1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.ml.clustering;
|
---|
18 |
|
---|
19 | import java.util.ArrayList;
|
---|
20 | import java.util.Collection;
|
---|
21 | import java.util.Collections;
|
---|
22 | import java.util.List;
|
---|
23 |
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalArgumentException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.MathIllegalStateException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooSmallException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.linear.MatrixUtils;
|
---|
28 | import agents.anac.y2019.harddealer.math3.linear.RealMatrix;
|
---|
29 | import agents.anac.y2019.harddealer.math3.ml.distance.DistanceMeasure;
|
---|
30 | import agents.anac.y2019.harddealer.math3.ml.distance.EuclideanDistance;
|
---|
31 | import agents.anac.y2019.harddealer.math3.random.JDKRandomGenerator;
|
---|
32 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
33 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
34 | import agents.anac.y2019.harddealer.math3.util.MathArrays;
|
---|
35 | import agents.anac.y2019.harddealer.math3.util.MathUtils;
|
---|
36 |
|
---|
37 | /**
|
---|
38 | * Fuzzy K-Means clustering algorithm.
|
---|
39 | * <p>
|
---|
40 | * The Fuzzy K-Means algorithm is a variation of the classical K-Means algorithm, with the
|
---|
41 | * major difference that a single data point is not uniquely assigned to a single cluster.
|
---|
42 | * Instead, each point i has a set of weights u<sub>ij</sub> which indicate the degree of membership
|
---|
43 | * to the cluster j.
|
---|
44 | * <p>
|
---|
45 | * The algorithm then tries to minimize the objective function:
|
---|
46 | * <pre>
|
---|
47 | * J = ∑<sub>i=1..C</sub>∑<sub>k=1..N</sub> u<sub>ik</sub><sup>m</sup>d<sub>ik</sub><sup>2</sup>
|
---|
48 | * </pre>
|
---|
49 | * with d<sub>ik</sub> being the distance between data point i and the cluster center k.
|
---|
50 | * <p>
|
---|
51 | * The algorithm requires two parameters:
|
---|
52 | * <ul>
|
---|
53 | * <li>k: the number of clusters
|
---|
54 | * <li>fuzziness: determines the level of cluster fuzziness, larger values lead to fuzzier clusters
|
---|
55 | * </ul>
|
---|
56 | * Additional, optional parameters:
|
---|
57 | * <ul>
|
---|
58 | * <li>maxIterations: the maximum number of iterations
|
---|
59 | * <li>epsilon: the convergence criteria, default is 1e-3
|
---|
60 | * </ul>
|
---|
61 | * <p>
|
---|
62 | * The fuzzy variant of the K-Means algorithm is more robust with regard to the selection
|
---|
63 | * of the initial cluster centers.
|
---|
64 | *
|
---|
65 | * @param <T> type of the points to cluster
|
---|
66 | * @since 3.3
|
---|
67 | */
|
---|
68 | public class FuzzyKMeansClusterer<T extends Clusterable> extends Clusterer<T> {
|
---|
69 |
|
---|
70 | /** The default value for the convergence criteria. */
|
---|
71 | private static final double DEFAULT_EPSILON = 1e-3;
|
---|
72 |
|
---|
73 | /** The number of clusters. */
|
---|
74 | private final int k;
|
---|
75 |
|
---|
76 | /** The maximum number of iterations. */
|
---|
77 | private final int maxIterations;
|
---|
78 |
|
---|
79 | /** The fuzziness factor. */
|
---|
80 | private final double fuzziness;
|
---|
81 |
|
---|
82 | /** The convergence criteria. */
|
---|
83 | private final double epsilon;
|
---|
84 |
|
---|
85 | /** Random generator for choosing initial centers. */
|
---|
86 | private final RandomGenerator random;
|
---|
87 |
|
---|
88 | /** The membership matrix. */
|
---|
89 | private double[][] membershipMatrix;
|
---|
90 |
|
---|
91 | /** The list of points used in the last call to {@link #cluster(Collection)}. */
|
---|
92 | private List<T> points;
|
---|
93 |
|
---|
94 | /** The list of clusters resulting from the last call to {@link #cluster(Collection)}. */
|
---|
95 | private List<CentroidCluster<T>> clusters;
|
---|
96 |
|
---|
97 | /**
|
---|
98 | * Creates a new instance of a FuzzyKMeansClusterer.
|
---|
99 | * <p>
|
---|
100 | * The euclidean distance will be used as default distance measure.
|
---|
101 | *
|
---|
102 | * @param k the number of clusters to split the data into
|
---|
103 | * @param fuzziness the fuzziness factor, must be > 1.0
|
---|
104 | * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0}
|
---|
105 | */
|
---|
106 | public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException {
|
---|
107 | this(k, fuzziness, -1, new EuclideanDistance());
|
---|
108 | }
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Creates a new instance of a FuzzyKMeansClusterer.
|
---|
112 | *
|
---|
113 | * @param k the number of clusters to split the data into
|
---|
114 | * @param fuzziness the fuzziness factor, must be > 1.0
|
---|
115 | * @param maxIterations the maximum number of iterations to run the algorithm for.
|
---|
116 | * If negative, no maximum will be used.
|
---|
117 | * @param measure the distance measure to use
|
---|
118 | * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0}
|
---|
119 | */
|
---|
120 | public FuzzyKMeansClusterer(final int k, final double fuzziness,
|
---|
121 | final int maxIterations, final DistanceMeasure measure)
|
---|
122 | throws NumberIsTooSmallException {
|
---|
123 | this(k, fuzziness, maxIterations, measure, DEFAULT_EPSILON, new JDKRandomGenerator());
|
---|
124 | }
|
---|
125 |
|
---|
126 | /**
|
---|
127 | * Creates a new instance of a FuzzyKMeansClusterer.
|
---|
128 | *
|
---|
129 | * @param k the number of clusters to split the data into
|
---|
130 | * @param fuzziness the fuzziness factor, must be > 1.0
|
---|
131 | * @param maxIterations the maximum number of iterations to run the algorithm for.
|
---|
132 | * If negative, no maximum will be used.
|
---|
133 | * @param measure the distance measure to use
|
---|
134 | * @param epsilon the convergence criteria (default is 1e-3)
|
---|
135 | * @param random random generator to use for choosing initial centers
|
---|
136 | * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0}
|
---|
137 | */
|
---|
138 | public FuzzyKMeansClusterer(final int k, final double fuzziness,
|
---|
139 | final int maxIterations, final DistanceMeasure measure,
|
---|
140 | final double epsilon, final RandomGenerator random)
|
---|
141 | throws NumberIsTooSmallException {
|
---|
142 |
|
---|
143 | super(measure);
|
---|
144 |
|
---|
145 | if (fuzziness <= 1.0d) {
|
---|
146 | throw new NumberIsTooSmallException(fuzziness, 1.0, false);
|
---|
147 | }
|
---|
148 | this.k = k;
|
---|
149 | this.fuzziness = fuzziness;
|
---|
150 | this.maxIterations = maxIterations;
|
---|
151 | this.epsilon = epsilon;
|
---|
152 | this.random = random;
|
---|
153 |
|
---|
154 | this.membershipMatrix = null;
|
---|
155 | this.points = null;
|
---|
156 | this.clusters = null;
|
---|
157 | }
|
---|
158 |
|
---|
159 | /**
|
---|
160 | * Return the number of clusters this instance will use.
|
---|
161 | * @return the number of clusters
|
---|
162 | */
|
---|
163 | public int getK() {
|
---|
164 | return k;
|
---|
165 | }
|
---|
166 |
|
---|
167 | /**
|
---|
168 | * Returns the fuzziness factor used by this instance.
|
---|
169 | * @return the fuzziness factor
|
---|
170 | */
|
---|
171 | public double getFuzziness() {
|
---|
172 | return fuzziness;
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Returns the maximum number of iterations this instance will use.
|
---|
177 | * @return the maximum number of iterations, or -1 if no maximum is set
|
---|
178 | */
|
---|
179 | public int getMaxIterations() {
|
---|
180 | return maxIterations;
|
---|
181 | }
|
---|
182 |
|
---|
183 | /**
|
---|
184 | * Returns the convergence criteria used by this instance.
|
---|
185 | * @return the convergence criteria
|
---|
186 | */
|
---|
187 | public double getEpsilon() {
|
---|
188 | return epsilon;
|
---|
189 | }
|
---|
190 |
|
---|
191 | /**
|
---|
192 | * Returns the random generator this instance will use.
|
---|
193 | * @return the random generator
|
---|
194 | */
|
---|
195 | public RandomGenerator getRandomGenerator() {
|
---|
196 | return random;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /**
|
---|
200 | * Returns the {@code nxk} membership matrix, where {@code n} is the number
|
---|
201 | * of data points and {@code k} the number of clusters.
|
---|
202 | * <p>
|
---|
203 | * The element U<sub>i,j</sub> represents the membership value for data point {@code i}
|
---|
204 | * to cluster {@code j}.
|
---|
205 | *
|
---|
206 | * @return the membership matrix
|
---|
207 | * @throws MathIllegalStateException if {@link #cluster(Collection)} has not been called before
|
---|
208 | */
|
---|
209 | public RealMatrix getMembershipMatrix() {
|
---|
210 | if (membershipMatrix == null) {
|
---|
211 | throw new MathIllegalStateException();
|
---|
212 | }
|
---|
213 | return MatrixUtils.createRealMatrix(membershipMatrix);
|
---|
214 | }
|
---|
215 |
|
---|
216 | /**
|
---|
217 | * Returns an unmodifiable list of the data points used in the last
|
---|
218 | * call to {@link #cluster(Collection)}.
|
---|
219 | * @return the list of data points, or {@code null} if {@link #cluster(Collection)} has
|
---|
220 | * not been called before.
|
---|
221 | */
|
---|
222 | public List<T> getDataPoints() {
|
---|
223 | return points;
|
---|
224 | }
|
---|
225 |
|
---|
226 | /**
|
---|
227 | * Returns the list of clusters resulting from the last call to {@link #cluster(Collection)}.
|
---|
228 | * @return the list of clusters, or {@code null} if {@link #cluster(Collection)} has
|
---|
229 | * not been called before.
|
---|
230 | */
|
---|
231 | public List<CentroidCluster<T>> getClusters() {
|
---|
232 | return clusters;
|
---|
233 | }
|
---|
234 |
|
---|
235 | /**
|
---|
236 | * Get the value of the objective function.
|
---|
237 | * @return the objective function evaluation as double value
|
---|
238 | * @throws MathIllegalStateException if {@link #cluster(Collection)} has not been called before
|
---|
239 | */
|
---|
240 | public double getObjectiveFunctionValue() {
|
---|
241 | if (points == null || clusters == null) {
|
---|
242 | throw new MathIllegalStateException();
|
---|
243 | }
|
---|
244 |
|
---|
245 | int i = 0;
|
---|
246 | double objFunction = 0.0;
|
---|
247 | for (final T point : points) {
|
---|
248 | int j = 0;
|
---|
249 | for (final CentroidCluster<T> cluster : clusters) {
|
---|
250 | final double dist = distance(point, cluster.getCenter());
|
---|
251 | objFunction += (dist * dist) * FastMath.pow(membershipMatrix[i][j], fuzziness);
|
---|
252 | j++;
|
---|
253 | }
|
---|
254 | i++;
|
---|
255 | }
|
---|
256 | return objFunction;
|
---|
257 | }
|
---|
258 |
|
---|
259 | /**
|
---|
260 | * Performs Fuzzy K-Means cluster analysis.
|
---|
261 | *
|
---|
262 | * @param dataPoints the points to cluster
|
---|
263 | * @return the list of clusters
|
---|
264 | * @throws MathIllegalArgumentException if the data points are null or the number
|
---|
265 | * of clusters is larger than the number of data points
|
---|
266 | */
|
---|
267 | @Override
|
---|
268 | public List<CentroidCluster<T>> cluster(final Collection<T> dataPoints)
|
---|
269 | throws MathIllegalArgumentException {
|
---|
270 |
|
---|
271 | // sanity checks
|
---|
272 | MathUtils.checkNotNull(dataPoints);
|
---|
273 |
|
---|
274 | final int size = dataPoints.size();
|
---|
275 |
|
---|
276 | // number of clusters has to be smaller or equal the number of data points
|
---|
277 | if (size < k) {
|
---|
278 | throw new NumberIsTooSmallException(size, k, false);
|
---|
279 | }
|
---|
280 |
|
---|
281 | // copy the input collection to an unmodifiable list with indexed access
|
---|
282 | points = Collections.unmodifiableList(new ArrayList<T>(dataPoints));
|
---|
283 | clusters = new ArrayList<CentroidCluster<T>>();
|
---|
284 | membershipMatrix = new double[size][k];
|
---|
285 | final double[][] oldMatrix = new double[size][k];
|
---|
286 |
|
---|
287 | // if no points are provided, return an empty list of clusters
|
---|
288 | if (size == 0) {
|
---|
289 | return clusters;
|
---|
290 | }
|
---|
291 |
|
---|
292 | initializeMembershipMatrix();
|
---|
293 |
|
---|
294 | // there is at least one point
|
---|
295 | final int pointDimension = points.get(0).getPoint().length;
|
---|
296 | for (int i = 0; i < k; i++) {
|
---|
297 | clusters.add(new CentroidCluster<T>(new DoublePoint(new double[pointDimension])));
|
---|
298 | }
|
---|
299 |
|
---|
300 | int iteration = 0;
|
---|
301 | final int max = (maxIterations < 0) ? Integer.MAX_VALUE : maxIterations;
|
---|
302 | double difference = 0.0;
|
---|
303 |
|
---|
304 | do {
|
---|
305 | saveMembershipMatrix(oldMatrix);
|
---|
306 | updateClusterCenters();
|
---|
307 | updateMembershipMatrix();
|
---|
308 | difference = calculateMaxMembershipChange(oldMatrix);
|
---|
309 | } while (difference > epsilon && ++iteration < max);
|
---|
310 |
|
---|
311 | return clusters;
|
---|
312 | }
|
---|
313 |
|
---|
314 | /**
|
---|
315 | * Update the cluster centers.
|
---|
316 | */
|
---|
317 | private void updateClusterCenters() {
|
---|
318 | int j = 0;
|
---|
319 | final List<CentroidCluster<T>> newClusters = new ArrayList<CentroidCluster<T>>(k);
|
---|
320 | for (final CentroidCluster<T> cluster : clusters) {
|
---|
321 | final Clusterable center = cluster.getCenter();
|
---|
322 | int i = 0;
|
---|
323 | double[] arr = new double[center.getPoint().length];
|
---|
324 | double sum = 0.0;
|
---|
325 | for (final T point : points) {
|
---|
326 | final double u = FastMath.pow(membershipMatrix[i][j], fuzziness);
|
---|
327 | final double[] pointArr = point.getPoint();
|
---|
328 | for (int idx = 0; idx < arr.length; idx++) {
|
---|
329 | arr[idx] += u * pointArr[idx];
|
---|
330 | }
|
---|
331 | sum += u;
|
---|
332 | i++;
|
---|
333 | }
|
---|
334 | MathArrays.scaleInPlace(1.0 / sum, arr);
|
---|
335 | newClusters.add(new CentroidCluster<T>(new DoublePoint(arr)));
|
---|
336 | j++;
|
---|
337 | }
|
---|
338 | clusters.clear();
|
---|
339 | clusters = newClusters;
|
---|
340 | }
|
---|
341 |
|
---|
342 | /**
|
---|
343 | * Updates the membership matrix and assigns the points to the cluster with
|
---|
344 | * the highest membership.
|
---|
345 | */
|
---|
346 | private void updateMembershipMatrix() {
|
---|
347 | for (int i = 0; i < points.size(); i++) {
|
---|
348 | final T point = points.get(i);
|
---|
349 | double maxMembership = Double.MIN_VALUE;
|
---|
350 | int newCluster = -1;
|
---|
351 | for (int j = 0; j < clusters.size(); j++) {
|
---|
352 | double sum = 0.0;
|
---|
353 | final double distA = FastMath.abs(distance(point, clusters.get(j).getCenter()));
|
---|
354 |
|
---|
355 | if (distA != 0.0) {
|
---|
356 | for (final CentroidCluster<T> c : clusters) {
|
---|
357 | final double distB = FastMath.abs(distance(point, c.getCenter()));
|
---|
358 | if (distB == 0.0) {
|
---|
359 | sum = Double.POSITIVE_INFINITY;
|
---|
360 | break;
|
---|
361 | }
|
---|
362 | sum += FastMath.pow(distA / distB, 2.0 / (fuzziness - 1.0));
|
---|
363 | }
|
---|
364 | }
|
---|
365 |
|
---|
366 | double membership;
|
---|
367 | if (sum == 0.0) {
|
---|
368 | membership = 1.0;
|
---|
369 | } else if (sum == Double.POSITIVE_INFINITY) {
|
---|
370 | membership = 0.0;
|
---|
371 | } else {
|
---|
372 | membership = 1.0 / sum;
|
---|
373 | }
|
---|
374 | membershipMatrix[i][j] = membership;
|
---|
375 |
|
---|
376 | if (membershipMatrix[i][j] > maxMembership) {
|
---|
377 | maxMembership = membershipMatrix[i][j];
|
---|
378 | newCluster = j;
|
---|
379 | }
|
---|
380 | }
|
---|
381 | clusters.get(newCluster).addPoint(point);
|
---|
382 | }
|
---|
383 | }
|
---|
384 |
|
---|
385 | /**
|
---|
386 | * Initialize the membership matrix with random values.
|
---|
387 | */
|
---|
388 | private void initializeMembershipMatrix() {
|
---|
389 | for (int i = 0; i < points.size(); i++) {
|
---|
390 | for (int j = 0; j < k; j++) {
|
---|
391 | membershipMatrix[i][j] = random.nextDouble();
|
---|
392 | }
|
---|
393 | membershipMatrix[i] = MathArrays.normalizeArray(membershipMatrix[i], 1.0);
|
---|
394 | }
|
---|
395 | }
|
---|
396 |
|
---|
397 | /**
|
---|
398 | * Calculate the maximum element-by-element change of the membership matrix
|
---|
399 | * for the current iteration.
|
---|
400 | *
|
---|
401 | * @param matrix the membership matrix of the previous iteration
|
---|
402 | * @return the maximum membership matrix change
|
---|
403 | */
|
---|
404 | private double calculateMaxMembershipChange(final double[][] matrix) {
|
---|
405 | double maxMembership = 0.0;
|
---|
406 | for (int i = 0; i < points.size(); i++) {
|
---|
407 | for (int j = 0; j < clusters.size(); j++) {
|
---|
408 | double v = FastMath.abs(membershipMatrix[i][j] - matrix[i][j]);
|
---|
409 | maxMembership = FastMath.max(v, maxMembership);
|
---|
410 | }
|
---|
411 | }
|
---|
412 | return maxMembership;
|
---|
413 | }
|
---|
414 |
|
---|
415 | /**
|
---|
416 | * Copy the membership matrix into the provided matrix.
|
---|
417 | *
|
---|
418 | * @param matrix the place to store the membership matrix
|
---|
419 | */
|
---|
420 | private void saveMembershipMatrix(final double[][] matrix) {
|
---|
421 | for (int i = 0; i < points.size(); i++) {
|
---|
422 | System.arraycopy(membershipMatrix[i], 0, matrix[i], 0, clusters.size());
|
---|
423 | }
|
---|
424 | }
|
---|
425 |
|
---|
426 | }
|
---|