source: src/main/java/agents/anac/y2019/harddealer/math3/ode/FieldExpandableODE.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 6.2 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.anac.y2019.harddealer.math3.ode;
18
19import java.util.ArrayList;
20import java.util.List;
21
22import agents.anac.y2019.harddealer.math3.RealFieldElement;
23import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
24import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
25import agents.anac.y2019.harddealer.math3.util.MathArrays;
26
27
28/**
29 * This class represents a combined set of first order differential equations,
30 * with at least a primary set of equations expandable by some sets of secondary
31 * equations.
32 * <p>
33 * One typical use case is the computation of the Jacobian matrix for some ODE.
34 * In this case, the primary set of equations corresponds to the raw ODE, and we
35 * add to this set another bunch of secondary equations which represent the Jacobian
36 * matrix of the primary set.
37 * </p>
38 * <p>
39 * We want the integrator to use <em>only</em> the primary set to estimate the
40 * errors and hence the step sizes. It should <em>not</em> use the secondary
41 * equations in this computation. The {@link FirstOrderFieldIntegrator integrator} will
42 * be able to know where the primary set ends and so where the secondary sets begin.
43 * </p>
44 *
45 * @see FirstOrderFieldDifferentialEquations
46 * @see FieldSecondaryEquations
47 *
48 * @param <T> the type of the field elements
49 * @since 3.6
50 */
51
52public class FieldExpandableODE<T extends RealFieldElement<T>> {
53
54 /** Primary differential equation. */
55 private final FirstOrderFieldDifferentialEquations<T> primary;
56
57 /** Components of the expandable ODE. */
58 private List<FieldSecondaryEquations<T>> components;
59
60 /** Mapper for all equations. */
61 private FieldEquationsMapper<T> mapper;
62
63 /** Build an expandable set from its primary ODE set.
64 * @param primary the primary set of differential equations to be integrated.
65 */
66 public FieldExpandableODE(final FirstOrderFieldDifferentialEquations<T> primary) {
67 this.primary = primary;
68 this.components = new ArrayList<FieldSecondaryEquations<T>>();
69 this.mapper = new FieldEquationsMapper<T>(null, primary.getDimension());
70 }
71
72 /** Get the mapper for the set of equations.
73 * @return mapper for the set of equations
74 */
75 public FieldEquationsMapper<T> getMapper() {
76 return mapper;
77 }
78
79 /** Add a set of secondary equations to be integrated along with the primary set.
80 * @param secondary secondary equations set
81 * @return index of the secondary equation in the expanded state, to be used
82 * as the parameter to {@link FieldODEState#getSecondaryState(int)} and
83 * {@link FieldODEStateAndDerivative#getSecondaryDerivative(int)} (beware index
84 * 0 corresponds to main state, additional states start at 1)
85 */
86 public int addSecondaryEquations(final FieldSecondaryEquations<T> secondary) {
87
88 components.add(secondary);
89 mapper = new FieldEquationsMapper<T>(mapper, secondary.getDimension());
90
91 return components.size();
92
93 }
94
95 /** Initialize equations at the start of an ODE integration.
96 * @param t0 value of the independent <I>time</I> variable at integration start
97 * @param y0 array containing the value of the state vector at integration start
98 * @param finalTime target time for the integration
99 * @exception MaxCountExceededException if the number of functions evaluations is exceeded
100 * @exception DimensionMismatchException if arrays dimensions do not match equations settings
101 */
102 public void init(final T t0, final T[] y0, final T finalTime) {
103
104 // initialize primary equations
105 int index = 0;
106 final T[] primary0 = mapper.extractEquationData(index, y0);
107 primary.init(t0, primary0, finalTime);
108
109 // initialize secondary equations
110 while (++index < mapper.getNumberOfEquations()) {
111 final T[] secondary0 = mapper.extractEquationData(index, y0);
112 components.get(index - 1).init(t0, primary0, secondary0, finalTime);
113 }
114
115 }
116
117 /** Get the current time derivative of the complete state vector.
118 * @param t current value of the independent <I>time</I> variable
119 * @param y array containing the current value of the complete state vector
120 * @return time derivative of the complete state vector
121 * @exception MaxCountExceededException if the number of functions evaluations is exceeded
122 * @exception DimensionMismatchException if arrays dimensions do not match equations settings
123 */
124 public T[] computeDerivatives(final T t, final T[] y)
125 throws MaxCountExceededException, DimensionMismatchException {
126
127 final T[] yDot = MathArrays.buildArray(t.getField(), mapper.getTotalDimension());
128
129 // compute derivatives of the primary equations
130 int index = 0;
131 final T[] primaryState = mapper.extractEquationData(index, y);
132 final T[] primaryStateDot = primary.computeDerivatives(t, primaryState);
133 mapper.insertEquationData(index, primaryStateDot, yDot);
134
135 // Add contribution for secondary equations
136 while (++index < mapper.getNumberOfEquations()) {
137 final T[] componentState = mapper.extractEquationData(index, y);
138 final T[] componentStateDot = components.get(index - 1).computeDerivatives(t, primaryState, primaryStateDot,
139 componentState);
140 mapper.insertEquationData(index, componentStateDot, yDot);
141 }
142
143 return yDot;
144
145 }
146
147}
Note: See TracBrowser for help on using the repository browser.