1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.ml.clustering;
|
---|
19 |
|
---|
20 | import java.util.ArrayList;
|
---|
21 | import java.util.Collection;
|
---|
22 | import java.util.Collections;
|
---|
23 | import java.util.List;
|
---|
24 |
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.ConvergenceException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalArgumentException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooSmallException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
29 | import agents.anac.y2019.harddealer.math3.ml.distance.DistanceMeasure;
|
---|
30 | import agents.anac.y2019.harddealer.math3.ml.distance.EuclideanDistance;
|
---|
31 | import agents.anac.y2019.harddealer.math3.random.JDKRandomGenerator;
|
---|
32 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
33 | import agents.anac.y2019.harddealer.math3.stat.descriptive.moment.Variance;
|
---|
34 | import agents.anac.y2019.harddealer.math3.util.MathUtils;
|
---|
35 |
|
---|
36 | /**
|
---|
37 | * Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.
|
---|
38 | * @param <T> type of the points to cluster
|
---|
39 | * @see <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">K-means++ (wikipedia)</a>
|
---|
40 | * @since 3.2
|
---|
41 | */
|
---|
42 | public class KMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T> {
|
---|
43 |
|
---|
44 | /** Strategies to use for replacing an empty cluster. */
|
---|
45 | public enum EmptyClusterStrategy {
|
---|
46 |
|
---|
47 | /** Split the cluster with largest distance variance. */
|
---|
48 | LARGEST_VARIANCE,
|
---|
49 |
|
---|
50 | /** Split the cluster with largest number of points. */
|
---|
51 | LARGEST_POINTS_NUMBER,
|
---|
52 |
|
---|
53 | /** Create a cluster around the point farthest from its centroid. */
|
---|
54 | FARTHEST_POINT,
|
---|
55 |
|
---|
56 | /** Generate an error. */
|
---|
57 | ERROR
|
---|
58 |
|
---|
59 | }
|
---|
60 |
|
---|
61 | /** The number of clusters. */
|
---|
62 | private final int k;
|
---|
63 |
|
---|
64 | /** The maximum number of iterations. */
|
---|
65 | private final int maxIterations;
|
---|
66 |
|
---|
67 | /** Random generator for choosing initial centers. */
|
---|
68 | private final RandomGenerator random;
|
---|
69 |
|
---|
70 | /** Selected strategy for empty clusters. */
|
---|
71 | private final EmptyClusterStrategy emptyStrategy;
|
---|
72 |
|
---|
73 | /** Build a clusterer.
|
---|
74 | * <p>
|
---|
75 | * The default strategy for handling empty clusters that may appear during
|
---|
76 | * algorithm iterations is to split the cluster with largest distance variance.
|
---|
77 | * <p>
|
---|
78 | * The euclidean distance will be used as default distance measure.
|
---|
79 | *
|
---|
80 | * @param k the number of clusters to split the data into
|
---|
81 | */
|
---|
82 | public KMeansPlusPlusClusterer(final int k) {
|
---|
83 | this(k, -1);
|
---|
84 | }
|
---|
85 |
|
---|
86 | /** Build a clusterer.
|
---|
87 | * <p>
|
---|
88 | * The default strategy for handling empty clusters that may appear during
|
---|
89 | * algorithm iterations is to split the cluster with largest distance variance.
|
---|
90 | * <p>
|
---|
91 | * The euclidean distance will be used as default distance measure.
|
---|
92 | *
|
---|
93 | * @param k the number of clusters to split the data into
|
---|
94 | * @param maxIterations the maximum number of iterations to run the algorithm for.
|
---|
95 | * If negative, no maximum will be used.
|
---|
96 | */
|
---|
97 | public KMeansPlusPlusClusterer(final int k, final int maxIterations) {
|
---|
98 | this(k, maxIterations, new EuclideanDistance());
|
---|
99 | }
|
---|
100 |
|
---|
101 | /** Build a clusterer.
|
---|
102 | * <p>
|
---|
103 | * The default strategy for handling empty clusters that may appear during
|
---|
104 | * algorithm iterations is to split the cluster with largest distance variance.
|
---|
105 | *
|
---|
106 | * @param k the number of clusters to split the data into
|
---|
107 | * @param maxIterations the maximum number of iterations to run the algorithm for.
|
---|
108 | * If negative, no maximum will be used.
|
---|
109 | * @param measure the distance measure to use
|
---|
110 | */
|
---|
111 | public KMeansPlusPlusClusterer(final int k, final int maxIterations, final DistanceMeasure measure) {
|
---|
112 | this(k, maxIterations, measure, new JDKRandomGenerator());
|
---|
113 | }
|
---|
114 |
|
---|
115 | /** Build a clusterer.
|
---|
116 | * <p>
|
---|
117 | * The default strategy for handling empty clusters that may appear during
|
---|
118 | * algorithm iterations is to split the cluster with largest distance variance.
|
---|
119 | *
|
---|
120 | * @param k the number of clusters to split the data into
|
---|
121 | * @param maxIterations the maximum number of iterations to run the algorithm for.
|
---|
122 | * If negative, no maximum will be used.
|
---|
123 | * @param measure the distance measure to use
|
---|
124 | * @param random random generator to use for choosing initial centers
|
---|
125 | */
|
---|
126 | public KMeansPlusPlusClusterer(final int k, final int maxIterations,
|
---|
127 | final DistanceMeasure measure,
|
---|
128 | final RandomGenerator random) {
|
---|
129 | this(k, maxIterations, measure, random, EmptyClusterStrategy.LARGEST_VARIANCE);
|
---|
130 | }
|
---|
131 |
|
---|
132 | /** Build a clusterer.
|
---|
133 | *
|
---|
134 | * @param k the number of clusters to split the data into
|
---|
135 | * @param maxIterations the maximum number of iterations to run the algorithm for.
|
---|
136 | * If negative, no maximum will be used.
|
---|
137 | * @param measure the distance measure to use
|
---|
138 | * @param random random generator to use for choosing initial centers
|
---|
139 | * @param emptyStrategy strategy to use for handling empty clusters that
|
---|
140 | * may appear during algorithm iterations
|
---|
141 | */
|
---|
142 | public KMeansPlusPlusClusterer(final int k, final int maxIterations,
|
---|
143 | final DistanceMeasure measure,
|
---|
144 | final RandomGenerator random,
|
---|
145 | final EmptyClusterStrategy emptyStrategy) {
|
---|
146 | super(measure);
|
---|
147 | this.k = k;
|
---|
148 | this.maxIterations = maxIterations;
|
---|
149 | this.random = random;
|
---|
150 | this.emptyStrategy = emptyStrategy;
|
---|
151 | }
|
---|
152 |
|
---|
153 | /**
|
---|
154 | * Return the number of clusters this instance will use.
|
---|
155 | * @return the number of clusters
|
---|
156 | */
|
---|
157 | public int getK() {
|
---|
158 | return k;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /**
|
---|
162 | * Returns the maximum number of iterations this instance will use.
|
---|
163 | * @return the maximum number of iterations, or -1 if no maximum is set
|
---|
164 | */
|
---|
165 | public int getMaxIterations() {
|
---|
166 | return maxIterations;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /**
|
---|
170 | * Returns the random generator this instance will use.
|
---|
171 | * @return the random generator
|
---|
172 | */
|
---|
173 | public RandomGenerator getRandomGenerator() {
|
---|
174 | return random;
|
---|
175 | }
|
---|
176 |
|
---|
177 | /**
|
---|
178 | * Returns the {@link EmptyClusterStrategy} used by this instance.
|
---|
179 | * @return the {@link EmptyClusterStrategy}
|
---|
180 | */
|
---|
181 | public EmptyClusterStrategy getEmptyClusterStrategy() {
|
---|
182 | return emptyStrategy;
|
---|
183 | }
|
---|
184 |
|
---|
185 | /**
|
---|
186 | * Runs the K-means++ clustering algorithm.
|
---|
187 | *
|
---|
188 | * @param points the points to cluster
|
---|
189 | * @return a list of clusters containing the points
|
---|
190 | * @throws MathIllegalArgumentException if the data points are null or the number
|
---|
191 | * of clusters is larger than the number of data points
|
---|
192 | * @throws ConvergenceException if an empty cluster is encountered and the
|
---|
193 | * {@link #emptyStrategy} is set to {@code ERROR}
|
---|
194 | */
|
---|
195 | @Override
|
---|
196 | public List<CentroidCluster<T>> cluster(final Collection<T> points)
|
---|
197 | throws MathIllegalArgumentException, ConvergenceException {
|
---|
198 |
|
---|
199 | // sanity checks
|
---|
200 | MathUtils.checkNotNull(points);
|
---|
201 |
|
---|
202 | // number of clusters has to be smaller or equal the number of data points
|
---|
203 | if (points.size() < k) {
|
---|
204 | throw new NumberIsTooSmallException(points.size(), k, false);
|
---|
205 | }
|
---|
206 |
|
---|
207 | // create the initial clusters
|
---|
208 | List<CentroidCluster<T>> clusters = chooseInitialCenters(points);
|
---|
209 |
|
---|
210 | // create an array containing the latest assignment of a point to a cluster
|
---|
211 | // no need to initialize the array, as it will be filled with the first assignment
|
---|
212 | int[] assignments = new int[points.size()];
|
---|
213 | assignPointsToClusters(clusters, points, assignments);
|
---|
214 |
|
---|
215 | // iterate through updating the centers until we're done
|
---|
216 | final int max = (maxIterations < 0) ? Integer.MAX_VALUE : maxIterations;
|
---|
217 | for (int count = 0; count < max; count++) {
|
---|
218 | boolean emptyCluster = false;
|
---|
219 | List<CentroidCluster<T>> newClusters = new ArrayList<CentroidCluster<T>>();
|
---|
220 | for (final CentroidCluster<T> cluster : clusters) {
|
---|
221 | final Clusterable newCenter;
|
---|
222 | if (cluster.getPoints().isEmpty()) {
|
---|
223 | switch (emptyStrategy) {
|
---|
224 | case LARGEST_VARIANCE :
|
---|
225 | newCenter = getPointFromLargestVarianceCluster(clusters);
|
---|
226 | break;
|
---|
227 | case LARGEST_POINTS_NUMBER :
|
---|
228 | newCenter = getPointFromLargestNumberCluster(clusters);
|
---|
229 | break;
|
---|
230 | case FARTHEST_POINT :
|
---|
231 | newCenter = getFarthestPoint(clusters);
|
---|
232 | break;
|
---|
233 | default :
|
---|
234 | throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
---|
235 | }
|
---|
236 | emptyCluster = true;
|
---|
237 | } else {
|
---|
238 | newCenter = centroidOf(cluster.getPoints(), cluster.getCenter().getPoint().length);
|
---|
239 | }
|
---|
240 | newClusters.add(new CentroidCluster<T>(newCenter));
|
---|
241 | }
|
---|
242 | int changes = assignPointsToClusters(newClusters, points, assignments);
|
---|
243 | clusters = newClusters;
|
---|
244 |
|
---|
245 | // if there were no more changes in the point-to-cluster assignment
|
---|
246 | // and there are no empty clusters left, return the current clusters
|
---|
247 | if (changes == 0 && !emptyCluster) {
|
---|
248 | return clusters;
|
---|
249 | }
|
---|
250 | }
|
---|
251 | return clusters;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /**
|
---|
255 | * Adds the given points to the closest {@link Cluster}.
|
---|
256 | *
|
---|
257 | * @param clusters the {@link Cluster}s to add the points to
|
---|
258 | * @param points the points to add to the given {@link Cluster}s
|
---|
259 | * @param assignments points assignments to clusters
|
---|
260 | * @return the number of points assigned to different clusters as the iteration before
|
---|
261 | */
|
---|
262 | private int assignPointsToClusters(final List<CentroidCluster<T>> clusters,
|
---|
263 | final Collection<T> points,
|
---|
264 | final int[] assignments) {
|
---|
265 | int assignedDifferently = 0;
|
---|
266 | int pointIndex = 0;
|
---|
267 | for (final T p : points) {
|
---|
268 | int clusterIndex = getNearestCluster(clusters, p);
|
---|
269 | if (clusterIndex != assignments[pointIndex]) {
|
---|
270 | assignedDifferently++;
|
---|
271 | }
|
---|
272 |
|
---|
273 | CentroidCluster<T> cluster = clusters.get(clusterIndex);
|
---|
274 | cluster.addPoint(p);
|
---|
275 | assignments[pointIndex++] = clusterIndex;
|
---|
276 | }
|
---|
277 |
|
---|
278 | return assignedDifferently;
|
---|
279 | }
|
---|
280 |
|
---|
281 | /**
|
---|
282 | * Use K-means++ to choose the initial centers.
|
---|
283 | *
|
---|
284 | * @param points the points to choose the initial centers from
|
---|
285 | * @return the initial centers
|
---|
286 | */
|
---|
287 | private List<CentroidCluster<T>> chooseInitialCenters(final Collection<T> points) {
|
---|
288 |
|
---|
289 | // Convert to list for indexed access. Make it unmodifiable, since removal of items
|
---|
290 | // would screw up the logic of this method.
|
---|
291 | final List<T> pointList = Collections.unmodifiableList(new ArrayList<T> (points));
|
---|
292 |
|
---|
293 | // The number of points in the list.
|
---|
294 | final int numPoints = pointList.size();
|
---|
295 |
|
---|
296 | // Set the corresponding element in this array to indicate when
|
---|
297 | // elements of pointList are no longer available.
|
---|
298 | final boolean[] taken = new boolean[numPoints];
|
---|
299 |
|
---|
300 | // The resulting list of initial centers.
|
---|
301 | final List<CentroidCluster<T>> resultSet = new ArrayList<CentroidCluster<T>>();
|
---|
302 |
|
---|
303 | // Choose one center uniformly at random from among the data points.
|
---|
304 | final int firstPointIndex = random.nextInt(numPoints);
|
---|
305 |
|
---|
306 | final T firstPoint = pointList.get(firstPointIndex);
|
---|
307 |
|
---|
308 | resultSet.add(new CentroidCluster<T>(firstPoint));
|
---|
309 |
|
---|
310 | // Must mark it as taken
|
---|
311 | taken[firstPointIndex] = true;
|
---|
312 |
|
---|
313 | // To keep track of the minimum distance squared of elements of
|
---|
314 | // pointList to elements of resultSet.
|
---|
315 | final double[] minDistSquared = new double[numPoints];
|
---|
316 |
|
---|
317 | // Initialize the elements. Since the only point in resultSet is firstPoint,
|
---|
318 | // this is very easy.
|
---|
319 | for (int i = 0; i < numPoints; i++) {
|
---|
320 | if (i != firstPointIndex) { // That point isn't considered
|
---|
321 | double d = distance(firstPoint, pointList.get(i));
|
---|
322 | minDistSquared[i] = d*d;
|
---|
323 | }
|
---|
324 | }
|
---|
325 |
|
---|
326 | while (resultSet.size() < k) {
|
---|
327 |
|
---|
328 | // Sum up the squared distances for the points in pointList not
|
---|
329 | // already taken.
|
---|
330 | double distSqSum = 0.0;
|
---|
331 |
|
---|
332 | for (int i = 0; i < numPoints; i++) {
|
---|
333 | if (!taken[i]) {
|
---|
334 | distSqSum += minDistSquared[i];
|
---|
335 | }
|
---|
336 | }
|
---|
337 |
|
---|
338 | // Add one new data point as a center. Each point x is chosen with
|
---|
339 | // probability proportional to D(x)2
|
---|
340 | final double r = random.nextDouble() * distSqSum;
|
---|
341 |
|
---|
342 | // The index of the next point to be added to the resultSet.
|
---|
343 | int nextPointIndex = -1;
|
---|
344 |
|
---|
345 | // Sum through the squared min distances again, stopping when
|
---|
346 | // sum >= r.
|
---|
347 | double sum = 0.0;
|
---|
348 | for (int i = 0; i < numPoints; i++) {
|
---|
349 | if (!taken[i]) {
|
---|
350 | sum += minDistSquared[i];
|
---|
351 | if (sum >= r) {
|
---|
352 | nextPointIndex = i;
|
---|
353 | break;
|
---|
354 | }
|
---|
355 | }
|
---|
356 | }
|
---|
357 |
|
---|
358 | // If it's not set to >= 0, the point wasn't found in the previous
|
---|
359 | // for loop, probably because distances are extremely small. Just pick
|
---|
360 | // the last available point.
|
---|
361 | if (nextPointIndex == -1) {
|
---|
362 | for (int i = numPoints - 1; i >= 0; i--) {
|
---|
363 | if (!taken[i]) {
|
---|
364 | nextPointIndex = i;
|
---|
365 | break;
|
---|
366 | }
|
---|
367 | }
|
---|
368 | }
|
---|
369 |
|
---|
370 | // We found one.
|
---|
371 | if (nextPointIndex >= 0) {
|
---|
372 |
|
---|
373 | final T p = pointList.get(nextPointIndex);
|
---|
374 |
|
---|
375 | resultSet.add(new CentroidCluster<T> (p));
|
---|
376 |
|
---|
377 | // Mark it as taken.
|
---|
378 | taken[nextPointIndex] = true;
|
---|
379 |
|
---|
380 | if (resultSet.size() < k) {
|
---|
381 | // Now update elements of minDistSquared. We only have to compute
|
---|
382 | // the distance to the new center to do this.
|
---|
383 | for (int j = 0; j < numPoints; j++) {
|
---|
384 | // Only have to worry about the points still not taken.
|
---|
385 | if (!taken[j]) {
|
---|
386 | double d = distance(p, pointList.get(j));
|
---|
387 | double d2 = d * d;
|
---|
388 | if (d2 < minDistSquared[j]) {
|
---|
389 | minDistSquared[j] = d2;
|
---|
390 | }
|
---|
391 | }
|
---|
392 | }
|
---|
393 | }
|
---|
394 |
|
---|
395 | } else {
|
---|
396 | // None found --
|
---|
397 | // Break from the while loop to prevent
|
---|
398 | // an infinite loop.
|
---|
399 | break;
|
---|
400 | }
|
---|
401 | }
|
---|
402 |
|
---|
403 | return resultSet;
|
---|
404 | }
|
---|
405 |
|
---|
406 | /**
|
---|
407 | * Get a random point from the {@link Cluster} with the largest distance variance.
|
---|
408 | *
|
---|
409 | * @param clusters the {@link Cluster}s to search
|
---|
410 | * @return a random point from the selected cluster
|
---|
411 | * @throws ConvergenceException if clusters are all empty
|
---|
412 | */
|
---|
413 | private T getPointFromLargestVarianceCluster(final Collection<CentroidCluster<T>> clusters)
|
---|
414 | throws ConvergenceException {
|
---|
415 |
|
---|
416 | double maxVariance = Double.NEGATIVE_INFINITY;
|
---|
417 | Cluster<T> selected = null;
|
---|
418 | for (final CentroidCluster<T> cluster : clusters) {
|
---|
419 | if (!cluster.getPoints().isEmpty()) {
|
---|
420 |
|
---|
421 | // compute the distance variance of the current cluster
|
---|
422 | final Clusterable center = cluster.getCenter();
|
---|
423 | final Variance stat = new Variance();
|
---|
424 | for (final T point : cluster.getPoints()) {
|
---|
425 | stat.increment(distance(point, center));
|
---|
426 | }
|
---|
427 | final double variance = stat.getResult();
|
---|
428 |
|
---|
429 | // select the cluster with the largest variance
|
---|
430 | if (variance > maxVariance) {
|
---|
431 | maxVariance = variance;
|
---|
432 | selected = cluster;
|
---|
433 | }
|
---|
434 |
|
---|
435 | }
|
---|
436 | }
|
---|
437 |
|
---|
438 | // did we find at least one non-empty cluster ?
|
---|
439 | if (selected == null) {
|
---|
440 | throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
---|
441 | }
|
---|
442 |
|
---|
443 | // extract a random point from the cluster
|
---|
444 | final List<T> selectedPoints = selected.getPoints();
|
---|
445 | return selectedPoints.remove(random.nextInt(selectedPoints.size()));
|
---|
446 |
|
---|
447 | }
|
---|
448 |
|
---|
449 | /**
|
---|
450 | * Get a random point from the {@link Cluster} with the largest number of points
|
---|
451 | *
|
---|
452 | * @param clusters the {@link Cluster}s to search
|
---|
453 | * @return a random point from the selected cluster
|
---|
454 | * @throws ConvergenceException if clusters are all empty
|
---|
455 | */
|
---|
456 | private T getPointFromLargestNumberCluster(final Collection<? extends Cluster<T>> clusters)
|
---|
457 | throws ConvergenceException {
|
---|
458 |
|
---|
459 | int maxNumber = 0;
|
---|
460 | Cluster<T> selected = null;
|
---|
461 | for (final Cluster<T> cluster : clusters) {
|
---|
462 |
|
---|
463 | // get the number of points of the current cluster
|
---|
464 | final int number = cluster.getPoints().size();
|
---|
465 |
|
---|
466 | // select the cluster with the largest number of points
|
---|
467 | if (number > maxNumber) {
|
---|
468 | maxNumber = number;
|
---|
469 | selected = cluster;
|
---|
470 | }
|
---|
471 |
|
---|
472 | }
|
---|
473 |
|
---|
474 | // did we find at least one non-empty cluster ?
|
---|
475 | if (selected == null) {
|
---|
476 | throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
---|
477 | }
|
---|
478 |
|
---|
479 | // extract a random point from the cluster
|
---|
480 | final List<T> selectedPoints = selected.getPoints();
|
---|
481 | return selectedPoints.remove(random.nextInt(selectedPoints.size()));
|
---|
482 |
|
---|
483 | }
|
---|
484 |
|
---|
485 | /**
|
---|
486 | * Get the point farthest to its cluster center
|
---|
487 | *
|
---|
488 | * @param clusters the {@link Cluster}s to search
|
---|
489 | * @return point farthest to its cluster center
|
---|
490 | * @throws ConvergenceException if clusters are all empty
|
---|
491 | */
|
---|
492 | private T getFarthestPoint(final Collection<CentroidCluster<T>> clusters) throws ConvergenceException {
|
---|
493 |
|
---|
494 | double maxDistance = Double.NEGATIVE_INFINITY;
|
---|
495 | Cluster<T> selectedCluster = null;
|
---|
496 | int selectedPoint = -1;
|
---|
497 | for (final CentroidCluster<T> cluster : clusters) {
|
---|
498 |
|
---|
499 | // get the farthest point
|
---|
500 | final Clusterable center = cluster.getCenter();
|
---|
501 | final List<T> points = cluster.getPoints();
|
---|
502 | for (int i = 0; i < points.size(); ++i) {
|
---|
503 | final double distance = distance(points.get(i), center);
|
---|
504 | if (distance > maxDistance) {
|
---|
505 | maxDistance = distance;
|
---|
506 | selectedCluster = cluster;
|
---|
507 | selectedPoint = i;
|
---|
508 | }
|
---|
509 | }
|
---|
510 |
|
---|
511 | }
|
---|
512 |
|
---|
513 | // did we find at least one non-empty cluster ?
|
---|
514 | if (selectedCluster == null) {
|
---|
515 | throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
---|
516 | }
|
---|
517 |
|
---|
518 | return selectedCluster.getPoints().remove(selectedPoint);
|
---|
519 |
|
---|
520 | }
|
---|
521 |
|
---|
522 | /**
|
---|
523 | * Returns the nearest {@link Cluster} to the given point
|
---|
524 | *
|
---|
525 | * @param clusters the {@link Cluster}s to search
|
---|
526 | * @param point the point to find the nearest {@link Cluster} for
|
---|
527 | * @return the index of the nearest {@link Cluster} to the given point
|
---|
528 | */
|
---|
529 | private int getNearestCluster(final Collection<CentroidCluster<T>> clusters, final T point) {
|
---|
530 | double minDistance = Double.MAX_VALUE;
|
---|
531 | int clusterIndex = 0;
|
---|
532 | int minCluster = 0;
|
---|
533 | for (final CentroidCluster<T> c : clusters) {
|
---|
534 | final double distance = distance(point, c.getCenter());
|
---|
535 | if (distance < minDistance) {
|
---|
536 | minDistance = distance;
|
---|
537 | minCluster = clusterIndex;
|
---|
538 | }
|
---|
539 | clusterIndex++;
|
---|
540 | }
|
---|
541 | return minCluster;
|
---|
542 | }
|
---|
543 |
|
---|
544 | /**
|
---|
545 | * Computes the centroid for a set of points.
|
---|
546 | *
|
---|
547 | * @param points the set of points
|
---|
548 | * @param dimension the point dimension
|
---|
549 | * @return the computed centroid for the set of points
|
---|
550 | */
|
---|
551 | private Clusterable centroidOf(final Collection<T> points, final int dimension) {
|
---|
552 | final double[] centroid = new double[dimension];
|
---|
553 | for (final T p : points) {
|
---|
554 | final double[] point = p.getPoint();
|
---|
555 | for (int i = 0; i < centroid.length; i++) {
|
---|
556 | centroid[i] += point[i];
|
---|
557 | }
|
---|
558 | }
|
---|
559 | for (int i = 0; i < centroid.length; i++) {
|
---|
560 | centroid[i] /= points.size();
|
---|
561 | }
|
---|
562 | return new DoublePoint(centroid);
|
---|
563 | }
|
---|
564 |
|
---|
565 | }
|
---|