1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.optimization;
|
---|
19 |
|
---|
20 | import java.util.Arrays;
|
---|
21 | import java.util.Comparator;
|
---|
22 |
|
---|
23 | import agents.anac.y2019.harddealer.math3.analysis.MultivariateFunction;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalStateException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
28 | import agents.anac.y2019.harddealer.math3.random.RandomVectorGenerator;
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Base class for all implementations of a multi-start optimizer.
|
---|
32 | *
|
---|
33 | * This interface is mainly intended to enforce the internal coherence of
|
---|
34 | * Commons-Math. Users of the API are advised to base their code on
|
---|
35 | * {@link MultivariateMultiStartOptimizer} or on
|
---|
36 | * {@link DifferentiableMultivariateMultiStartOptimizer}.
|
---|
37 | *
|
---|
38 | * @param <FUNC> Type of the objective function to be optimized.
|
---|
39 | *
|
---|
40 | * @deprecated As of 3.1 (to be removed in 4.0).
|
---|
41 | * @since 3.0
|
---|
42 | */
|
---|
43 | @Deprecated
|
---|
44 | public class BaseMultivariateMultiStartOptimizer<FUNC extends MultivariateFunction>
|
---|
45 | implements BaseMultivariateOptimizer<FUNC> {
|
---|
46 | /** Underlying classical optimizer. */
|
---|
47 | private final BaseMultivariateOptimizer<FUNC> optimizer;
|
---|
48 | /** Maximal number of evaluations allowed. */
|
---|
49 | private int maxEvaluations;
|
---|
50 | /** Number of evaluations already performed for all starts. */
|
---|
51 | private int totalEvaluations;
|
---|
52 | /** Number of starts to go. */
|
---|
53 | private int starts;
|
---|
54 | /** Random generator for multi-start. */
|
---|
55 | private RandomVectorGenerator generator;
|
---|
56 | /** Found optima. */
|
---|
57 | private PointValuePair[] optima;
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Create a multi-start optimizer from a single-start optimizer.
|
---|
61 | *
|
---|
62 | * @param optimizer Single-start optimizer to wrap.
|
---|
63 | * @param starts Number of starts to perform. If {@code starts == 1},
|
---|
64 | * the {@link #optimize(int,MultivariateFunction,GoalType,double[])
|
---|
65 | * optimize} will return the same solution as {@code optimizer} would.
|
---|
66 | * @param generator Random vector generator to use for restarts.
|
---|
67 | * @throws NullArgumentException if {@code optimizer} or {@code generator}
|
---|
68 | * is {@code null}.
|
---|
69 | * @throws NotStrictlyPositiveException if {@code starts < 1}.
|
---|
70 | */
|
---|
71 | protected BaseMultivariateMultiStartOptimizer(final BaseMultivariateOptimizer<FUNC> optimizer,
|
---|
72 | final int starts,
|
---|
73 | final RandomVectorGenerator generator) {
|
---|
74 | if (optimizer == null ||
|
---|
75 | generator == null) {
|
---|
76 | throw new NullArgumentException();
|
---|
77 | }
|
---|
78 | if (starts < 1) {
|
---|
79 | throw new NotStrictlyPositiveException(starts);
|
---|
80 | }
|
---|
81 |
|
---|
82 | this.optimizer = optimizer;
|
---|
83 | this.starts = starts;
|
---|
84 | this.generator = generator;
|
---|
85 | }
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * Get all the optima found during the last call to {@link
|
---|
89 | * #optimize(int,MultivariateFunction,GoalType,double[]) optimize}.
|
---|
90 | * The optimizer stores all the optima found during a set of
|
---|
91 | * restarts. The {@link #optimize(int,MultivariateFunction,GoalType,double[])
|
---|
92 | * optimize} method returns the best point only. This method
|
---|
93 | * returns all the points found at the end of each starts,
|
---|
94 | * including the best one already returned by the {@link
|
---|
95 | * #optimize(int,MultivariateFunction,GoalType,double[]) optimize} method.
|
---|
96 | * <br/>
|
---|
97 | * The returned array as one element for each start as specified
|
---|
98 | * in the constructor. It is ordered with the results from the
|
---|
99 | * runs that did converge first, sorted from best to worst
|
---|
100 | * objective value (i.e in ascending order if minimizing and in
|
---|
101 | * descending order if maximizing), followed by and null elements
|
---|
102 | * corresponding to the runs that did not converge. This means all
|
---|
103 | * elements will be null if the {@link #optimize(int,MultivariateFunction,GoalType,double[])
|
---|
104 | * optimize} method did throw an exception.
|
---|
105 | * This also means that if the first element is not {@code null}, it
|
---|
106 | * is the best point found across all starts.
|
---|
107 | *
|
---|
108 | * @return an array containing the optima.
|
---|
109 | * @throws MathIllegalStateException if {@link
|
---|
110 | * #optimize(int,MultivariateFunction,GoalType,double[]) optimize}
|
---|
111 | * has not been called.
|
---|
112 | */
|
---|
113 | public PointValuePair[] getOptima() {
|
---|
114 | if (optima == null) {
|
---|
115 | throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
|
---|
116 | }
|
---|
117 | return optima.clone();
|
---|
118 | }
|
---|
119 |
|
---|
120 | /** {@inheritDoc} */
|
---|
121 | public int getMaxEvaluations() {
|
---|
122 | return maxEvaluations;
|
---|
123 | }
|
---|
124 |
|
---|
125 | /** {@inheritDoc} */
|
---|
126 | public int getEvaluations() {
|
---|
127 | return totalEvaluations;
|
---|
128 | }
|
---|
129 |
|
---|
130 | /** {@inheritDoc} */
|
---|
131 | public ConvergenceChecker<PointValuePair> getConvergenceChecker() {
|
---|
132 | return optimizer.getConvergenceChecker();
|
---|
133 | }
|
---|
134 |
|
---|
135 | /**
|
---|
136 | * {@inheritDoc}
|
---|
137 | */
|
---|
138 | public PointValuePair optimize(int maxEval, final FUNC f,
|
---|
139 | final GoalType goal,
|
---|
140 | double[] startPoint) {
|
---|
141 | maxEvaluations = maxEval;
|
---|
142 | RuntimeException lastException = null;
|
---|
143 | optima = new PointValuePair[starts];
|
---|
144 | totalEvaluations = 0;
|
---|
145 |
|
---|
146 | // Multi-start loop.
|
---|
147 | for (int i = 0; i < starts; ++i) {
|
---|
148 | // CHECKSTYLE: stop IllegalCatch
|
---|
149 | try {
|
---|
150 | optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, goal,
|
---|
151 | i == 0 ? startPoint : generator.nextVector());
|
---|
152 | } catch (RuntimeException mue) {
|
---|
153 | lastException = mue;
|
---|
154 | optima[i] = null;
|
---|
155 | }
|
---|
156 | // CHECKSTYLE: resume IllegalCatch
|
---|
157 |
|
---|
158 | totalEvaluations += optimizer.getEvaluations();
|
---|
159 | }
|
---|
160 |
|
---|
161 | sortPairs(goal);
|
---|
162 |
|
---|
163 | if (optima[0] == null) {
|
---|
164 | throw lastException; // cannot be null if starts >=1
|
---|
165 | }
|
---|
166 |
|
---|
167 | // Return the found point given the best objective function value.
|
---|
168 | return optima[0];
|
---|
169 | }
|
---|
170 |
|
---|
171 | /**
|
---|
172 | * Sort the optima from best to worst, followed by {@code null} elements.
|
---|
173 | *
|
---|
174 | * @param goal Goal type.
|
---|
175 | */
|
---|
176 | private void sortPairs(final GoalType goal) {
|
---|
177 | Arrays.sort(optima, new Comparator<PointValuePair>() {
|
---|
178 | /** {@inheritDoc} */
|
---|
179 | public int compare(final PointValuePair o1,
|
---|
180 | final PointValuePair o2) {
|
---|
181 | if (o1 == null) {
|
---|
182 | return (o2 == null) ? 0 : 1;
|
---|
183 | } else if (o2 == null) {
|
---|
184 | return -1;
|
---|
185 | }
|
---|
186 | final double v1 = o1.getValue();
|
---|
187 | final double v2 = o2.getValue();
|
---|
188 | return (goal == GoalType.MINIMIZE) ?
|
---|
189 | Double.compare(v1, v2) : Double.compare(v2, v1);
|
---|
190 | }
|
---|
191 | });
|
---|
192 | }
|
---|
193 | }
|
---|