1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.optimization;
|
---|
19 |
|
---|
20 | import java.util.Arrays;
|
---|
21 | import java.util.Comparator;
|
---|
22 |
|
---|
23 | import agents.anac.y2019.harddealer.math3.analysis.MultivariateVectorFunction;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.ConvergenceException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalStateException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
29 | import agents.anac.y2019.harddealer.math3.random.RandomVectorGenerator;
|
---|
30 |
|
---|
31 | /**
|
---|
32 | * Base class for all implementations of a multi-start optimizer.
|
---|
33 | *
|
---|
34 | * This interface is mainly intended to enforce the internal coherence of
|
---|
35 | * Commons-Math. Users of the API are advised to base their code on
|
---|
36 | * {@link DifferentiableMultivariateVectorMultiStartOptimizer}.
|
---|
37 | *
|
---|
38 | * @param <FUNC> Type of the objective function to be optimized.
|
---|
39 | *
|
---|
40 | * @deprecated As of 3.1 (to be removed in 4.0).
|
---|
41 | * @since 3.0
|
---|
42 | */
|
---|
43 | @Deprecated
|
---|
44 | public class BaseMultivariateVectorMultiStartOptimizer<FUNC extends MultivariateVectorFunction>
|
---|
45 | implements BaseMultivariateVectorOptimizer<FUNC> {
|
---|
46 | /** Underlying classical optimizer. */
|
---|
47 | private final BaseMultivariateVectorOptimizer<FUNC> optimizer;
|
---|
48 | /** Maximal number of evaluations allowed. */
|
---|
49 | private int maxEvaluations;
|
---|
50 | /** Number of evaluations already performed for all starts. */
|
---|
51 | private int totalEvaluations;
|
---|
52 | /** Number of starts to go. */
|
---|
53 | private int starts;
|
---|
54 | /** Random generator for multi-start. */
|
---|
55 | private RandomVectorGenerator generator;
|
---|
56 | /** Found optima. */
|
---|
57 | private PointVectorValuePair[] optima;
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Create a multi-start optimizer from a single-start optimizer.
|
---|
61 | *
|
---|
62 | * @param optimizer Single-start optimizer to wrap.
|
---|
63 | * @param starts Number of starts to perform. If {@code starts == 1},
|
---|
64 | * the {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[])
|
---|
65 | * optimize} will return the same solution as {@code optimizer} would.
|
---|
66 | * @param generator Random vector generator to use for restarts.
|
---|
67 | * @throws NullArgumentException if {@code optimizer} or {@code generator}
|
---|
68 | * is {@code null}.
|
---|
69 | * @throws NotStrictlyPositiveException if {@code starts < 1}.
|
---|
70 | */
|
---|
71 | protected BaseMultivariateVectorMultiStartOptimizer(final BaseMultivariateVectorOptimizer<FUNC> optimizer,
|
---|
72 | final int starts,
|
---|
73 | final RandomVectorGenerator generator) {
|
---|
74 | if (optimizer == null ||
|
---|
75 | generator == null) {
|
---|
76 | throw new NullArgumentException();
|
---|
77 | }
|
---|
78 | if (starts < 1) {
|
---|
79 | throw new NotStrictlyPositiveException(starts);
|
---|
80 | }
|
---|
81 |
|
---|
82 | this.optimizer = optimizer;
|
---|
83 | this.starts = starts;
|
---|
84 | this.generator = generator;
|
---|
85 | }
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * Get all the optima found during the last call to {@link
|
---|
89 | * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize}.
|
---|
90 | * The optimizer stores all the optima found during a set of
|
---|
91 | * restarts. The {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[])
|
---|
92 | * optimize} method returns the best point only. This method
|
---|
93 | * returns all the points found at the end of each starts, including
|
---|
94 | * the best one already returned by the {@link
|
---|
95 | * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method.
|
---|
96 | * <br/>
|
---|
97 | * The returned array as one element for each start as specified
|
---|
98 | * in the constructor. It is ordered with the results from the
|
---|
99 | * runs that did converge first, sorted from best to worst
|
---|
100 | * objective value (i.e. in ascending order if minimizing and in
|
---|
101 | * descending order if maximizing), followed by and null elements
|
---|
102 | * corresponding to the runs that did not converge. This means all
|
---|
103 | * elements will be null if the {@link
|
---|
104 | * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method did
|
---|
105 | * throw a {@link ConvergenceException}). This also means that if
|
---|
106 | * the first element is not {@code null}, it is the best point found
|
---|
107 | * across all starts.
|
---|
108 | *
|
---|
109 | * @return array containing the optima
|
---|
110 | * @throws MathIllegalStateException if {@link
|
---|
111 | * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} has not been
|
---|
112 | * called.
|
---|
113 | */
|
---|
114 | public PointVectorValuePair[] getOptima() {
|
---|
115 | if (optima == null) {
|
---|
116 | throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
|
---|
117 | }
|
---|
118 | return optima.clone();
|
---|
119 | }
|
---|
120 |
|
---|
121 | /** {@inheritDoc} */
|
---|
122 | public int getMaxEvaluations() {
|
---|
123 | return maxEvaluations;
|
---|
124 | }
|
---|
125 |
|
---|
126 | /** {@inheritDoc} */
|
---|
127 | public int getEvaluations() {
|
---|
128 | return totalEvaluations;
|
---|
129 | }
|
---|
130 |
|
---|
131 | /** {@inheritDoc} */
|
---|
132 | public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker() {
|
---|
133 | return optimizer.getConvergenceChecker();
|
---|
134 | }
|
---|
135 |
|
---|
136 | /**
|
---|
137 | * {@inheritDoc}
|
---|
138 | */
|
---|
139 | public PointVectorValuePair optimize(int maxEval, final FUNC f,
|
---|
140 | double[] target, double[] weights,
|
---|
141 | double[] startPoint) {
|
---|
142 | maxEvaluations = maxEval;
|
---|
143 | RuntimeException lastException = null;
|
---|
144 | optima = new PointVectorValuePair[starts];
|
---|
145 | totalEvaluations = 0;
|
---|
146 |
|
---|
147 | // Multi-start loop.
|
---|
148 | for (int i = 0; i < starts; ++i) {
|
---|
149 |
|
---|
150 | // CHECKSTYLE: stop IllegalCatch
|
---|
151 | try {
|
---|
152 | optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, target, weights,
|
---|
153 | i == 0 ? startPoint : generator.nextVector());
|
---|
154 | } catch (ConvergenceException oe) {
|
---|
155 | optima[i] = null;
|
---|
156 | } catch (RuntimeException mue) {
|
---|
157 | lastException = mue;
|
---|
158 | optima[i] = null;
|
---|
159 | }
|
---|
160 | // CHECKSTYLE: resume IllegalCatch
|
---|
161 |
|
---|
162 | totalEvaluations += optimizer.getEvaluations();
|
---|
163 | }
|
---|
164 |
|
---|
165 | sortPairs(target, weights);
|
---|
166 |
|
---|
167 | if (optima[0] == null) {
|
---|
168 | throw lastException; // cannot be null if starts >=1
|
---|
169 | }
|
---|
170 |
|
---|
171 | // Return the found point given the best objective function value.
|
---|
172 | return optima[0];
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Sort the optima from best to worst, followed by {@code null} elements.
|
---|
177 | *
|
---|
178 | * @param target Target value for the objective functions at optimum.
|
---|
179 | * @param weights Weights for the least-squares cost computation.
|
---|
180 | */
|
---|
181 | private void sortPairs(final double[] target,
|
---|
182 | final double[] weights) {
|
---|
183 | Arrays.sort(optima, new Comparator<PointVectorValuePair>() {
|
---|
184 | /** {@inheritDoc} */
|
---|
185 | public int compare(final PointVectorValuePair o1,
|
---|
186 | final PointVectorValuePair o2) {
|
---|
187 | if (o1 == null) {
|
---|
188 | return (o2 == null) ? 0 : 1;
|
---|
189 | } else if (o2 == null) {
|
---|
190 | return -1;
|
---|
191 | }
|
---|
192 | return Double.compare(weightedResidual(o1), weightedResidual(o2));
|
---|
193 | }
|
---|
194 | private double weightedResidual(final PointVectorValuePair pv) {
|
---|
195 | final double[] value = pv.getValueRef();
|
---|
196 | double sum = 0;
|
---|
197 | for (int i = 0; i < value.length; ++i) {
|
---|
198 | final double ri = value[i] - target[i];
|
---|
199 | sum += weights[i] * ri * ri;
|
---|
200 | }
|
---|
201 | return sum;
|
---|
202 | }
|
---|
203 | });
|
---|
204 | }
|
---|
205 | }
|
---|