1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.ode;
|
---|
19 |
|
---|
20 | import java.io.Serializable;
|
---|
21 | import java.util.ArrayList;
|
---|
22 | import java.util.List;
|
---|
23 |
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalArgumentException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
28 | import agents.anac.y2019.harddealer.math3.ode.sampling.StepHandler;
|
---|
29 | import agents.anac.y2019.harddealer.math3.ode.sampling.StepInterpolator;
|
---|
30 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * This class stores all information provided by an ODE integrator
|
---|
34 | * during the integration process and build a continuous model of the
|
---|
35 | * solution from this.
|
---|
36 | *
|
---|
37 | * <p>This class act as a step handler from the integrator point of
|
---|
38 | * view. It is called iteratively during the integration process and
|
---|
39 | * stores a copy of all steps information in a sorted collection for
|
---|
40 | * later use. Once the integration process is over, the user can use
|
---|
41 | * the {@link #setInterpolatedTime setInterpolatedTime} and {@link
|
---|
42 | * #getInterpolatedState getInterpolatedState} to retrieve this
|
---|
43 | * information at any time. It is important to wait for the
|
---|
44 | * integration to be over before attempting to call {@link
|
---|
45 | * #setInterpolatedTime setInterpolatedTime} because some internal
|
---|
46 | * variables are set only once the last step has been handled.</p>
|
---|
47 | *
|
---|
48 | * <p>This is useful for example if the main loop of the user
|
---|
49 | * application should remain independent from the integration process
|
---|
50 | * or if one needs to mimic the behaviour of an analytical model
|
---|
51 | * despite a numerical model is used (i.e. one needs the ability to
|
---|
52 | * get the model value at any time or to navigate through the
|
---|
53 | * data).</p>
|
---|
54 | *
|
---|
55 | * <p>If problem modeling is done with several separate
|
---|
56 | * integration phases for contiguous intervals, the same
|
---|
57 | * ContinuousOutputModel can be used as step handler for all
|
---|
58 | * integration phases as long as they are performed in order and in
|
---|
59 | * the same direction. As an example, one can extrapolate the
|
---|
60 | * trajectory of a satellite with one model (i.e. one set of
|
---|
61 | * differential equations) up to the beginning of a maneuver, use
|
---|
62 | * another more complex model including thrusters modeling and
|
---|
63 | * accurate attitude control during the maneuver, and revert to the
|
---|
64 | * first model after the end of the maneuver. If the same continuous
|
---|
65 | * output model handles the steps of all integration phases, the user
|
---|
66 | * do not need to bother when the maneuver begins or ends, he has all
|
---|
67 | * the data available in a transparent manner.</p>
|
---|
68 | *
|
---|
69 | * <p>An important feature of this class is that it implements the
|
---|
70 | * <code>Serializable</code> interface. This means that the result of
|
---|
71 | * an integration can be serialized and reused later (if stored into a
|
---|
72 | * persistent medium like a filesystem or a database) or elsewhere (if
|
---|
73 | * sent to another application). Only the result of the integration is
|
---|
74 | * stored, there is no reference to the integrated problem by
|
---|
75 | * itself.</p>
|
---|
76 | *
|
---|
77 | * <p>One should be aware that the amount of data stored in a
|
---|
78 | * ContinuousOutputModel instance can be important if the state vector
|
---|
79 | * is large, if the integration interval is long or if the steps are
|
---|
80 | * small (which can result from small tolerance settings in {@link
|
---|
81 | * agents.anac.y2019.harddealer.math3.ode.nonstiff.AdaptiveStepsizeIntegrator adaptive
|
---|
82 | * step size integrators}).</p>
|
---|
83 | *
|
---|
84 | * @see StepHandler
|
---|
85 | * @see StepInterpolator
|
---|
86 | * @since 1.2
|
---|
87 | */
|
---|
88 |
|
---|
89 | public class ContinuousOutputModel
|
---|
90 | implements StepHandler, Serializable {
|
---|
91 |
|
---|
92 | /** Serializable version identifier */
|
---|
93 | private static final long serialVersionUID = -1417964919405031606L;
|
---|
94 |
|
---|
95 | /** Initial integration time. */
|
---|
96 | private double initialTime;
|
---|
97 |
|
---|
98 | /** Final integration time. */
|
---|
99 | private double finalTime;
|
---|
100 |
|
---|
101 | /** Integration direction indicator. */
|
---|
102 | private boolean forward;
|
---|
103 |
|
---|
104 | /** Current interpolator index. */
|
---|
105 | private int index;
|
---|
106 |
|
---|
107 | /** Steps table. */
|
---|
108 | private List<StepInterpolator> steps;
|
---|
109 |
|
---|
110 | /** Simple constructor.
|
---|
111 | * Build an empty continuous output model.
|
---|
112 | */
|
---|
113 | public ContinuousOutputModel() {
|
---|
114 | steps = new ArrayList<StepInterpolator>();
|
---|
115 | initialTime = Double.NaN;
|
---|
116 | finalTime = Double.NaN;
|
---|
117 | forward = true;
|
---|
118 | index = 0;
|
---|
119 | }
|
---|
120 |
|
---|
121 | /** Append another model at the end of the instance.
|
---|
122 | * @param model model to add at the end of the instance
|
---|
123 | * @exception MathIllegalArgumentException if the model to append is not
|
---|
124 | * compatible with the instance (dimension of the state vector,
|
---|
125 | * propagation direction, hole between the dates)
|
---|
126 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
127 | * during step finalization
|
---|
128 | */
|
---|
129 | public void append(final ContinuousOutputModel model)
|
---|
130 | throws MathIllegalArgumentException, MaxCountExceededException {
|
---|
131 |
|
---|
132 | if (model.steps.size() == 0) {
|
---|
133 | return;
|
---|
134 | }
|
---|
135 |
|
---|
136 | if (steps.size() == 0) {
|
---|
137 | initialTime = model.initialTime;
|
---|
138 | forward = model.forward;
|
---|
139 | } else {
|
---|
140 |
|
---|
141 | if (getInterpolatedState().length != model.getInterpolatedState().length) {
|
---|
142 | throw new DimensionMismatchException(model.getInterpolatedState().length,
|
---|
143 | getInterpolatedState().length);
|
---|
144 | }
|
---|
145 |
|
---|
146 | if (forward ^ model.forward) {
|
---|
147 | throw new MathIllegalArgumentException(LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
|
---|
148 | }
|
---|
149 |
|
---|
150 | final StepInterpolator lastInterpolator = steps.get(index);
|
---|
151 | final double current = lastInterpolator.getCurrentTime();
|
---|
152 | final double previous = lastInterpolator.getPreviousTime();
|
---|
153 | final double step = current - previous;
|
---|
154 | final double gap = model.getInitialTime() - current;
|
---|
155 | if (FastMath.abs(gap) > 1.0e-3 * FastMath.abs(step)) {
|
---|
156 | throw new MathIllegalArgumentException(LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES,
|
---|
157 | FastMath.abs(gap));
|
---|
158 | }
|
---|
159 |
|
---|
160 | }
|
---|
161 |
|
---|
162 | for (StepInterpolator interpolator : model.steps) {
|
---|
163 | steps.add(interpolator.copy());
|
---|
164 | }
|
---|
165 |
|
---|
166 | index = steps.size() - 1;
|
---|
167 | finalTime = (steps.get(index)).getCurrentTime();
|
---|
168 |
|
---|
169 | }
|
---|
170 |
|
---|
171 | /** {@inheritDoc} */
|
---|
172 | public void init(double t0, double[] y0, double t) {
|
---|
173 | initialTime = Double.NaN;
|
---|
174 | finalTime = Double.NaN;
|
---|
175 | forward = true;
|
---|
176 | index = 0;
|
---|
177 | steps.clear();
|
---|
178 | }
|
---|
179 |
|
---|
180 | /** Handle the last accepted step.
|
---|
181 | * A copy of the information provided by the last step is stored in
|
---|
182 | * the instance for later use.
|
---|
183 | * @param interpolator interpolator for the last accepted step.
|
---|
184 | * @param isLast true if the step is the last one
|
---|
185 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
186 | * during step finalization
|
---|
187 | */
|
---|
188 | public void handleStep(final StepInterpolator interpolator, final boolean isLast)
|
---|
189 | throws MaxCountExceededException {
|
---|
190 |
|
---|
191 | if (steps.size() == 0) {
|
---|
192 | initialTime = interpolator.getPreviousTime();
|
---|
193 | forward = interpolator.isForward();
|
---|
194 | }
|
---|
195 |
|
---|
196 | steps.add(interpolator.copy());
|
---|
197 |
|
---|
198 | if (isLast) {
|
---|
199 | finalTime = interpolator.getCurrentTime();
|
---|
200 | index = steps.size() - 1;
|
---|
201 | }
|
---|
202 |
|
---|
203 | }
|
---|
204 |
|
---|
205 | /**
|
---|
206 | * Get the initial integration time.
|
---|
207 | * @return initial integration time
|
---|
208 | */
|
---|
209 | public double getInitialTime() {
|
---|
210 | return initialTime;
|
---|
211 | }
|
---|
212 |
|
---|
213 | /**
|
---|
214 | * Get the final integration time.
|
---|
215 | * @return final integration time
|
---|
216 | */
|
---|
217 | public double getFinalTime() {
|
---|
218 | return finalTime;
|
---|
219 | }
|
---|
220 |
|
---|
221 | /**
|
---|
222 | * Get the time of the interpolated point.
|
---|
223 | * If {@link #setInterpolatedTime} has not been called, it returns
|
---|
224 | * the final integration time.
|
---|
225 | * @return interpolation point time
|
---|
226 | */
|
---|
227 | public double getInterpolatedTime() {
|
---|
228 | return steps.get(index).getInterpolatedTime();
|
---|
229 | }
|
---|
230 |
|
---|
231 | /** Set the time of the interpolated point.
|
---|
232 | * <p>This method should <strong>not</strong> be called before the
|
---|
233 | * integration is over because some internal variables are set only
|
---|
234 | * once the last step has been handled.</p>
|
---|
235 | * <p>Setting the time outside of the integration interval is now
|
---|
236 | * allowed, but should be used with care since the accuracy of the
|
---|
237 | * interpolator will probably be very poor far from this interval.
|
---|
238 | * This allowance has been added to simplify implementation of search
|
---|
239 | * algorithms near the interval endpoints.</p>
|
---|
240 | * <p>Note that each time this method is called, the internal arrays
|
---|
241 | * returned in {@link #getInterpolatedState()}, {@link
|
---|
242 | * #getInterpolatedDerivatives()} and {@link #getInterpolatedSecondaryState(int)}
|
---|
243 | * <em>will</em> be overwritten. So if their content must be preserved
|
---|
244 | * across several calls, user must copy them.</p>
|
---|
245 | * @param time time of the interpolated point
|
---|
246 | * @see #getInterpolatedState()
|
---|
247 | * @see #getInterpolatedDerivatives()
|
---|
248 | * @see #getInterpolatedSecondaryState(int)
|
---|
249 | */
|
---|
250 | public void setInterpolatedTime(final double time) {
|
---|
251 |
|
---|
252 | // initialize the search with the complete steps table
|
---|
253 | int iMin = 0;
|
---|
254 | final StepInterpolator sMin = steps.get(iMin);
|
---|
255 | double tMin = 0.5 * (sMin.getPreviousTime() + sMin.getCurrentTime());
|
---|
256 |
|
---|
257 | int iMax = steps.size() - 1;
|
---|
258 | final StepInterpolator sMax = steps.get(iMax);
|
---|
259 | double tMax = 0.5 * (sMax.getPreviousTime() + sMax.getCurrentTime());
|
---|
260 |
|
---|
261 | // handle points outside of the integration interval
|
---|
262 | // or in the first and last step
|
---|
263 | if (locatePoint(time, sMin) <= 0) {
|
---|
264 | index = iMin;
|
---|
265 | sMin.setInterpolatedTime(time);
|
---|
266 | return;
|
---|
267 | }
|
---|
268 | if (locatePoint(time, sMax) >= 0) {
|
---|
269 | index = iMax;
|
---|
270 | sMax.setInterpolatedTime(time);
|
---|
271 | return;
|
---|
272 | }
|
---|
273 |
|
---|
274 | // reduction of the table slice size
|
---|
275 | while (iMax - iMin > 5) {
|
---|
276 |
|
---|
277 | // use the last estimated index as the splitting index
|
---|
278 | final StepInterpolator si = steps.get(index);
|
---|
279 | final int location = locatePoint(time, si);
|
---|
280 | if (location < 0) {
|
---|
281 | iMax = index;
|
---|
282 | tMax = 0.5 * (si.getPreviousTime() + si.getCurrentTime());
|
---|
283 | } else if (location > 0) {
|
---|
284 | iMin = index;
|
---|
285 | tMin = 0.5 * (si.getPreviousTime() + si.getCurrentTime());
|
---|
286 | } else {
|
---|
287 | // we have found the target step, no need to continue searching
|
---|
288 | si.setInterpolatedTime(time);
|
---|
289 | return;
|
---|
290 | }
|
---|
291 |
|
---|
292 | // compute a new estimate of the index in the reduced table slice
|
---|
293 | final int iMed = (iMin + iMax) / 2;
|
---|
294 | final StepInterpolator sMed = steps.get(iMed);
|
---|
295 | final double tMed = 0.5 * (sMed.getPreviousTime() + sMed.getCurrentTime());
|
---|
296 |
|
---|
297 | if ((FastMath.abs(tMed - tMin) < 1e-6) || (FastMath.abs(tMax - tMed) < 1e-6)) {
|
---|
298 | // too close to the bounds, we estimate using a simple dichotomy
|
---|
299 | index = iMed;
|
---|
300 | } else {
|
---|
301 | // estimate the index using a reverse quadratic polynom
|
---|
302 | // (reverse means we have i = P(t), thus allowing to simply
|
---|
303 | // compute index = P(time) rather than solving a quadratic equation)
|
---|
304 | final double d12 = tMax - tMed;
|
---|
305 | final double d23 = tMed - tMin;
|
---|
306 | final double d13 = tMax - tMin;
|
---|
307 | final double dt1 = time - tMax;
|
---|
308 | final double dt2 = time - tMed;
|
---|
309 | final double dt3 = time - tMin;
|
---|
310 | final double iLagrange = ((dt2 * dt3 * d23) * iMax -
|
---|
311 | (dt1 * dt3 * d13) * iMed +
|
---|
312 | (dt1 * dt2 * d12) * iMin) /
|
---|
313 | (d12 * d23 * d13);
|
---|
314 | index = (int) FastMath.rint(iLagrange);
|
---|
315 | }
|
---|
316 |
|
---|
317 | // force the next size reduction to be at least one tenth
|
---|
318 | final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
|
---|
319 | final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
|
---|
320 | if (index < low) {
|
---|
321 | index = low;
|
---|
322 | } else if (index > high) {
|
---|
323 | index = high;
|
---|
324 | }
|
---|
325 |
|
---|
326 | }
|
---|
327 |
|
---|
328 | // now the table slice is very small, we perform an iterative search
|
---|
329 | index = iMin;
|
---|
330 | while ((index <= iMax) && (locatePoint(time, steps.get(index)) > 0)) {
|
---|
331 | ++index;
|
---|
332 | }
|
---|
333 |
|
---|
334 | steps.get(index).setInterpolatedTime(time);
|
---|
335 |
|
---|
336 | }
|
---|
337 |
|
---|
338 | /**
|
---|
339 | * Get the state vector of the interpolated point.
|
---|
340 | * <p>The returned vector is a reference to a reused array, so
|
---|
341 | * it should not be modified and it should be copied if it needs
|
---|
342 | * to be preserved across several calls to the associated
|
---|
343 | * {@link #setInterpolatedTime(double)} method.</p>
|
---|
344 | * @return state vector at time {@link #getInterpolatedTime}
|
---|
345 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
346 | * @see #setInterpolatedTime(double)
|
---|
347 | * @see #getInterpolatedDerivatives()
|
---|
348 | * @see #getInterpolatedSecondaryState(int)
|
---|
349 | * @see #getInterpolatedSecondaryDerivatives(int)
|
---|
350 | */
|
---|
351 | public double[] getInterpolatedState() throws MaxCountExceededException {
|
---|
352 | return steps.get(index).getInterpolatedState();
|
---|
353 | }
|
---|
354 |
|
---|
355 | /**
|
---|
356 | * Get the derivatives of the state vector of the interpolated point.
|
---|
357 | * <p>The returned vector is a reference to a reused array, so
|
---|
358 | * it should not be modified and it should be copied if it needs
|
---|
359 | * to be preserved across several calls to the associated
|
---|
360 | * {@link #setInterpolatedTime(double)} method.</p>
|
---|
361 | * @return derivatives of the state vector at time {@link #getInterpolatedTime}
|
---|
362 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
363 | * @see #setInterpolatedTime(double)
|
---|
364 | * @see #getInterpolatedState()
|
---|
365 | * @see #getInterpolatedSecondaryState(int)
|
---|
366 | * @see #getInterpolatedSecondaryDerivatives(int)
|
---|
367 | * @since 3.4
|
---|
368 | */
|
---|
369 | public double[] getInterpolatedDerivatives() throws MaxCountExceededException {
|
---|
370 | return steps.get(index).getInterpolatedDerivatives();
|
---|
371 | }
|
---|
372 |
|
---|
373 | /** Get the interpolated secondary state corresponding to the secondary equations.
|
---|
374 | * <p>The returned vector is a reference to a reused array, so
|
---|
375 | * it should not be modified and it should be copied if it needs
|
---|
376 | * to be preserved across several calls to the associated
|
---|
377 | * {@link #setInterpolatedTime(double)} method.</p>
|
---|
378 | * @param secondaryStateIndex index of the secondary set, as returned by {@link
|
---|
379 | * agents.anac.y2019.harddealer.math3.ode.ExpandableStatefulODE#addSecondaryEquations(
|
---|
380 | * agents.anac.y2019.harddealer.math3.ode.SecondaryEquations)
|
---|
381 | * ExpandableStatefulODE.addSecondaryEquations(SecondaryEquations)}
|
---|
382 | * @return interpolated secondary state at the current interpolation date
|
---|
383 | * @see #setInterpolatedTime(double)
|
---|
384 | * @see #getInterpolatedState()
|
---|
385 | * @see #getInterpolatedDerivatives()
|
---|
386 | * @see #getInterpolatedSecondaryDerivatives(int)
|
---|
387 | * @since 3.2
|
---|
388 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
389 | */
|
---|
390 | public double[] getInterpolatedSecondaryState(final int secondaryStateIndex)
|
---|
391 | throws MaxCountExceededException {
|
---|
392 | return steps.get(index).getInterpolatedSecondaryState(secondaryStateIndex);
|
---|
393 | }
|
---|
394 |
|
---|
395 | /** Get the interpolated secondary derivatives corresponding to the secondary equations.
|
---|
396 | * <p>The returned vector is a reference to a reused array, so
|
---|
397 | * it should not be modified and it should be copied if it needs
|
---|
398 | * to be preserved across several calls to the associated
|
---|
399 | * {@link #setInterpolatedTime(double)} method.</p>
|
---|
400 | * @param secondaryStateIndex index of the secondary set, as returned by {@link
|
---|
401 | * agents.anac.y2019.harddealer.math3.ode.ExpandableStatefulODE#addSecondaryEquations(
|
---|
402 | * agents.anac.y2019.harddealer.math3.ode.SecondaryEquations)
|
---|
403 | * ExpandableStatefulODE.addSecondaryEquations(SecondaryEquations)}
|
---|
404 | * @return interpolated secondary derivatives at the current interpolation date
|
---|
405 | * @see #setInterpolatedTime(double)
|
---|
406 | * @see #getInterpolatedState()
|
---|
407 | * @see #getInterpolatedDerivatives()
|
---|
408 | * @see #getInterpolatedSecondaryState(int)
|
---|
409 | * @since 3.4
|
---|
410 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
411 | */
|
---|
412 | public double[] getInterpolatedSecondaryDerivatives(final int secondaryStateIndex)
|
---|
413 | throws MaxCountExceededException {
|
---|
414 | return steps.get(index).getInterpolatedSecondaryDerivatives(secondaryStateIndex);
|
---|
415 | }
|
---|
416 |
|
---|
417 | /** Compare a step interval and a double.
|
---|
418 | * @param time point to locate
|
---|
419 | * @param interval step interval
|
---|
420 | * @return -1 if the double is before the interval, 0 if it is in
|
---|
421 | * the interval, and +1 if it is after the interval, according to
|
---|
422 | * the interval direction
|
---|
423 | */
|
---|
424 | private int locatePoint(final double time, final StepInterpolator interval) {
|
---|
425 | if (forward) {
|
---|
426 | if (time < interval.getPreviousTime()) {
|
---|
427 | return -1;
|
---|
428 | } else if (time > interval.getCurrentTime()) {
|
---|
429 | return +1;
|
---|
430 | } else {
|
---|
431 | return 0;
|
---|
432 | }
|
---|
433 | }
|
---|
434 | if (time > interval.getPreviousTime()) {
|
---|
435 | return -1;
|
---|
436 | } else if (time < interval.getCurrentTime()) {
|
---|
437 | return +1;
|
---|
438 | } else {
|
---|
439 | return 0;
|
---|
440 | }
|
---|
441 | }
|
---|
442 |
|
---|
443 | }
|
---|