source: src/main/java/agents/anac/y2019/harddealer/math3/optim/univariate/MultiStartUnivariateOptimizer.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 8.8 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package agents.anac.y2019.harddealer.math3.optim.univariate;
19
20import java.util.Arrays;
21import java.util.Comparator;
22import agents.anac.y2019.harddealer.math3.exception.MathIllegalStateException;
23import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
24import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
25import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
26import agents.anac.y2019.harddealer.math3.optim.MaxEval;
27import agents.anac.y2019.harddealer.math3.optim.nonlinear.scalar.GoalType;
28import agents.anac.y2019.harddealer.math3.optim.OptimizationData;
29
30/**
31 * Special implementation of the {@link UnivariateOptimizer} interface
32 * adding multi-start features to an existing optimizer.
33 * <br/>
34 * This class wraps an optimizer in order to use it several times in
35 * turn with different starting points (trying to avoid being trapped
36 * in a local extremum when looking for a global one).
37 *
38 * @since 3.0
39 */
40public class MultiStartUnivariateOptimizer
41 extends UnivariateOptimizer {
42 /** Underlying classical optimizer. */
43 private final UnivariateOptimizer optimizer;
44 /** Number of evaluations already performed for all starts. */
45 private int totalEvaluations;
46 /** Number of starts to go. */
47 private int starts;
48 /** Random generator for multi-start. */
49 private RandomGenerator generator;
50 /** Found optima. */
51 private UnivariatePointValuePair[] optima;
52 /** Optimization data. */
53 private OptimizationData[] optimData;
54 /**
55 * Location in {@link #optimData} where the updated maximum
56 * number of evaluations will be stored.
57 */
58 private int maxEvalIndex = -1;
59 /**
60 * Location in {@link #optimData} where the updated start value
61 * will be stored.
62 */
63 private int searchIntervalIndex = -1;
64
65 /**
66 * Create a multi-start optimizer from a single-start optimizer.
67 *
68 * @param optimizer Single-start optimizer to wrap.
69 * @param starts Number of starts to perform. If {@code starts == 1},
70 * the {@code optimize} methods will return the same solution as
71 * {@code optimizer} would.
72 * @param generator Random generator to use for restarts.
73 * @throws NotStrictlyPositiveException if {@code starts < 1}.
74 */
75 public MultiStartUnivariateOptimizer(final UnivariateOptimizer optimizer,
76 final int starts,
77 final RandomGenerator generator) {
78 super(optimizer.getConvergenceChecker());
79
80 if (starts < 1) {
81 throw new NotStrictlyPositiveException(starts);
82 }
83
84 this.optimizer = optimizer;
85 this.starts = starts;
86 this.generator = generator;
87 }
88
89 /** {@inheritDoc} */
90 @Override
91 public int getEvaluations() {
92 return totalEvaluations;
93 }
94
95 /**
96 * Gets all the optima found during the last call to {@code optimize}.
97 * The optimizer stores all the optima found during a set of
98 * restarts. The {@code optimize} method returns the best point only.
99 * This method returns all the points found at the end of each starts,
100 * including the best one already returned by the {@code optimize} method.
101 * <br/>
102 * The returned array as one element for each start as specified
103 * in the constructor. It is ordered with the results from the
104 * runs that did converge first, sorted from best to worst
105 * objective value (i.e in ascending order if minimizing and in
106 * descending order if maximizing), followed by {@code null} elements
107 * corresponding to the runs that did not converge. This means all
108 * elements will be {@code null} if the {@code optimize} method did throw
109 * an exception.
110 * This also means that if the first element is not {@code null}, it is
111 * the best point found across all starts.
112 *
113 * @return an array containing the optima.
114 * @throws MathIllegalStateException if {@link #optimize(OptimizationData[])
115 * optimize} has not been called.
116 */
117 public UnivariatePointValuePair[] getOptima() {
118 if (optima == null) {
119 throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
120 }
121 return optima.clone();
122 }
123
124 /**
125 * {@inheritDoc}
126 *
127 * @throws MathIllegalStateException if {@code optData} does not contain an
128 * instance of {@link MaxEval} or {@link SearchInterval}.
129 */
130 @Override
131 public UnivariatePointValuePair optimize(OptimizationData... optData) {
132 // Store arguments in order to pass them to the internal optimizer.
133 optimData = optData;
134 // Set up base class and perform computations.
135 return super.optimize(optData);
136 }
137
138 /** {@inheritDoc} */
139 @Override
140 protected UnivariatePointValuePair doOptimize() {
141 // Remove all instances of "MaxEval" and "SearchInterval" from the
142 // array that will be passed to the internal optimizer.
143 // The former is to enforce smaller numbers of allowed evaluations
144 // (according to how many have been used up already), and the latter
145 // to impose a different start value for each start.
146 for (int i = 0; i < optimData.length; i++) {
147 if (optimData[i] instanceof MaxEval) {
148 optimData[i] = null;
149 maxEvalIndex = i;
150 continue;
151 }
152 if (optimData[i] instanceof SearchInterval) {
153 optimData[i] = null;
154 searchIntervalIndex = i;
155 continue;
156 }
157 }
158 if (maxEvalIndex == -1) {
159 throw new MathIllegalStateException();
160 }
161 if (searchIntervalIndex == -1) {
162 throw new MathIllegalStateException();
163 }
164
165 RuntimeException lastException = null;
166 optima = new UnivariatePointValuePair[starts];
167 totalEvaluations = 0;
168
169 final int maxEval = getMaxEvaluations();
170 final double min = getMin();
171 final double max = getMax();
172 final double startValue = getStartValue();
173
174 // Multi-start loop.
175 for (int i = 0; i < starts; i++) {
176 // CHECKSTYLE: stop IllegalCatch
177 try {
178 // Decrease number of allowed evaluations.
179 optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
180 // New start value.
181 final double s = (i == 0) ?
182 startValue :
183 min + generator.nextDouble() * (max - min);
184 optimData[searchIntervalIndex] = new SearchInterval(min, max, s);
185 // Optimize.
186 optima[i] = optimizer.optimize(optimData);
187 } catch (RuntimeException mue) {
188 lastException = mue;
189 optima[i] = null;
190 }
191 // CHECKSTYLE: resume IllegalCatch
192
193 totalEvaluations += optimizer.getEvaluations();
194 }
195
196 sortPairs(getGoalType());
197
198 if (optima[0] == null) {
199 throw lastException; // Cannot be null if starts >= 1.
200 }
201
202 // Return the point with the best objective function value.
203 return optima[0];
204 }
205
206 /**
207 * Sort the optima from best to worst, followed by {@code null} elements.
208 *
209 * @param goal Goal type.
210 */
211 private void sortPairs(final GoalType goal) {
212 Arrays.sort(optima, new Comparator<UnivariatePointValuePair>() {
213 /** {@inheritDoc} */
214 public int compare(final UnivariatePointValuePair o1,
215 final UnivariatePointValuePair o2) {
216 if (o1 == null) {
217 return (o2 == null) ? 0 : 1;
218 } else if (o2 == null) {
219 return -1;
220 }
221 final double v1 = o1.getValue();
222 final double v2 = o2.getValue();
223 return (goal == GoalType.MINIMIZE) ?
224 Double.compare(v1, v2) : Double.compare(v2, v1);
225 }
226 });
227 }
228}
Note: See TracBrowser for help on using the repository browser.