304 | if (lowerBound == null) {
|
---|
305 | lowerBound = new double[dim];
|
---|
306 | for (int i = 0; i < dim; i++) {
|
---|
307 | lowerBound[i] = Double.NEGATIVE_INFINITY;
|
---|
308 | }
|
---|
309 | }
|
---|
310 | if (upperBound == null) {
|
---|
311 | upperBound = new double[dim];
|
---|
312 | for (int i = 0; i < dim; i++) {
|
---|
313 | upperBound[i] = Double.POSITIVE_INFINITY;
|
---|
314 | }
|
---|
315 | }
|
---|
316 | }
|
---|
317 | }
|
---|
318 | }
|
---|