1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.optim.univariate;
|
---|
19 |
|
---|
20 | import java.util.Arrays;
|
---|
21 | import java.util.Comparator;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalStateException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
25 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
26 | import agents.anac.y2019.harddealer.math3.optim.MaxEval;
|
---|
27 | import agents.anac.y2019.harddealer.math3.optim.nonlinear.scalar.GoalType;
|
---|
28 | import agents.anac.y2019.harddealer.math3.optim.OptimizationData;
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * Special implementation of the {@link UnivariateOptimizer} interface
|
---|
32 | * adding multi-start features to an existing optimizer.
|
---|
33 | * <br/>
|
---|
34 | * This class wraps an optimizer in order to use it several times in
|
---|
35 | * turn with different starting points (trying to avoid being trapped
|
---|
36 | * in a local extremum when looking for a global one).
|
---|
37 | *
|
---|
38 | * @since 3.0
|
---|
39 | */
|
---|
40 | public class MultiStartUnivariateOptimizer
|
---|
41 | extends UnivariateOptimizer {
|
---|
42 | /** Underlying classical optimizer. */
|
---|
43 | private final UnivariateOptimizer optimizer;
|
---|
44 | /** Number of evaluations already performed for all starts. */
|
---|
45 | private int totalEvaluations;
|
---|
46 | /** Number of starts to go. */
|
---|
47 | private int starts;
|
---|
48 | /** Random generator for multi-start. */
|
---|
49 | private RandomGenerator generator;
|
---|
50 | /** Found optima. */
|
---|
51 | private UnivariatePointValuePair[] optima;
|
---|
52 | /** Optimization data. */
|
---|
53 | private OptimizationData[] optimData;
|
---|
54 | /**
|
---|
55 | * Location in {@link #optimData} where the updated maximum
|
---|
56 | * number of evaluations will be stored.
|
---|
57 | */
|
---|
58 | private int maxEvalIndex = -1;
|
---|
59 | /**
|
---|
60 | * Location in {@link #optimData} where the updated start value
|
---|
61 | * will be stored.
|
---|
62 | */
|
---|
63 | private int searchIntervalIndex = -1;
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * Create a multi-start optimizer from a single-start optimizer.
|
---|
67 | *
|
---|
68 | * @param optimizer Single-start optimizer to wrap.
|
---|
69 | * @param starts Number of starts to perform. If {@code starts == 1},
|
---|
70 | * the {@code optimize} methods will return the same solution as
|
---|
71 | * {@code optimizer} would.
|
---|
72 | * @param generator Random generator to use for restarts.
|
---|
73 | * @throws NotStrictlyPositiveException if {@code starts < 1}.
|
---|
74 | */
|
---|
75 | public MultiStartUnivariateOptimizer(final UnivariateOptimizer optimizer,
|
---|
76 | final int starts,
|
---|
77 | final RandomGenerator generator) {
|
---|
78 | super(optimizer.getConvergenceChecker());
|
---|
79 |
|
---|
80 | if (starts < 1) {
|
---|
81 | throw new NotStrictlyPositiveException(starts);
|
---|
82 | }
|
---|
83 |
|
---|
84 | this.optimizer = optimizer;
|
---|
85 | this.starts = starts;
|
---|
86 | this.generator = generator;
|
---|
87 | }
|
---|
88 |
|
---|
89 | /** {@inheritDoc} */
|
---|
90 | @Override
|
---|
91 | public int getEvaluations() {
|
---|
92 | return totalEvaluations;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * Gets all the optima found during the last call to {@code optimize}.
|
---|
97 | * The optimizer stores all the optima found during a set of
|
---|
98 | * restarts. The {@code optimize} method returns the best point only.
|
---|
99 | * This method returns all the points found at the end of each starts,
|
---|
100 | * including the best one already returned by the {@code optimize} method.
|
---|
101 | * <br/>
|
---|
102 | * The returned array as one element for each start as specified
|
---|
103 | * in the constructor. It is ordered with the results from the
|
---|
104 | * runs that did converge first, sorted from best to worst
|
---|
105 | * objective value (i.e in ascending order if minimizing and in
|
---|
106 | * descending order if maximizing), followed by {@code null} elements
|
---|
107 | * corresponding to the runs that did not converge. This means all
|
---|
108 | * elements will be {@code null} if the {@code optimize} method did throw
|
---|
109 | * an exception.
|
---|
110 | * This also means that if the first element is not {@code null}, it is
|
---|
111 | * the best point found across all starts.
|
---|
112 | *
|
---|
113 | * @return an array containing the optima.
|
---|
114 | * @throws MathIllegalStateException if {@link #optimize(OptimizationData[])
|
---|
115 | * optimize} has not been called.
|
---|
116 | */
|
---|
117 | public UnivariatePointValuePair[] getOptima() {
|
---|
118 | if (optima == null) {
|
---|
119 | throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
|
---|
120 | }
|
---|
121 | return optima.clone();
|
---|
122 | }
|
---|
123 |
|
---|
124 | /**
|
---|
125 | * {@inheritDoc}
|
---|
126 | *
|
---|
127 | * @throws MathIllegalStateException if {@code optData} does not contain an
|
---|
128 | * instance of {@link MaxEval} or {@link SearchInterval}.
|
---|
129 | */
|
---|
130 | @Override
|
---|
131 | public UnivariatePointValuePair optimize(OptimizationData... optData) {
|
---|
132 | // Store arguments in order to pass them to the internal optimizer.
|
---|
133 | optimData = optData;
|
---|
134 | // Set up base class and perform computations.
|
---|
135 | return super.optimize(optData);
|
---|
136 | }
|
---|
137 |
|
---|
138 | /** {@inheritDoc} */
|
---|
139 | @Override
|
---|
140 | protected UnivariatePointValuePair doOptimize() {
|
---|
141 | // Remove all instances of "MaxEval" and "SearchInterval" from the
|
---|
142 | // array that will be passed to the internal optimizer.
|
---|
143 | // The former is to enforce smaller numbers of allowed evaluations
|
---|
144 | // (according to how many have been used up already), and the latter
|
---|
145 | // to impose a different start value for each start.
|
---|
146 | for (int i = 0; i < optimData.length; i++) {
|
---|
147 | if (optimData[i] instanceof MaxEval) {
|
---|
148 | optimData[i] = null;
|
---|
149 | maxEvalIndex = i;
|
---|
150 | continue;
|
---|
151 | }
|
---|
152 | if (optimData[i] instanceof SearchInterval) {
|
---|
153 | optimData[i] = null;
|
---|
154 | searchIntervalIndex = i;
|
---|
155 | continue;
|
---|
156 | }
|
---|
157 | }
|
---|
158 | if (maxEvalIndex == -1) {
|
---|
159 | throw new MathIllegalStateException();
|
---|
160 | }
|
---|
161 | if (searchIntervalIndex == -1) {
|
---|
162 | throw new MathIllegalStateException();
|
---|
163 | }
|
---|
164 |
|
---|
165 | RuntimeException lastException = null;
|
---|
166 | optima = new UnivariatePointValuePair[starts];
|
---|
167 | totalEvaluations = 0;
|
---|
168 |
|
---|
169 | final int maxEval = getMaxEvaluations();
|
---|
170 | final double min = getMin();
|
---|
171 | final double max = getMax();
|
---|
172 | final double startValue = getStartValue();
|
---|
173 |
|
---|
174 | // Multi-start loop.
|
---|
175 | for (int i = 0; i < starts; i++) {
|
---|
176 | // CHECKSTYLE: stop IllegalCatch
|
---|
177 | try {
|
---|
178 | // Decrease number of allowed evaluations.
|
---|
179 | optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
|
---|
180 | // New start value.
|
---|
181 | final double s = (i == 0) ?
|
---|
182 | startValue :
|
---|
183 | min + generator.nextDouble() * (max - min);
|
---|
184 | optimData[searchIntervalIndex] = new SearchInterval(min, max, s);
|
---|
185 | // Optimize.
|
---|
186 | optima[i] = optimizer.optimize(optimData);
|
---|
187 | } catch (RuntimeException mue) {
|
---|
188 | lastException = mue;
|
---|
189 | optima[i] = null;
|
---|
190 | }
|
---|
191 | // CHECKSTYLE: resume IllegalCatch
|
---|
192 |
|
---|
193 | totalEvaluations += optimizer.getEvaluations();
|
---|
194 | }
|
---|
195 |
|
---|
196 | sortPairs(getGoalType());
|
---|
197 |
|
---|
198 | if (optima[0] == null) {
|
---|
199 | throw lastException; // Cannot be null if starts >= 1.
|
---|
200 | }
|
---|
201 |
|
---|
202 | // Return the point with the best objective function value.
|
---|
203 | return optima[0];
|
---|
204 | }
|
---|
205 |
|
---|
206 | /**
|
---|
207 | * Sort the optima from best to worst, followed by {@code null} elements.
|
---|
208 | *
|
---|
209 | * @param goal Goal type.
|
---|
210 | */
|
---|
211 | private void sortPairs(final GoalType goal) {
|
---|
212 | Arrays.sort(optima, new Comparator<UnivariatePointValuePair>() {
|
---|
213 | /** {@inheritDoc} */
|
---|
214 | public int compare(final UnivariatePointValuePair o1,
|
---|
215 | final UnivariatePointValuePair o2) {
|
---|
216 | if (o1 == null) {
|
---|
217 | return (o2 == null) ? 0 : 1;
|
---|
218 | } else if (o2 == null) {
|
---|
219 | return -1;
|
---|
220 | }
|
---|
221 | final double v1 = o1.getValue();
|
---|
222 | final double v2 = o2.getValue();
|
---|
223 | return (goal == GoalType.MINIMIZE) ?
|
---|
224 | Double.compare(v1, v2) : Double.compare(v2, v1);
|
---|
225 | }
|
---|
226 | });
|
---|
227 | }
|
---|
228 | }
|
---|