1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.ode;
|
---|
19 |
|
---|
20 | import java.util.ArrayList;
|
---|
21 | import java.util.List;
|
---|
22 |
|
---|
23 | import agents.anac.y2019.harddealer.math3.RealFieldElement;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalArgumentException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
28 | import agents.anac.y2019.harddealer.math3.ode.sampling.FieldStepHandler;
|
---|
29 | import agents.anac.y2019.harddealer.math3.ode.sampling.FieldStepInterpolator;
|
---|
30 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
31 |
|
---|
32 | /**
|
---|
33 | * This class stores all information provided by an ODE integrator
|
---|
34 | * during the integration process and build a continuous model of the
|
---|
35 | * solution from this.
|
---|
36 | *
|
---|
37 | * <p>This class act as a step handler from the integrator point of
|
---|
38 | * view. It is called iteratively during the integration process and
|
---|
39 | * stores a copy of all steps information in a sorted collection for
|
---|
40 | * later use. Once the integration process is over, the user can use
|
---|
41 | * the {@link #getInterpolatedState(RealFieldElement) getInterpolatedState}
|
---|
42 | * method to retrieve this information at any time. It is important to wait
|
---|
43 | * for the integration to be over before attempting to call {@link
|
---|
44 | * #getInterpolatedState(RealFieldElement)} because some internal
|
---|
45 | * variables are set only once the last step has been handled.</p>
|
---|
46 | *
|
---|
47 | * <p>This is useful for example if the main loop of the user
|
---|
48 | * application should remain independent from the integration process
|
---|
49 | * or if one needs to mimic the behaviour of an analytical model
|
---|
50 | * despite a numerical model is used (i.e. one needs the ability to
|
---|
51 | * get the model value at any time or to navigate through the
|
---|
52 | * data).</p>
|
---|
53 | *
|
---|
54 | * <p>If problem modeling is done with several separate
|
---|
55 | * integration phases for contiguous intervals, the same
|
---|
56 | * ContinuousOutputModel can be used as step handler for all
|
---|
57 | * integration phases as long as they are performed in order and in
|
---|
58 | * the same direction. As an example, one can extrapolate the
|
---|
59 | * trajectory of a satellite with one model (i.e. one set of
|
---|
60 | * differential equations) up to the beginning of a maneuver, use
|
---|
61 | * another more complex model including thrusters modeling and
|
---|
62 | * accurate attitude control during the maneuver, and revert to the
|
---|
63 | * first model after the end of the maneuver. If the same continuous
|
---|
64 | * output model handles the steps of all integration phases, the user
|
---|
65 | * do not need to bother when the maneuver begins or ends, he has all
|
---|
66 | * the data available in a transparent manner.</p>
|
---|
67 | *
|
---|
68 | * <p>One should be aware that the amount of data stored in a
|
---|
69 | * ContinuousOutputFieldModel instance can be important if the state vector
|
---|
70 | * is large, if the integration interval is long or if the steps are
|
---|
71 | * small (which can result from small tolerance settings in {@link
|
---|
72 | * agents.anac.y2019.harddealer.math3.ode.nonstiff.AdaptiveStepsizeFieldIntegrator adaptive
|
---|
73 | * step size integrators}).</p>
|
---|
74 | *
|
---|
75 | * @see FieldStepHandler
|
---|
76 | * @see FieldStepInterpolator
|
---|
77 | * @param <T> the type of the field elements
|
---|
78 | * @since 3.6
|
---|
79 | */
|
---|
80 |
|
---|
81 | public class ContinuousOutputFieldModel<T extends RealFieldElement<T>>
|
---|
82 | implements FieldStepHandler<T> {
|
---|
83 |
|
---|
84 | /** Initial integration time. */
|
---|
85 | private T initialTime;
|
---|
86 |
|
---|
87 | /** Final integration time. */
|
---|
88 | private T finalTime;
|
---|
89 |
|
---|
90 | /** Integration direction indicator. */
|
---|
91 | private boolean forward;
|
---|
92 |
|
---|
93 | /** Current interpolator index. */
|
---|
94 | private int index;
|
---|
95 |
|
---|
96 | /** Steps table. */
|
---|
97 | private List<FieldStepInterpolator<T>> steps;
|
---|
98 |
|
---|
99 | /** Simple constructor.
|
---|
100 | * Build an empty continuous output model.
|
---|
101 | */
|
---|
102 | public ContinuousOutputFieldModel() {
|
---|
103 | steps = new ArrayList<FieldStepInterpolator<T>>();
|
---|
104 | initialTime = null;
|
---|
105 | finalTime = null;
|
---|
106 | forward = true;
|
---|
107 | index = 0;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /** Append another model at the end of the instance.
|
---|
111 | * @param model model to add at the end of the instance
|
---|
112 | * @exception MathIllegalArgumentException if the model to append is not
|
---|
113 | * compatible with the instance (dimension of the state vector,
|
---|
114 | * propagation direction, hole between the dates)
|
---|
115 | * @exception DimensionMismatchException if the dimensions of the states or
|
---|
116 | * the number of secondary states do not match
|
---|
117 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
118 | * during step finalization
|
---|
119 | */
|
---|
120 | public void append(final ContinuousOutputFieldModel<T> model)
|
---|
121 | throws MathIllegalArgumentException, MaxCountExceededException {
|
---|
122 |
|
---|
123 | if (model.steps.size() == 0) {
|
---|
124 | return;
|
---|
125 | }
|
---|
126 |
|
---|
127 | if (steps.size() == 0) {
|
---|
128 | initialTime = model.initialTime;
|
---|
129 | forward = model.forward;
|
---|
130 | } else {
|
---|
131 |
|
---|
132 | // safety checks
|
---|
133 | final FieldODEStateAndDerivative<T> s1 = steps.get(0).getPreviousState();
|
---|
134 | final FieldODEStateAndDerivative<T> s2 = model.steps.get(0).getPreviousState();
|
---|
135 | checkDimensionsEquality(s1.getStateDimension(), s2.getStateDimension());
|
---|
136 | checkDimensionsEquality(s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates());
|
---|
137 | for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) {
|
---|
138 | checkDimensionsEquality(s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i));
|
---|
139 | }
|
---|
140 |
|
---|
141 | if (forward ^ model.forward) {
|
---|
142 | throw new MathIllegalArgumentException(LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
|
---|
143 | }
|
---|
144 |
|
---|
145 | final FieldStepInterpolator<T> lastInterpolator = steps.get(index);
|
---|
146 | final T current = lastInterpolator.getCurrentState().getTime();
|
---|
147 | final T previous = lastInterpolator.getPreviousState().getTime();
|
---|
148 | final T step = current.subtract(previous);
|
---|
149 | final T gap = model.getInitialTime().subtract(current);
|
---|
150 | if (gap.abs().subtract(step.abs().multiply(1.0e-3)).getReal() > 0) {
|
---|
151 | throw new MathIllegalArgumentException(LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES,
|
---|
152 | gap.abs().getReal());
|
---|
153 | }
|
---|
154 |
|
---|
155 | }
|
---|
156 |
|
---|
157 | for (FieldStepInterpolator<T> interpolator : model.steps) {
|
---|
158 | steps.add(interpolator);
|
---|
159 | }
|
---|
160 |
|
---|
161 | index = steps.size() - 1;
|
---|
162 | finalTime = (steps.get(index)).getCurrentState().getTime();
|
---|
163 |
|
---|
164 | }
|
---|
165 |
|
---|
166 | /** Check dimensions equality.
|
---|
167 | * @param d1 first dimension
|
---|
168 | * @param d2 second dimansion
|
---|
169 | * @exception DimensionMismatchException if dimensions do not match
|
---|
170 | */
|
---|
171 | private void checkDimensionsEquality(final int d1, final int d2)
|
---|
172 | throws DimensionMismatchException {
|
---|
173 | if (d1 != d2) {
|
---|
174 | throw new DimensionMismatchException(d2, d1);
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | /** {@inheritDoc} */
|
---|
179 | public void init(final FieldODEStateAndDerivative<T> initialState, final T t) {
|
---|
180 | initialTime = initialState.getTime();
|
---|
181 | finalTime = t;
|
---|
182 | forward = true;
|
---|
183 | index = 0;
|
---|
184 | steps.clear();
|
---|
185 | }
|
---|
186 |
|
---|
187 | /** Handle the last accepted step.
|
---|
188 | * A copy of the information provided by the last step is stored in
|
---|
189 | * the instance for later use.
|
---|
190 | * @param interpolator interpolator for the last accepted step.
|
---|
191 | * @param isLast true if the step is the last one
|
---|
192 | * @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
---|
193 | * during step finalization
|
---|
194 | */
|
---|
195 | public void handleStep(final FieldStepInterpolator<T> interpolator, final boolean isLast)
|
---|
196 | throws MaxCountExceededException {
|
---|
197 |
|
---|
198 | if (steps.size() == 0) {
|
---|
199 | initialTime = interpolator.getPreviousState().getTime();
|
---|
200 | forward = interpolator.isForward();
|
---|
201 | }
|
---|
202 |
|
---|
203 | steps.add(interpolator);
|
---|
204 |
|
---|
205 | if (isLast) {
|
---|
206 | finalTime = interpolator.getCurrentState().getTime();
|
---|
207 | index = steps.size() - 1;
|
---|
208 | }
|
---|
209 |
|
---|
210 | }
|
---|
211 |
|
---|
212 | /**
|
---|
213 | * Get the initial integration time.
|
---|
214 | * @return initial integration time
|
---|
215 | */
|
---|
216 | public T getInitialTime() {
|
---|
217 | return initialTime;
|
---|
218 | }
|
---|
219 |
|
---|
220 | /**
|
---|
221 | * Get the final integration time.
|
---|
222 | * @return final integration time
|
---|
223 | */
|
---|
224 | public T getFinalTime() {
|
---|
225 | return finalTime;
|
---|
226 | }
|
---|
227 |
|
---|
228 | /**
|
---|
229 | * Get the state at interpolated time.
|
---|
230 | * @param time time of the interpolated point
|
---|
231 | * @return state at interpolated time
|
---|
232 | */
|
---|
233 | public FieldODEStateAndDerivative<T> getInterpolatedState(final T time) {
|
---|
234 |
|
---|
235 | // initialize the search with the complete steps table
|
---|
236 | int iMin = 0;
|
---|
237 | final FieldStepInterpolator<T> sMin = steps.get(iMin);
|
---|
238 | T tMin = sMin.getPreviousState().getTime().add(sMin.getCurrentState().getTime()).multiply(0.5);
|
---|
239 |
|
---|
240 | int iMax = steps.size() - 1;
|
---|
241 | final FieldStepInterpolator<T> sMax = steps.get(iMax);
|
---|
242 | T tMax = sMax.getPreviousState().getTime().add(sMax.getCurrentState().getTime()).multiply(0.5);
|
---|
243 |
|
---|
244 | // handle points outside of the integration interval
|
---|
245 | // or in the first and last step
|
---|
246 | if (locatePoint(time, sMin) <= 0) {
|
---|
247 | index = iMin;
|
---|
248 | return sMin.getInterpolatedState(time);
|
---|
249 | }
|
---|
250 | if (locatePoint(time, sMax) >= 0) {
|
---|
251 | index = iMax;
|
---|
252 | return sMax.getInterpolatedState(time);
|
---|
253 | }
|
---|
254 |
|
---|
255 | // reduction of the table slice size
|
---|
256 | while (iMax - iMin > 5) {
|
---|
257 |
|
---|
258 | // use the last estimated index as the splitting index
|
---|
259 | final FieldStepInterpolator<T> si = steps.get(index);
|
---|
260 | final int location = locatePoint(time, si);
|
---|
261 | if (location < 0) {
|
---|
262 | iMax = index;
|
---|
263 | tMax = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
|
---|
264 | } else if (location > 0) {
|
---|
265 | iMin = index;
|
---|
266 | tMin = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
|
---|
267 | } else {
|
---|
268 | // we have found the target step, no need to continue searching
|
---|
269 | return si.getInterpolatedState(time);
|
---|
270 | }
|
---|
271 |
|
---|
272 | // compute a new estimate of the index in the reduced table slice
|
---|
273 | final int iMed = (iMin + iMax) / 2;
|
---|
274 | final FieldStepInterpolator<T> sMed = steps.get(iMed);
|
---|
275 | final T tMed = sMed.getPreviousState().getTime().add(sMed.getCurrentState().getTime()).multiply(0.5);
|
---|
276 |
|
---|
277 | if (tMed.subtract(tMin).abs().subtract(1.0e-6).getReal() < 0 ||
|
---|
278 | tMax.subtract(tMed).abs().subtract(1.0e-6).getReal() < 0) {
|
---|
279 | // too close to the bounds, we estimate using a simple dichotomy
|
---|
280 | index = iMed;
|
---|
281 | } else {
|
---|
282 | // estimate the index using a reverse quadratic polynomial
|
---|
283 | // (reverse means we have i = P(t), thus allowing to simply
|
---|
284 | // compute index = P(time) rather than solving a quadratic equation)
|
---|
285 | final T d12 = tMax.subtract(tMed);
|
---|
286 | final T d23 = tMed.subtract(tMin);
|
---|
287 | final T d13 = tMax.subtract(tMin);
|
---|
288 | final T dt1 = time.subtract(tMax);
|
---|
289 | final T dt2 = time.subtract(tMed);
|
---|
290 | final T dt3 = time.subtract(tMin);
|
---|
291 | final T iLagrange = dt2.multiply(dt3).multiply(d23).multiply(iMax).
|
---|
292 | subtract(dt1.multiply(dt3).multiply(d13).multiply(iMed)).
|
---|
293 | add( dt1.multiply(dt2).multiply(d12).multiply(iMin)).
|
---|
294 | divide(d12.multiply(d23).multiply(d13));
|
---|
295 | index = (int) FastMath.rint(iLagrange.getReal());
|
---|
296 | }
|
---|
297 |
|
---|
298 | // force the next size reduction to be at least one tenth
|
---|
299 | final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
|
---|
300 | final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
|
---|
301 | if (index < low) {
|
---|
302 | index = low;
|
---|
303 | } else if (index > high) {
|
---|
304 | index = high;
|
---|
305 | }
|
---|
306 |
|
---|
307 | }
|
---|
308 |
|
---|
309 | // now the table slice is very small, we perform an iterative search
|
---|
310 | index = iMin;
|
---|
311 | while (index <= iMax && locatePoint(time, steps.get(index)) > 0) {
|
---|
312 | ++index;
|
---|
313 | }
|
---|
314 |
|
---|
315 | return steps.get(index).getInterpolatedState(time);
|
---|
316 |
|
---|
317 | }
|
---|
318 |
|
---|
319 | /** Compare a step interval and a double.
|
---|
320 | * @param time point to locate
|
---|
321 | * @param interval step interval
|
---|
322 | * @return -1 if the double is before the interval, 0 if it is in
|
---|
323 | * the interval, and +1 if it is after the interval, according to
|
---|
324 | * the interval direction
|
---|
325 | */
|
---|
326 | private int locatePoint(final T time, final FieldStepInterpolator<T> interval) {
|
---|
327 | if (forward) {
|
---|
328 | if (time.subtract(interval.getPreviousState().getTime()).getReal() < 0) {
|
---|
329 | return -1;
|
---|
330 | } else if (time.subtract(interval.getCurrentState().getTime()).getReal() > 0) {
|
---|
331 | return +1;
|
---|
332 | } else {
|
---|
333 | return 0;
|
---|
334 | }
|
---|
335 | }
|
---|
336 | if (time.subtract(interval.getPreviousState().getTime()).getReal() > 0) {
|
---|
337 | return -1;
|
---|
338 | } else if (time.subtract(interval.getCurrentState().getTime()).getReal() < 0) {
|
---|
339 | return +1;
|
---|
340 | } else {
|
---|
341 | return 0;
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | }
|
---|