1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.linear;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.MaxCountExceededException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.util.ExceptionContext;
|
---|
23 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
24 | import agents.anac.y2019.harddealer.math3.util.IterationManager;
|
---|
25 | import agents.anac.y2019.harddealer.math3.util.MathUtils;
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * <p>
|
---|
29 | * Implementation of the SYMMLQ iterative linear solver proposed by <a
|
---|
30 | * href="#PAIG1975">Paige and Saunders (1975)</a>. This implementation is
|
---|
31 | * largely based on the FORTRAN code by Pr. Michael A. Saunders, available <a
|
---|
32 | * href="http://www.stanford.edu/group/SOL/software/symmlq/f77/">here</a>.
|
---|
33 | * </p>
|
---|
34 | * <p>
|
---|
35 | * SYMMLQ is designed to solve the system of linear equations A · x = b
|
---|
36 | * where A is an n × n self-adjoint linear operator (defined as a
|
---|
37 | * {@link RealLinearOperator}), and b is a given vector. The operator A is not
|
---|
38 | * required to be positive definite. If A is known to be definite, the method of
|
---|
39 | * conjugate gradients might be preferred, since it will require about the same
|
---|
40 | * number of iterations as SYMMLQ but slightly less work per iteration.
|
---|
41 | * </p>
|
---|
42 | * <p>
|
---|
43 | * SYMMLQ is designed to solve the system (A - shift · I) · x = b,
|
---|
44 | * where shift is a specified scalar value. If shift and b are suitably chosen,
|
---|
45 | * the computed vector x may approximate an (unnormalized) eigenvector of A, as
|
---|
46 | * in the methods of inverse iteration and/or Rayleigh-quotient iteration.
|
---|
47 | * Again, the linear operator (A - shift · I) need not be positive
|
---|
48 | * definite (but <em>must</em> be self-adjoint). The work per iteration is very
|
---|
49 | * slightly less if shift = 0.
|
---|
50 | * </p>
|
---|
51 | * <h3>Preconditioning</h3>
|
---|
52 | * <p>
|
---|
53 | * Preconditioning may reduce the number of iterations required. The solver may
|
---|
54 | * be provided with a positive definite preconditioner
|
---|
55 | * M = P<sup>T</sup> · P
|
---|
56 | * that is known to approximate
|
---|
57 | * (A - shift · I)<sup>-1</sup> in some sense, where matrix-vector
|
---|
58 | * products of the form M · y = x can be computed efficiently. Then
|
---|
59 | * SYMMLQ will implicitly solve the system of equations
|
---|
60 | * P · (A - shift · I) · P<sup>T</sup> ·
|
---|
61 | * x<sub>hat</sub> = P · b, i.e.
|
---|
62 | * A<sub>hat</sub> · x<sub>hat</sub> = b<sub>hat</sub>,
|
---|
63 | * where
|
---|
64 | * A<sub>hat</sub> = P · (A - shift · I) · P<sup>T</sup>,
|
---|
65 | * b<sub>hat</sub> = P · b,
|
---|
66 | * and return the solution
|
---|
67 | * x = P<sup>T</sup> · x<sub>hat</sub>.
|
---|
68 | * The associated residual is
|
---|
69 | * r<sub>hat</sub> = b<sub>hat</sub> - A<sub>hat</sub> · x<sub>hat</sub>
|
---|
70 | * = P · [b - (A - shift · I) · x]
|
---|
71 | * = P · r.
|
---|
72 | * </p>
|
---|
73 | * <p>
|
---|
74 | * In the case of preconditioning, the {@link IterativeLinearSolverEvent}s that
|
---|
75 | * this solver fires are such that
|
---|
76 | * {@link IterativeLinearSolverEvent#getNormOfResidual()} returns the norm of
|
---|
77 | * the <em>preconditioned</em>, updated residual, ||P · r||, not the norm
|
---|
78 | * of the <em>true</em> residual ||r||.
|
---|
79 | * </p>
|
---|
80 | * <h3><a id="stopcrit">Default stopping criterion</a></h3>
|
---|
81 | * <p>
|
---|
82 | * A default stopping criterion is implemented. The iterations stop when || rhat
|
---|
83 | * || ≤ δ || Ahat || || xhat ||, where xhat is the current estimate of
|
---|
84 | * the solution of the transformed system, rhat the current estimate of the
|
---|
85 | * corresponding residual, and δ a user-specified tolerance.
|
---|
86 | * </p>
|
---|
87 | * <h3>Iteration count</h3>
|
---|
88 | * <p>
|
---|
89 | * In the present context, an iteration should be understood as one evaluation
|
---|
90 | * of the matrix-vector product A · x. The initialization phase therefore
|
---|
91 | * counts as one iteration. If the user requires checks on the symmetry of A,
|
---|
92 | * this entails one further matrix-vector product in the initial phase. This
|
---|
93 | * further product is <em>not</em> accounted for in the iteration count. In
|
---|
94 | * other words, the number of iterations required to reach convergence will be
|
---|
95 | * identical, whether checks have been required or not.
|
---|
96 | * </p>
|
---|
97 | * <p>
|
---|
98 | * The present definition of the iteration count differs from that adopted in
|
---|
99 | * the original FOTRAN code, where the initialization phase was <em>not</em>
|
---|
100 | * taken into account.
|
---|
101 | * </p>
|
---|
102 | * <h3><a id="initguess">Initial guess of the solution</a></h3>
|
---|
103 | * <p>
|
---|
104 | * The {@code x} parameter in
|
---|
105 | * <ul>
|
---|
106 | * <li>{@link #solve(RealLinearOperator, RealVector, RealVector)},</li>
|
---|
107 | * <li>{@link #solve(RealLinearOperator, RealLinearOperator, RealVector, RealVector)}},</li>
|
---|
108 | * <li>{@link #solveInPlace(RealLinearOperator, RealVector, RealVector)},</li>
|
---|
109 | * <li>{@link #solveInPlace(RealLinearOperator, RealLinearOperator, RealVector, RealVector)},</li>
|
---|
110 | * <li>{@link #solveInPlace(RealLinearOperator, RealLinearOperator, RealVector, RealVector, boolean, double)},</li>
|
---|
111 | * </ul>
|
---|
112 | * should not be considered as an initial guess, as it is set to zero in the
|
---|
113 | * initial phase. If x<sub>0</sub> is known to be a good approximation to x, one
|
---|
114 | * should compute r<sub>0</sub> = b - A · x, solve A · dx = r0,
|
---|
115 | * and set x = x<sub>0</sub> + dx.
|
---|
116 | * </p>
|
---|
117 | * <h3><a id="context">Exception context</a></h3>
|
---|
118 | * <p>
|
---|
119 | * Besides standard {@link DimensionMismatchException}, this class might throw
|
---|
120 | * {@link NonSelfAdjointOperatorException} if the linear operator or the
|
---|
121 | * preconditioner are not symmetric. In this case, the {@link ExceptionContext}
|
---|
122 | * provides more information
|
---|
123 | * <ul>
|
---|
124 | * <li>key {@code "operator"} points to the offending linear operator, say L,</li>
|
---|
125 | * <li>key {@code "vector1"} points to the first offending vector, say x,
|
---|
126 | * <li>key {@code "vector2"} points to the second offending vector, say y, such
|
---|
127 | * that x<sup>T</sup> · L · y ≠ y<sup>T</sup> · L
|
---|
128 | * · x (within a certain accuracy).</li>
|
---|
129 | * </ul>
|
---|
130 | * </p>
|
---|
131 | * <p>
|
---|
132 | * {@link NonPositiveDefiniteOperatorException} might also be thrown in case the
|
---|
133 | * preconditioner is not positive definite. The relevant keys to the
|
---|
134 | * {@link ExceptionContext} are
|
---|
135 | * <ul>
|
---|
136 | * <li>key {@code "operator"}, which points to the offending linear operator,
|
---|
137 | * say L,</li>
|
---|
138 | * <li>key {@code "vector"}, which points to the offending vector, say x, such
|
---|
139 | * that x<sup>T</sup> · L · x < 0.</li>
|
---|
140 | * </ul>
|
---|
141 | * </p>
|
---|
142 | * <h3>References</h3>
|
---|
143 | * <dl>
|
---|
144 | * <dt><a id="PAIG1975">Paige and Saunders (1975)</a></dt>
|
---|
145 | * <dd>C. C. Paige and M. A. Saunders, <a
|
---|
146 | * href="http://www.stanford.edu/group/SOL/software/symmlq/PS75.pdf"><em>
|
---|
147 | * Solution of Sparse Indefinite Systems of Linear Equations</em></a>, SIAM
|
---|
148 | * Journal on Numerical Analysis 12(4): 617-629, 1975</dd>
|
---|
149 | * </dl>
|
---|
150 | *
|
---|
151 | * @since 3.0
|
---|
152 | */
|
---|
153 | public class SymmLQ
|
---|
154 | extends PreconditionedIterativeLinearSolver {
|
---|
155 |
|
---|
156 | /*
|
---|
157 | * IMPLEMENTATION NOTES
|
---|
158 | * --------------------
|
---|
159 | * The implementation follows as closely as possible the notations of Paige
|
---|
160 | * and Saunders (1975). Attention must be paid to the fact that some
|
---|
161 | * quantities which are relevant to iteration k can only be computed in
|
---|
162 | * iteration (k+1). Therefore, minute attention must be paid to the index of
|
---|
163 | * each state variable of this algorithm.
|
---|
164 | *
|
---|
165 | * 1. Preconditioning
|
---|
166 | * ---------------
|
---|
167 | * The Lanczos iterations associated with Ahat and bhat read
|
---|
168 | * beta[1] = ||P * b||
|
---|
169 | * v[1] = P * b / beta[1]
|
---|
170 | * beta[k+1] * v[k+1] = Ahat * v[k] - alpha[k] * v[k] - beta[k] * v[k-1]
|
---|
171 | * = P * (A - shift * I) * P' * v[k] - alpha[k] * v[k]
|
---|
172 | * - beta[k] * v[k-1]
|
---|
173 | * Multiplying both sides by P', we get
|
---|
174 | * beta[k+1] * (P' * v)[k+1] = M * (A - shift * I) * (P' * v)[k]
|
---|
175 | * - alpha[k] * (P' * v)[k]
|
---|
176 | * - beta[k] * (P' * v[k-1]),
|
---|
177 | * and
|
---|
178 | * alpha[k+1] = v[k+1]' * Ahat * v[k+1]
|
---|
179 | * = v[k+1]' * P * (A - shift * I) * P' * v[k+1]
|
---|
180 | * = (P' * v)[k+1]' * (A - shift * I) * (P' * v)[k+1].
|
---|
181 | *
|
---|
182 | * In other words, the Lanczos iterations are unchanged, except for the fact
|
---|
183 | * that we really compute (P' * v) instead of v. It can easily be checked
|
---|
184 | * that all other formulas are unchanged. It must be noted that P is never
|
---|
185 | * explicitly used, only matrix-vector products involving are invoked.
|
---|
186 | *
|
---|
187 | * 2. Accounting for the shift parameter
|
---|
188 | * ----------------------------------
|
---|
189 | * Is trivial: each time A.operate(x) is invoked, one must subtract shift * x
|
---|
190 | * to the result.
|
---|
191 | *
|
---|
192 | * 3. Accounting for the goodb flag
|
---|
193 | * -----------------------------
|
---|
194 | * When goodb is set to true, the component of xL along b is computed
|
---|
195 | * separately. From Paige and Saunders (1975), equation (5.9), we have
|
---|
196 | * wbar[k+1] = s[k] * wbar[k] - c[k] * v[k+1],
|
---|
197 | * wbar[1] = v[1].
|
---|
198 | * Introducing wbar2[k] = wbar[k] - s[1] * ... * s[k-1] * v[1], it can
|
---|
199 | * easily be verified by induction that wbar2 follows the same recursive
|
---|
200 | * relation
|
---|
201 | * wbar2[k+1] = s[k] * wbar2[k] - c[k] * v[k+1],
|
---|
202 | * wbar2[1] = 0,
|
---|
203 | * and we then have
|
---|
204 | * w[k] = c[k] * wbar2[k] + s[k] * v[k+1]
|
---|
205 | * + s[1] * ... * s[k-1] * c[k] * v[1].
|
---|
206 | * Introducing w2[k] = w[k] - s[1] * ... * s[k-1] * c[k] * v[1], we find,
|
---|
207 | * from (5.10)
|
---|
208 | * xL[k] = zeta[1] * w[1] + ... + zeta[k] * w[k]
|
---|
209 | * = zeta[1] * w2[1] + ... + zeta[k] * w2[k]
|
---|
210 | * + (s[1] * c[2] * zeta[2] + ...
|
---|
211 | * + s[1] * ... * s[k-1] * c[k] * zeta[k]) * v[1]
|
---|
212 | * = xL2[k] + bstep[k] * v[1],
|
---|
213 | * where xL2[k] is defined by
|
---|
214 | * xL2[0] = 0,
|
---|
215 | * xL2[k+1] = xL2[k] + zeta[k+1] * w2[k+1],
|
---|
216 | * and bstep is defined by
|
---|
217 | * bstep[1] = 0,
|
---|
218 | * bstep[k] = bstep[k-1] + s[1] * ... * s[k-1] * c[k] * zeta[k].
|
---|
219 | * We also have, from (5.11)
|
---|
220 | * xC[k] = xL[k-1] + zbar[k] * wbar[k]
|
---|
221 | * = xL2[k-1] + zbar[k] * wbar2[k]
|
---|
222 | * + (bstep[k-1] + s[1] * ... * s[k-1] * zbar[k]) * v[1].
|
---|
223 | */
|
---|
224 |
|
---|
225 | /**
|
---|
226 | * <p>
|
---|
227 | * A simple container holding the non-final variables used in the
|
---|
228 | * iterations. Making the current state of the solver visible from the
|
---|
229 | * outside is necessary, because during the iterations, {@code x} does not
|
---|
230 | * <em>exactly</em> hold the current estimate of the solution. Indeed,
|
---|
231 | * {@code x} needs in general to be moved from the LQ point to the CG point.
|
---|
232 | * Besides, additional upudates must be carried out in case {@code goodb} is
|
---|
233 | * set to {@code true}.
|
---|
234 | * </p>
|
---|
235 | * <p>
|
---|
236 | * In all subsequent comments, the description of the state variables refer
|
---|
237 | * to their value after a call to {@link #update()}. In these comments, k is
|
---|
238 | * the current number of evaluations of matrix-vector products.
|
---|
239 | * </p>
|
---|
240 | */
|
---|
241 | private static class State {
|
---|
242 | /** The cubic root of {@link #MACH_PREC}. */
|
---|
243 | static final double CBRT_MACH_PREC;
|
---|
244 |
|
---|
245 | /** The machine precision. */
|
---|
246 | static final double MACH_PREC;
|
---|
247 |
|
---|
248 | /** Reference to the linear operator. */
|
---|
249 | private final RealLinearOperator a;
|
---|
250 |
|
---|
251 | /** Reference to the right-hand side vector. */
|
---|
252 | private final RealVector b;
|
---|
253 |
|
---|
254 | /** {@code true} if symmetry of matrix and conditioner must be checked. */
|
---|
255 | private final boolean check;
|
---|
256 |
|
---|
257 | /**
|
---|
258 | * The value of the custom tolerance δ for the default stopping
|
---|
259 | * criterion.
|
---|
260 | */
|
---|
261 | private final double delta;
|
---|
262 |
|
---|
263 | /** The value of beta[k+1]. */
|
---|
264 | private double beta;
|
---|
265 |
|
---|
266 | /** The value of beta[1]. */
|
---|
267 | private double beta1;
|
---|
268 |
|
---|
269 | /** The value of bstep[k-1]. */
|
---|
270 | private double bstep;
|
---|
271 |
|
---|
272 | /** The estimate of the norm of P * rC[k]. */
|
---|
273 | private double cgnorm;
|
---|
274 |
|
---|
275 | /** The value of dbar[k+1] = -beta[k+1] * c[k-1]. */
|
---|
276 | private double dbar;
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * The value of gamma[k] * zeta[k]. Was called {@code rhs1} in the
|
---|
280 | * initial code.
|
---|
281 | */
|
---|
282 | private double gammaZeta;
|
---|
283 |
|
---|
284 | /** The value of gbar[k]. */
|
---|
285 | private double gbar;
|
---|
286 |
|
---|
287 | /** The value of max(|alpha[1]|, gamma[1], ..., gamma[k-1]). */
|
---|
288 | private double gmax;
|
---|
289 |
|
---|
290 | /** The value of min(|alpha[1]|, gamma[1], ..., gamma[k-1]). */
|
---|
291 | private double gmin;
|
---|
292 |
|
---|
293 | /** Copy of the {@code goodb} parameter. */
|
---|
294 | private final boolean goodb;
|
---|
295 |
|
---|
296 | /** {@code true} if the default convergence criterion is verified. */
|
---|
297 | private boolean hasConverged;
|
---|
298 |
|
---|
299 | /** The estimate of the norm of P * rL[k-1]. */
|
---|
300 | private double lqnorm;
|
---|
301 |
|
---|
302 | /** Reference to the preconditioner, M. */
|
---|
303 | private final RealLinearOperator m;
|
---|
304 |
|
---|
305 | /**
|
---|
306 | * The value of (-eps[k+1] * zeta[k-1]). Was called {@code rhs2} in the
|
---|
307 | * initial code.
|
---|
308 | */
|
---|
309 | private double minusEpsZeta;
|
---|
310 |
|
---|
311 | /** The value of M * b. */
|
---|
312 | private final RealVector mb;
|
---|
313 |
|
---|
314 | /** The value of beta[k]. */
|
---|
315 | private double oldb;
|
---|
316 |
|
---|
317 | /** The value of beta[k] * M^(-1) * P' * v[k]. */
|
---|
318 | private RealVector r1;
|
---|
319 |
|
---|
320 | /** The value of beta[k+1] * M^(-1) * P' * v[k+1]. */
|
---|
321 | private RealVector r2;
|
---|
322 |
|
---|
323 | /**
|
---|
324 | * The value of the updated, preconditioned residual P * r. This value is
|
---|
325 | * given by {@code min(}{@link #cgnorm}{@code , }{@link #lqnorm}{@code )}.
|
---|
326 | */
|
---|
327 | private double rnorm;
|
---|
328 |
|
---|
329 | /** Copy of the {@code shift} parameter. */
|
---|
330 | private final double shift;
|
---|
331 |
|
---|
332 | /** The value of s[1] * ... * s[k-1]. */
|
---|
333 | private double snprod;
|
---|
334 |
|
---|
335 | /**
|
---|
336 | * An estimate of the square of the norm of A * V[k], based on Paige and
|
---|
337 | * Saunders (1975), equation (3.3).
|
---|
338 | */
|
---|
339 | private double tnorm;
|
---|
340 |
|
---|
341 | /**
|
---|
342 | * The value of P' * wbar[k] or P' * (wbar[k] - s[1] * ... * s[k-1] *
|
---|
343 | * v[1]) if {@code goodb} is {@code true}. Was called {@code w} in the
|
---|
344 | * initial code.
|
---|
345 | */
|
---|
346 | private RealVector wbar;
|
---|
347 |
|
---|
348 | /**
|
---|
349 | * A reference to the vector to be updated with the solution. Contains
|
---|
350 | * the value of xL[k-1] if {@code goodb} is {@code false}, (xL[k-1] -
|
---|
351 | * bstep[k-1] * v[1]) otherwise.
|
---|
352 | */
|
---|
353 | private final RealVector xL;
|
---|
354 |
|
---|
355 | /** The value of beta[k+1] * P' * v[k+1]. */
|
---|
356 | private RealVector y;
|
---|
357 |
|
---|
358 | /** The value of zeta[1]^2 + ... + zeta[k-1]^2. */
|
---|
359 | private double ynorm2;
|
---|
360 |
|
---|
361 | /** The value of {@code b == 0} (exact floating-point equality). */
|
---|
362 | private boolean bIsNull;
|
---|
363 |
|
---|
364 | static {
|
---|
365 | MACH_PREC = FastMath.ulp(1.);
|
---|
366 | CBRT_MACH_PREC = FastMath.cbrt(MACH_PREC);
|
---|
367 | }
|
---|
368 |
|
---|
369 | /**
|
---|
370 | * Creates and inits to k = 1 a new instance of this class.
|
---|
371 | *
|
---|
372 | * @param a the linear operator A of the system
|
---|
373 | * @param m the preconditioner, M (can be {@code null})
|
---|
374 | * @param b the right-hand side vector
|
---|
375 | * @param goodb usually {@code false}, except if {@code x} is expected
|
---|
376 | * to contain a large multiple of {@code b}
|
---|
377 | * @param shift the amount to be subtracted to all diagonal elements of
|
---|
378 | * A
|
---|
379 | * @param delta the δ parameter for the default stopping criterion
|
---|
380 | * @param check {@code true} if self-adjointedness of both matrix and
|
---|
381 | * preconditioner should be checked
|
---|
382 | */
|
---|
383 | State(final RealLinearOperator a,
|
---|
384 | final RealLinearOperator m,
|
---|
385 | final RealVector b,
|
---|
386 | final boolean goodb,
|
---|
387 | final double shift,
|
---|
388 | final double delta,
|
---|
389 | final boolean check) {
|
---|
390 | this.a = a;
|
---|
391 | this.m = m;
|
---|
392 | this.b = b;
|
---|
393 | this.xL = new ArrayRealVector(b.getDimension());
|
---|
394 | this.goodb = goodb;
|
---|
395 | this.shift = shift;
|
---|
396 | this.mb = m == null ? b : m.operate(b);
|
---|
397 | this.hasConverged = false;
|
---|
398 | this.check = check;
|
---|
399 | this.delta = delta;
|
---|
400 | }
|
---|
401 |
|
---|
402 | /**
|
---|
403 | * Performs a symmetry check on the specified linear operator, and throws an
|
---|
404 | * exception in case this check fails. Given a linear operator L, and a
|
---|
405 | * vector x, this method checks that
|
---|
406 | * x' · L · y = y' · L · x
|
---|
407 | * (within a given accuracy), where y = L · x.
|
---|
408 | *
|
---|
409 | * @param l the linear operator L
|
---|
410 | * @param x the candidate vector x
|
---|
411 | * @param y the candidate vector y = L · x
|
---|
412 | * @param z the vector z = L · y
|
---|
413 | * @throws NonSelfAdjointOperatorException when the test fails
|
---|
414 | */
|
---|
415 | private static void checkSymmetry(final RealLinearOperator l,
|
---|
416 | final RealVector x, final RealVector y, final RealVector z)
|
---|
417 | throws NonSelfAdjointOperatorException {
|
---|
418 | final double s = y.dotProduct(y);
|
---|
419 | final double t = x.dotProduct(z);
|
---|
420 | final double epsa = (s + MACH_PREC) * CBRT_MACH_PREC;
|
---|
421 | if (FastMath.abs(s - t) > epsa) {
|
---|
422 | final NonSelfAdjointOperatorException e;
|
---|
423 | e = new NonSelfAdjointOperatorException();
|
---|
424 | final ExceptionContext context = e.getContext();
|
---|
425 | context.setValue(SymmLQ.OPERATOR, l);
|
---|
426 | context.setValue(SymmLQ.VECTOR1, x);
|
---|
427 | context.setValue(SymmLQ.VECTOR2, y);
|
---|
428 | context.setValue(SymmLQ.THRESHOLD, Double.valueOf(epsa));
|
---|
429 | throw e;
|
---|
430 | }
|
---|
431 | }
|
---|
432 |
|
---|
433 | /**
|
---|
434 | * Throws a new {@link NonPositiveDefiniteOperatorException} with
|
---|
435 | * appropriate context.
|
---|
436 | *
|
---|
437 | * @param l the offending linear operator
|
---|
438 | * @param v the offending vector
|
---|
439 | * @throws NonPositiveDefiniteOperatorException in any circumstances
|
---|
440 | */
|
---|
441 | private static void throwNPDLOException(final RealLinearOperator l,
|
---|
442 | final RealVector v) throws NonPositiveDefiniteOperatorException {
|
---|
443 | final NonPositiveDefiniteOperatorException e;
|
---|
444 | e = new NonPositiveDefiniteOperatorException();
|
---|
445 | final ExceptionContext context = e.getContext();
|
---|
446 | context.setValue(OPERATOR, l);
|
---|
447 | context.setValue(VECTOR, v);
|
---|
448 | throw e;
|
---|
449 | }
|
---|
450 |
|
---|
451 | /**
|
---|
452 | * A clone of the BLAS {@code DAXPY} function, which carries out the
|
---|
453 | * operation y ← a · x + y. This is for internal use only: no
|
---|
454 | * dimension checks are provided.
|
---|
455 | *
|
---|
456 | * @param a the scalar by which {@code x} is to be multiplied
|
---|
457 | * @param x the vector to be added to {@code y}
|
---|
458 | * @param y the vector to be incremented
|
---|
459 | */
|
---|
460 | private static void daxpy(final double a, final RealVector x,
|
---|
461 | final RealVector y) {
|
---|
462 | final int n = x.getDimension();
|
---|
463 | for (int i = 0; i < n; i++) {
|
---|
464 | y.setEntry(i, a * x.getEntry(i) + y.getEntry(i));
|
---|
465 | }
|
---|
466 | }
|
---|
467 |
|
---|
468 | /**
|
---|
469 | * A BLAS-like function, for the operation z ← a · x + b
|
---|
470 | * · y + z. This is for internal use only: no dimension checks are
|
---|
471 | * provided.
|
---|
472 | *
|
---|
473 | * @param a the scalar by which {@code x} is to be multiplied
|
---|
474 | * @param x the first vector to be added to {@code z}
|
---|
475 | * @param b the scalar by which {@code y} is to be multiplied
|
---|
476 | * @param y the second vector to be added to {@code z}
|
---|
477 | * @param z the vector to be incremented
|
---|
478 | */
|
---|
479 | private static void daxpbypz(final double a, final RealVector x,
|
---|
480 | final double b, final RealVector y, final RealVector z) {
|
---|
481 | final int n = z.getDimension();
|
---|
482 | for (int i = 0; i < n; i++) {
|
---|
483 | final double zi;
|
---|
484 | zi = a * x.getEntry(i) + b * y.getEntry(i) + z.getEntry(i);
|
---|
485 | z.setEntry(i, zi);
|
---|
486 | }
|
---|
487 | }
|
---|
488 |
|
---|
489 | /**
|
---|
490 | * <p>
|
---|
491 | * Move to the CG point if it seems better. In this version of SYMMLQ,
|
---|
492 | * the convergence tests involve only cgnorm, so we're unlikely to stop
|
---|
493 | * at an LQ point, except if the iteration limit interferes.
|
---|
494 | * </p>
|
---|
495 | * <p>
|
---|
496 | * Additional upudates are also carried out in case {@code goodb} is set
|
---|
497 | * to {@code true}.
|
---|
498 | * </p>
|
---|
499 | *
|
---|
500 | * @param x the vector to be updated with the refined value of xL
|
---|
501 | */
|
---|
502 | void refineSolution(final RealVector x) {
|
---|
503 | final int n = this.xL.getDimension();
|
---|
504 | if (lqnorm < cgnorm) {
|
---|
505 | if (!goodb) {
|
---|
506 | x.setSubVector(0, this.xL);
|
---|
507 | } else {
|
---|
508 | final double step = bstep / beta1;
|
---|
509 | for (int i = 0; i < n; i++) {
|
---|
510 | final double bi = mb.getEntry(i);
|
---|
511 | final double xi = this.xL.getEntry(i);
|
---|
512 | x.setEntry(i, xi + step * bi);
|
---|
513 | }
|
---|
514 | }
|
---|
515 | } else {
|
---|
516 | final double anorm = FastMath.sqrt(tnorm);
|
---|
517 | final double diag = gbar == 0. ? anorm * MACH_PREC : gbar;
|
---|
518 | final double zbar = gammaZeta / diag;
|
---|
519 | final double step = (bstep + snprod * zbar) / beta1;
|
---|
520 | // ynorm = FastMath.sqrt(ynorm2 + zbar * zbar);
|
---|
521 | if (!goodb) {
|
---|
522 | for (int i = 0; i < n; i++) {
|
---|
523 | final double xi = this.xL.getEntry(i);
|
---|
524 | final double wi = wbar.getEntry(i);
|
---|
525 | x.setEntry(i, xi + zbar * wi);
|
---|
526 | }
|
---|
527 | } else {
|
---|
528 | for (int i = 0; i < n; i++) {
|
---|
529 | final double xi = this.xL.getEntry(i);
|
---|
530 | final double wi = wbar.getEntry(i);
|
---|
531 | final double bi = mb.getEntry(i);
|
---|
532 | x.setEntry(i, xi + zbar * wi + step * bi);
|
---|
533 | }
|
---|
534 | }
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 | /**
|
---|
539 | * Performs the initial phase of the SYMMLQ algorithm. On return, the
|
---|
540 | * value of the state variables of {@code this} object correspond to k =
|
---|
541 | * 1.
|
---|
542 | */
|
---|
543 | void init() {
|
---|
544 | this.xL.set(0.);
|
---|
545 | /*
|
---|
546 | * Set up y for the first Lanczos vector. y and beta1 will be zero
|
---|
547 | * if b = 0.
|
---|
548 | */
|
---|
549 | this.r1 = this.b.copy();
|
---|
550 | this.y = this.m == null ? this.b.copy() : this.m.operate(this.r1);
|
---|
551 | if ((this.m != null) && this.check) {
|
---|
552 | checkSymmetry(this.m, this.r1, this.y, this.m.operate(this.y));
|
---|
553 | }
|
---|
554 |
|
---|
555 | this.beta1 = this.r1.dotProduct(this.y);
|
---|
556 | if (this.beta1 < 0.) {
|
---|
557 | throwNPDLOException(this.m, this.y);
|
---|
558 | }
|
---|
559 | if (this.beta1 == 0.) {
|
---|
560 | /* If b = 0 exactly, stop with x = 0. */
|
---|
561 | this.bIsNull = true;
|
---|
562 | return;
|
---|
563 | }
|
---|
564 | this.bIsNull = false;
|
---|
565 | this.beta1 = FastMath.sqrt(this.beta1);
|
---|
566 | /* At this point
|
---|
567 | * r1 = b,
|
---|
568 | * y = M * b,
|
---|
569 | * beta1 = beta[1].
|
---|
570 | */
|
---|
571 | final RealVector v = this.y.mapMultiply(1. / this.beta1);
|
---|
572 | this.y = this.a.operate(v);
|
---|
573 | if (this.check) {
|
---|
574 | checkSymmetry(this.a, v, this.y, this.a.operate(this.y));
|
---|
575 | }
|
---|
576 | /*
|
---|
577 | * Set up y for the second Lanczos vector. y and beta will be zero
|
---|
578 | * or very small if b is an eigenvector.
|
---|
579 | */
|
---|
580 | daxpy(-this.shift, v, this.y);
|
---|
581 | final double alpha = v.dotProduct(this.y);
|
---|
582 | daxpy(-alpha / this.beta1, this.r1, this.y);
|
---|
583 | /*
|
---|
584 | * At this point
|
---|
585 | * alpha = alpha[1]
|
---|
586 | * y = beta[2] * M^(-1) * P' * v[2]
|
---|
587 | */
|
---|
588 | /* Make sure r2 will be orthogonal to the first v. */
|
---|
589 | final double vty = v.dotProduct(this.y);
|
---|
590 | final double vtv = v.dotProduct(v);
|
---|
591 | daxpy(-vty / vtv, v, this.y);
|
---|
592 | this.r2 = this.y.copy();
|
---|
593 | if (this.m != null) {
|
---|
594 | this.y = this.m.operate(this.r2);
|
---|
595 | }
|
---|
596 | this.oldb = this.beta1;
|
---|
597 | this.beta = this.r2.dotProduct(this.y);
|
---|
598 | if (this.beta < 0.) {
|
---|
599 | throwNPDLOException(this.m, this.y);
|
---|
600 | }
|
---|
601 | this.beta = FastMath.sqrt(this.beta);
|
---|
602 | /*
|
---|
603 | * At this point
|
---|
604 | * oldb = beta[1]
|
---|
605 | * beta = beta[2]
|
---|
606 | * y = beta[2] * P' * v[2]
|
---|
607 | * r2 = beta[2] * M^(-1) * P' * v[2]
|
---|
608 | */
|
---|
609 | this.cgnorm = this.beta1;
|
---|
610 | this.gbar = alpha;
|
---|
611 | this.dbar = this.beta;
|
---|
612 | this.gammaZeta = this.beta1;
|
---|
613 | this.minusEpsZeta = 0.;
|
---|
614 | this.bstep = 0.;
|
---|
615 | this.snprod = 1.;
|
---|
616 | this.tnorm = alpha * alpha + this.beta * this.beta;
|
---|
617 | this.ynorm2 = 0.;
|
---|
618 | this.gmax = FastMath.abs(alpha) + MACH_PREC;
|
---|
619 | this.gmin = this.gmax;
|
---|
620 |
|
---|
621 | if (this.goodb) {
|
---|
622 | this.wbar = new ArrayRealVector(this.a.getRowDimension());
|
---|
623 | this.wbar.set(0.);
|
---|
624 | } else {
|
---|
625 | this.wbar = v;
|
---|
626 | }
|
---|
627 | updateNorms();
|
---|
628 | }
|
---|
629 |
|
---|
630 | /**
|
---|
631 | * Performs the next iteration of the algorithm. The iteration count
|
---|
632 | * should be incremented prior to calling this method. On return, the
|
---|
633 | * value of the state variables of {@code this} object correspond to the
|
---|
634 | * current iteration count {@code k}.
|
---|
635 | */
|
---|
636 | void update() {
|
---|
637 | final RealVector v = y.mapMultiply(1. / beta);
|
---|
638 | y = a.operate(v);
|
---|
639 | daxpbypz(-shift, v, -beta / oldb, r1, y);
|
---|
640 | final double alpha = v.dotProduct(y);
|
---|
641 | /*
|
---|
642 | * At this point
|
---|
643 | * v = P' * v[k],
|
---|
644 | * y = (A - shift * I) * P' * v[k] - beta[k] * M^(-1) * P' * v[k-1],
|
---|
645 | * alpha = v'[k] * P * (A - shift * I) * P' * v[k]
|
---|
646 | * - beta[k] * v[k]' * P * M^(-1) * P' * v[k-1]
|
---|
647 | * = v'[k] * P * (A - shift * I) * P' * v[k]
|
---|
648 | * - beta[k] * v[k]' * v[k-1]
|
---|
649 | * = alpha[k].
|
---|
650 | */
|
---|
651 | daxpy(-alpha / beta, r2, y);
|
---|
652 | /*
|
---|
653 | * At this point
|
---|
654 | * y = (A - shift * I) * P' * v[k] - alpha[k] * M^(-1) * P' * v[k]
|
---|
655 | * - beta[k] * M^(-1) * P' * v[k-1]
|
---|
656 | * = M^(-1) * P' * (P * (A - shift * I) * P' * v[k] -alpha[k] * v[k]
|
---|
657 | * - beta[k] * v[k-1])
|
---|
658 | * = beta[k+1] * M^(-1) * P' * v[k+1],
|
---|
659 | * from Paige and Saunders (1975), equation (3.2).
|
---|
660 | *
|
---|
661 | * WATCH-IT: the two following lines work only because y is no longer
|
---|
662 | * updated up to the end of the present iteration, and is
|
---|
663 | * reinitialized at the beginning of the next iteration.
|
---|
664 | */
|
---|
665 | r1 = r2;
|
---|
666 | r2 = y;
|
---|
667 | if (m != null) {
|
---|
668 | y = m.operate(r2);
|
---|
669 | }
|
---|
670 | oldb = beta;
|
---|
671 | beta = r2.dotProduct(y);
|
---|
672 | if (beta < 0.) {
|
---|
673 | throwNPDLOException(m, y);
|
---|
674 | }
|
---|
675 | beta = FastMath.sqrt(beta);
|
---|
676 | /*
|
---|
677 | * At this point
|
---|
678 | * r1 = beta[k] * M^(-1) * P' * v[k],
|
---|
679 | * r2 = beta[k+1] * M^(-1) * P' * v[k+1],
|
---|
680 | * y = beta[k+1] * P' * v[k+1],
|
---|
681 | * oldb = beta[k],
|
---|
682 | * beta = beta[k+1].
|
---|
683 | */
|
---|
684 | tnorm += alpha * alpha + oldb * oldb + beta * beta;
|
---|
685 | /*
|
---|
686 | * Compute the next plane rotation for Q. See Paige and Saunders
|
---|
687 | * (1975), equation (5.6), with
|
---|
688 | * gamma = gamma[k-1],
|
---|
689 | * c = c[k-1],
|
---|
690 | * s = s[k-1].
|
---|
691 | */
|
---|
692 | final double gamma = FastMath.sqrt(gbar * gbar + oldb * oldb);
|
---|
693 | final double c = gbar / gamma;
|
---|
694 | final double s = oldb / gamma;
|
---|
695 | /*
|
---|
696 | * The relations
|
---|
697 | * gbar[k] = s[k-1] * (-c[k-2] * beta[k]) - c[k-1] * alpha[k]
|
---|
698 | * = s[k-1] * dbar[k] - c[k-1] * alpha[k],
|
---|
699 | * delta[k] = c[k-1] * dbar[k] + s[k-1] * alpha[k],
|
---|
700 | * are not stated in Paige and Saunders (1975), but can be retrieved
|
---|
701 | * by expanding the (k, k-1) and (k, k) coefficients of the matrix in
|
---|
702 | * equation (5.5).
|
---|
703 | */
|
---|
704 | final double deltak = c * dbar + s * alpha;
|
---|
705 | gbar = s * dbar - c * alpha;
|
---|
706 | final double eps = s * beta;
|
---|
707 | dbar = -c * beta;
|
---|
708 | final double zeta = gammaZeta / gamma;
|
---|
709 | /*
|
---|
710 | * At this point
|
---|
711 | * gbar = gbar[k]
|
---|
712 | * deltak = delta[k]
|
---|
713 | * eps = eps[k+1]
|
---|
714 | * dbar = dbar[k+1]
|
---|
715 | * zeta = zeta[k-1]
|
---|
716 | */
|
---|
717 | final double zetaC = zeta * c;
|
---|
718 | final double zetaS = zeta * s;
|
---|
719 | final int n = xL.getDimension();
|
---|
720 | for (int i = 0; i < n; i++) {
|
---|
721 | final double xi = xL.getEntry(i);
|
---|
722 | final double vi = v.getEntry(i);
|
---|
723 | final double wi = wbar.getEntry(i);
|
---|
724 | xL.setEntry(i, xi + wi * zetaC + vi * zetaS);
|
---|
725 | wbar.setEntry(i, wi * s - vi * c);
|
---|
726 | }
|
---|
727 | /*
|
---|
728 | * At this point
|
---|
729 | * x = xL[k-1],
|
---|
730 | * ptwbar = P' wbar[k],
|
---|
731 | * see Paige and Saunders (1975), equations (5.9) and (5.10).
|
---|
732 | */
|
---|
733 | bstep += snprod * c * zeta;
|
---|
734 | snprod *= s;
|
---|
735 | gmax = FastMath.max(gmax, gamma);
|
---|
736 | gmin = FastMath.min(gmin, gamma);
|
---|
737 | ynorm2 += zeta * zeta;
|
---|
738 | gammaZeta = minusEpsZeta - deltak * zeta;
|
---|
739 | minusEpsZeta = -eps * zeta;
|
---|
740 | /*
|
---|
741 | * At this point
|
---|
742 | * snprod = s[1] * ... * s[k-1],
|
---|
743 | * gmax = max(|alpha[1]|, gamma[1], ..., gamma[k-1]),
|
---|
744 | * gmin = min(|alpha[1]|, gamma[1], ..., gamma[k-1]),
|
---|
745 | * ynorm2 = zeta[1]^2 + ... + zeta[k-1]^2,
|
---|
746 | * gammaZeta = gamma[k] * zeta[k],
|
---|
747 | * minusEpsZeta = -eps[k+1] * zeta[k-1].
|
---|
748 | * The relation for gammaZeta can be retrieved from Paige and
|
---|
749 | * Saunders (1975), equation (5.4a), last line of the vector
|
---|
750 | * gbar[k] * zbar[k] = -eps[k] * zeta[k-2] - delta[k] * zeta[k-1].
|
---|
751 | */
|
---|
752 | updateNorms();
|
---|
753 | }
|
---|
754 |
|
---|
755 | /**
|
---|
756 | * Computes the norms of the residuals, and checks for convergence.
|
---|
757 | * Updates {@link #lqnorm} and {@link #cgnorm}.
|
---|
758 | */
|
---|
759 | private void updateNorms() {
|
---|
760 | final double anorm = FastMath.sqrt(tnorm);
|
---|
761 | final double ynorm = FastMath.sqrt(ynorm2);
|
---|
762 | final double epsa = anorm * MACH_PREC;
|
---|
763 | final double epsx = anorm * ynorm * MACH_PREC;
|
---|
764 | final double epsr = anorm * ynorm * delta;
|
---|
765 | final double diag = gbar == 0. ? epsa : gbar;
|
---|
766 | lqnorm = FastMath.sqrt(gammaZeta * gammaZeta +
|
---|
767 | minusEpsZeta * minusEpsZeta);
|
---|
768 | final double qrnorm = snprod * beta1;
|
---|
769 | cgnorm = qrnorm * beta / FastMath.abs(diag);
|
---|
770 |
|
---|
771 | /*
|
---|
772 | * Estimate cond(A). In this version we look at the diagonals of L
|
---|
773 | * in the factorization of the tridiagonal matrix, T = L * Q.
|
---|
774 | * Sometimes, T[k] can be misleadingly ill-conditioned when T[k+1]
|
---|
775 | * is not, so we must be careful not to overestimate acond.
|
---|
776 | */
|
---|
777 | final double acond;
|
---|
778 | if (lqnorm <= cgnorm) {
|
---|
779 | acond = gmax / gmin;
|
---|
780 | } else {
|
---|
781 | acond = gmax / FastMath.min(gmin, FastMath.abs(diag));
|
---|
782 | }
|
---|
783 | if (acond * MACH_PREC >= 0.1) {
|
---|
784 | throw new IllConditionedOperatorException(acond);
|
---|
785 | }
|
---|
786 | if (beta1 <= epsx) {
|
---|
787 | /*
|
---|
788 | * x has converged to an eigenvector of A corresponding to the
|
---|
789 | * eigenvalue shift.
|
---|
790 | */
|
---|
791 | throw new SingularOperatorException();
|
---|
792 | }
|
---|
793 | rnorm = FastMath.min(cgnorm, lqnorm);
|
---|
794 | hasConverged = (cgnorm <= epsx) || (cgnorm <= epsr);
|
---|
795 | }
|
---|
796 |
|
---|
797 | /**
|
---|
798 | * Returns {@code true} if the default stopping criterion is fulfilled.
|
---|
799 | *
|
---|
800 | * @return {@code true} if convergence of the iterations has occurred
|
---|
801 | */
|
---|
802 | boolean hasConverged() {
|
---|
803 | return hasConverged;
|
---|
804 | }
|
---|
805 |
|
---|
806 | /**
|
---|
807 | * Returns {@code true} if the right-hand side vector is zero exactly.
|
---|
808 | *
|
---|
809 | * @return the boolean value of {@code b == 0}
|
---|
810 | */
|
---|
811 | boolean bEqualsNullVector() {
|
---|
812 | return bIsNull;
|
---|
813 | }
|
---|
814 |
|
---|
815 | /**
|
---|
816 | * Returns {@code true} if {@code beta} is essentially zero. This method
|
---|
817 | * is used to check for early stop of the iterations.
|
---|
818 | *
|
---|
819 | * @return {@code true} if {@code beta < }{@link #MACH_PREC}
|
---|
820 | */
|
---|
821 | boolean betaEqualsZero() {
|
---|
822 | return beta < MACH_PREC;
|
---|
823 | }
|
---|
824 |
|
---|
825 | /**
|
---|
826 | * Returns the norm of the updated, preconditioned residual.
|
---|
827 | *
|
---|
828 | * @return the norm of the residual, ||P * r||
|
---|
829 | */
|
---|
830 | double getNormOfResidual() {
|
---|
831 | return rnorm;
|
---|
832 | }
|
---|
833 | }
|
---|
834 |
|
---|
835 | /** Key for the exception context. */
|
---|
836 | private static final String OPERATOR = "operator";
|
---|
837 |
|
---|
838 | /** Key for the exception context. */
|
---|
839 | private static final String THRESHOLD = "threshold";
|
---|
840 |
|
---|
841 | /** Key for the exception context. */
|
---|
842 | private static final String VECTOR = "vector";
|
---|
843 |
|
---|
844 | /** Key for the exception context. */
|
---|
845 | private static final String VECTOR1 = "vector1";
|
---|
846 |
|
---|
847 | /** Key for the exception context. */
|
---|
848 | private static final String VECTOR2 = "vector2";
|
---|
849 |
|
---|
850 | /** {@code true} if symmetry of matrix and conditioner must be checked. */
|
---|
851 | private final boolean check;
|
---|
852 |
|
---|
853 | /**
|
---|
854 | * The value of the custom tolerance δ for the default stopping
|
---|
855 | * criterion.
|
---|
856 | */
|
---|
857 | private final double delta;
|
---|
858 |
|
---|
859 | /**
|
---|
860 | * Creates a new instance of this class, with <a href="#stopcrit">default
|
---|
861 | * stopping criterion</a>. Note that setting {@code check} to {@code true}
|
---|
862 | * entails an extra matrix-vector product in the initial phase.
|
---|
863 | *
|
---|
864 | * @param maxIterations the maximum number of iterations
|
---|
865 | * @param delta the δ parameter for the default stopping criterion
|
---|
866 | * @param check {@code true} if self-adjointedness of both matrix and
|
---|
867 | * preconditioner should be checked
|
---|
868 | */
|
---|
869 | public SymmLQ(final int maxIterations, final double delta,
|
---|
870 | final boolean check) {
|
---|
871 | super(maxIterations);
|
---|
872 | this.delta = delta;
|
---|
873 | this.check = check;
|
---|
874 | }
|
---|
875 |
|
---|
876 | /**
|
---|
877 | * Creates a new instance of this class, with <a href="#stopcrit">default
|
---|
878 | * stopping criterion</a> and custom iteration manager. Note that setting
|
---|
879 | * {@code check} to {@code true} entails an extra matrix-vector product in
|
---|
880 | * the initial phase.
|
---|
881 | *
|
---|
882 | * @param manager the custom iteration manager
|
---|
883 | * @param delta the δ parameter for the default stopping criterion
|
---|
884 | * @param check {@code true} if self-adjointedness of both matrix and
|
---|
885 | * preconditioner should be checked
|
---|
886 | */
|
---|
887 | public SymmLQ(final IterationManager manager, final double delta,
|
---|
888 | final boolean check) {
|
---|
889 | super(manager);
|
---|
890 | this.delta = delta;
|
---|
891 | this.check = check;
|
---|
892 | }
|
---|
893 |
|
---|
894 | /**
|
---|
895 | * Returns {@code true} if symmetry of the matrix, and symmetry as well as
|
---|
896 | * positive definiteness of the preconditioner should be checked.
|
---|
897 | *
|
---|
898 | * @return {@code true} if the tests are to be performed
|
---|
899 | */
|
---|
900 | public final boolean getCheck() {
|
---|
901 | return check;
|
---|
902 | }
|
---|
903 |
|
---|
904 | /**
|
---|
905 | * {@inheritDoc}
|
---|
906 | *
|
---|
907 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
908 | * {@code true}, and {@code a} or {@code m} is not self-adjoint
|
---|
909 | * @throws NonPositiveDefiniteOperatorException if {@code m} is not
|
---|
910 | * positive definite
|
---|
911 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
912 | */
|
---|
913 | @Override
|
---|
914 | public RealVector solve(final RealLinearOperator a,
|
---|
915 | final RealLinearOperator m, final RealVector b) throws
|
---|
916 | NullArgumentException, NonSquareOperatorException,
|
---|
917 | DimensionMismatchException, MaxCountExceededException,
|
---|
918 | NonSelfAdjointOperatorException, NonPositiveDefiniteOperatorException,
|
---|
919 | IllConditionedOperatorException {
|
---|
920 | MathUtils.checkNotNull(a);
|
---|
921 | final RealVector x = new ArrayRealVector(a.getColumnDimension());
|
---|
922 | return solveInPlace(a, m, b, x, false, 0.);
|
---|
923 | }
|
---|
924 |
|
---|
925 | /**
|
---|
926 | * Returns an estimate of the solution to the linear system (A - shift
|
---|
927 | * · I) · x = b.
|
---|
928 | * <p>
|
---|
929 | * If the solution x is expected to contain a large multiple of {@code b}
|
---|
930 | * (as in Rayleigh-quotient iteration), then better precision may be
|
---|
931 | * achieved with {@code goodb} set to {@code true}; this however requires an
|
---|
932 | * extra call to the preconditioner.
|
---|
933 | * </p>
|
---|
934 | * <p>
|
---|
935 | * {@code shift} should be zero if the system A · x = b is to be
|
---|
936 | * solved. Otherwise, it could be an approximation to an eigenvalue of A,
|
---|
937 | * such as the Rayleigh quotient b<sup>T</sup> · A · b /
|
---|
938 | * (b<sup>T</sup> · b) corresponding to the vector b. If b is
|
---|
939 | * sufficiently like an eigenvector corresponding to an eigenvalue near
|
---|
940 | * shift, then the computed x may have very large components. When
|
---|
941 | * normalized, x may be closer to an eigenvector than b.
|
---|
942 | * </p>
|
---|
943 | *
|
---|
944 | * @param a the linear operator A of the system
|
---|
945 | * @param m the preconditioner, M (can be {@code null})
|
---|
946 | * @param b the right-hand side vector
|
---|
947 | * @param goodb usually {@code false}, except if {@code x} is expected to
|
---|
948 | * contain a large multiple of {@code b}
|
---|
949 | * @param shift the amount to be subtracted to all diagonal elements of A
|
---|
950 | * @return a reference to {@code x} (shallow copy)
|
---|
951 | * @throws NullArgumentException if one of the parameters is {@code null}
|
---|
952 | * @throws NonSquareOperatorException if {@code a} or {@code m} is not square
|
---|
953 | * @throws DimensionMismatchException if {@code m} or {@code b} have dimensions
|
---|
954 | * inconsistent with {@code a}
|
---|
955 | * @throws MaxCountExceededException at exhaustion of the iteration count,
|
---|
956 | * unless a custom
|
---|
957 | * {@link agents.anac.y2019.harddealer.math3.util.Incrementor.MaxCountExceededCallback callback}
|
---|
958 | * has been set at construction of the {@link IterationManager}
|
---|
959 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
960 | * {@code true}, and {@code a} or {@code m} is not self-adjoint
|
---|
961 | * @throws NonPositiveDefiniteOperatorException if {@code m} is not
|
---|
962 | * positive definite
|
---|
963 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
964 | */
|
---|
965 | public RealVector solve(final RealLinearOperator a,
|
---|
966 | final RealLinearOperator m, final RealVector b, final boolean goodb,
|
---|
967 | final double shift) throws NullArgumentException,
|
---|
968 | NonSquareOperatorException, DimensionMismatchException,
|
---|
969 | MaxCountExceededException, NonSelfAdjointOperatorException,
|
---|
970 | NonPositiveDefiniteOperatorException, IllConditionedOperatorException {
|
---|
971 | MathUtils.checkNotNull(a);
|
---|
972 | final RealVector x = new ArrayRealVector(a.getColumnDimension());
|
---|
973 | return solveInPlace(a, m, b, x, goodb, shift);
|
---|
974 | }
|
---|
975 |
|
---|
976 | /**
|
---|
977 | * {@inheritDoc}
|
---|
978 | *
|
---|
979 | * @param x not meaningful in this implementation; should not be considered
|
---|
980 | * as an initial guess (<a href="#initguess">more</a>)
|
---|
981 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
982 | * {@code true}, and {@code a} or {@code m} is not self-adjoint
|
---|
983 | * @throws NonPositiveDefiniteOperatorException if {@code m} is not positive
|
---|
984 | * definite
|
---|
985 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
986 | */
|
---|
987 | @Override
|
---|
988 | public RealVector solve(final RealLinearOperator a,
|
---|
989 | final RealLinearOperator m, final RealVector b, final RealVector x)
|
---|
990 | throws NullArgumentException, NonSquareOperatorException,
|
---|
991 | DimensionMismatchException, NonSelfAdjointOperatorException,
|
---|
992 | NonPositiveDefiniteOperatorException, IllConditionedOperatorException,
|
---|
993 | MaxCountExceededException {
|
---|
994 | MathUtils.checkNotNull(x);
|
---|
995 | return solveInPlace(a, m, b, x.copy(), false, 0.);
|
---|
996 | }
|
---|
997 |
|
---|
998 | /**
|
---|
999 | * {@inheritDoc}
|
---|
1000 | *
|
---|
1001 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
1002 | * {@code true}, and {@code a} is not self-adjoint
|
---|
1003 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
1004 | */
|
---|
1005 | @Override
|
---|
1006 | public RealVector solve(final RealLinearOperator a, final RealVector b)
|
---|
1007 | throws NullArgumentException, NonSquareOperatorException,
|
---|
1008 | DimensionMismatchException, NonSelfAdjointOperatorException,
|
---|
1009 | IllConditionedOperatorException, MaxCountExceededException {
|
---|
1010 | MathUtils.checkNotNull(a);
|
---|
1011 | final RealVector x = new ArrayRealVector(a.getColumnDimension());
|
---|
1012 | x.set(0.);
|
---|
1013 | return solveInPlace(a, null, b, x, false, 0.);
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 | /**
|
---|
1017 | * Returns the solution to the system (A - shift · I) · x = b.
|
---|
1018 | * <p>
|
---|
1019 | * If the solution x is expected to contain a large multiple of {@code b}
|
---|
1020 | * (as in Rayleigh-quotient iteration), then better precision may be
|
---|
1021 | * achieved with {@code goodb} set to {@code true}.
|
---|
1022 | * </p>
|
---|
1023 | * <p>
|
---|
1024 | * {@code shift} should be zero if the system A · x = b is to be
|
---|
1025 | * solved. Otherwise, it could be an approximation to an eigenvalue of A,
|
---|
1026 | * such as the Rayleigh quotient b<sup>T</sup> · A · b /
|
---|
1027 | * (b<sup>T</sup> · b) corresponding to the vector b. If b is
|
---|
1028 | * sufficiently like an eigenvector corresponding to an eigenvalue near
|
---|
1029 | * shift, then the computed x may have very large components. When
|
---|
1030 | * normalized, x may be closer to an eigenvector than b.
|
---|
1031 | * </p>
|
---|
1032 | *
|
---|
1033 | * @param a the linear operator A of the system
|
---|
1034 | * @param b the right-hand side vector
|
---|
1035 | * @param goodb usually {@code false}, except if {@code x} is expected to
|
---|
1036 | * contain a large multiple of {@code b}
|
---|
1037 | * @param shift the amount to be subtracted to all diagonal elements of A
|
---|
1038 | * @return a reference to {@code x}
|
---|
1039 | * @throws NullArgumentException if one of the parameters is {@code null}
|
---|
1040 | * @throws NonSquareOperatorException if {@code a} is not square
|
---|
1041 | * @throws DimensionMismatchException if {@code b} has dimensions
|
---|
1042 | * inconsistent with {@code a}
|
---|
1043 | * @throws MaxCountExceededException at exhaustion of the iteration count,
|
---|
1044 | * unless a custom
|
---|
1045 | * {@link agents.anac.y2019.harddealer.math3.util.Incrementor.MaxCountExceededCallback callback}
|
---|
1046 | * has been set at construction of the {@link IterationManager}
|
---|
1047 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
1048 | * {@code true}, and {@code a} is not self-adjoint
|
---|
1049 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
1050 | */
|
---|
1051 | public RealVector solve(final RealLinearOperator a, final RealVector b,
|
---|
1052 | final boolean goodb, final double shift) throws NullArgumentException,
|
---|
1053 | NonSquareOperatorException, DimensionMismatchException,
|
---|
1054 | NonSelfAdjointOperatorException, IllConditionedOperatorException,
|
---|
1055 | MaxCountExceededException {
|
---|
1056 | MathUtils.checkNotNull(a);
|
---|
1057 | final RealVector x = new ArrayRealVector(a.getColumnDimension());
|
---|
1058 | return solveInPlace(a, null, b, x, goodb, shift);
|
---|
1059 | }
|
---|
1060 |
|
---|
1061 | /**
|
---|
1062 | * {@inheritDoc}
|
---|
1063 | *
|
---|
1064 | * @param x not meaningful in this implementation; should not be considered
|
---|
1065 | * as an initial guess (<a href="#initguess">more</a>)
|
---|
1066 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
1067 | * {@code true}, and {@code a} is not self-adjoint
|
---|
1068 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
1069 | */
|
---|
1070 | @Override
|
---|
1071 | public RealVector solve(final RealLinearOperator a, final RealVector b,
|
---|
1072 | final RealVector x) throws NullArgumentException,
|
---|
1073 | NonSquareOperatorException, DimensionMismatchException,
|
---|
1074 | NonSelfAdjointOperatorException, IllConditionedOperatorException,
|
---|
1075 | MaxCountExceededException {
|
---|
1076 | MathUtils.checkNotNull(x);
|
---|
1077 | return solveInPlace(a, null, b, x.copy(), false, 0.);
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | /**
|
---|
1081 | * {@inheritDoc}
|
---|
1082 | *
|
---|
1083 | * @param x the vector to be updated with the solution; {@code x} should
|
---|
1084 | * not be considered as an initial guess (<a href="#initguess">more</a>)
|
---|
1085 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
1086 | * {@code true}, and {@code a} or {@code m} is not self-adjoint
|
---|
1087 | * @throws NonPositiveDefiniteOperatorException if {@code m} is not
|
---|
1088 | * positive definite
|
---|
1089 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
1090 | */
|
---|
1091 | @Override
|
---|
1092 | public RealVector solveInPlace(final RealLinearOperator a,
|
---|
1093 | final RealLinearOperator m, final RealVector b, final RealVector x)
|
---|
1094 | throws NullArgumentException, NonSquareOperatorException,
|
---|
1095 | DimensionMismatchException, NonSelfAdjointOperatorException,
|
---|
1096 | NonPositiveDefiniteOperatorException, IllConditionedOperatorException,
|
---|
1097 | MaxCountExceededException {
|
---|
1098 | return solveInPlace(a, m, b, x, false, 0.);
|
---|
1099 | }
|
---|
1100 |
|
---|
1101 | /**
|
---|
1102 | * Returns an estimate of the solution to the linear system (A - shift
|
---|
1103 | * · I) · x = b. The solution is computed in-place.
|
---|
1104 | * <p>
|
---|
1105 | * If the solution x is expected to contain a large multiple of {@code b}
|
---|
1106 | * (as in Rayleigh-quotient iteration), then better precision may be
|
---|
1107 | * achieved with {@code goodb} set to {@code true}; this however requires an
|
---|
1108 | * extra call to the preconditioner.
|
---|
1109 | * </p>
|
---|
1110 | * <p>
|
---|
1111 | * {@code shift} should be zero if the system A · x = b is to be
|
---|
1112 | * solved. Otherwise, it could be an approximation to an eigenvalue of A,
|
---|
1113 | * such as the Rayleigh quotient b<sup>T</sup> · A · b /
|
---|
1114 | * (b<sup>T</sup> · b) corresponding to the vector b. If b is
|
---|
1115 | * sufficiently like an eigenvector corresponding to an eigenvalue near
|
---|
1116 | * shift, then the computed x may have very large components. When
|
---|
1117 | * normalized, x may be closer to an eigenvector than b.
|
---|
1118 | * </p>
|
---|
1119 | *
|
---|
1120 | * @param a the linear operator A of the system
|
---|
1121 | * @param m the preconditioner, M (can be {@code null})
|
---|
1122 | * @param b the right-hand side vector
|
---|
1123 | * @param x the vector to be updated with the solution; {@code x} should
|
---|
1124 | * not be considered as an initial guess (<a href="#initguess">more</a>)
|
---|
1125 | * @param goodb usually {@code false}, except if {@code x} is expected to
|
---|
1126 | * contain a large multiple of {@code b}
|
---|
1127 | * @param shift the amount to be subtracted to all diagonal elements of A
|
---|
1128 | * @return a reference to {@code x} (shallow copy).
|
---|
1129 | * @throws NullArgumentException if one of the parameters is {@code null}
|
---|
1130 | * @throws NonSquareOperatorException if {@code a} or {@code m} is not square
|
---|
1131 | * @throws DimensionMismatchException if {@code m}, {@code b} or {@code x}
|
---|
1132 | * have dimensions inconsistent with {@code a}.
|
---|
1133 | * @throws MaxCountExceededException at exhaustion of the iteration count,
|
---|
1134 | * unless a custom
|
---|
1135 | * {@link agents.anac.y2019.harddealer.math3.util.Incrementor.MaxCountExceededCallback callback}
|
---|
1136 | * has been set at construction of the {@link IterationManager}
|
---|
1137 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
1138 | * {@code true}, and {@code a} or {@code m} is not self-adjoint
|
---|
1139 | * @throws NonPositiveDefiniteOperatorException if {@code m} is not positive
|
---|
1140 | * definite
|
---|
1141 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
1142 | */
|
---|
1143 | public RealVector solveInPlace(final RealLinearOperator a,
|
---|
1144 | final RealLinearOperator m, final RealVector b,
|
---|
1145 | final RealVector x, final boolean goodb, final double shift)
|
---|
1146 | throws NullArgumentException, NonSquareOperatorException,
|
---|
1147 | DimensionMismatchException, NonSelfAdjointOperatorException,
|
---|
1148 | NonPositiveDefiniteOperatorException, IllConditionedOperatorException,
|
---|
1149 | MaxCountExceededException {
|
---|
1150 | checkParameters(a, m, b, x);
|
---|
1151 |
|
---|
1152 | final IterationManager manager = getIterationManager();
|
---|
1153 | /* Initialization counts as an iteration. */
|
---|
1154 | manager.resetIterationCount();
|
---|
1155 | manager.incrementIterationCount();
|
---|
1156 |
|
---|
1157 | final State state;
|
---|
1158 | state = new State(a, m, b, goodb, shift, delta, check);
|
---|
1159 | state.init();
|
---|
1160 | state.refineSolution(x);
|
---|
1161 | IterativeLinearSolverEvent event;
|
---|
1162 | event = new DefaultIterativeLinearSolverEvent(this,
|
---|
1163 | manager.getIterations(),
|
---|
1164 | x,
|
---|
1165 | b,
|
---|
1166 | state.getNormOfResidual());
|
---|
1167 | if (state.bEqualsNullVector()) {
|
---|
1168 | /* If b = 0 exactly, stop with x = 0. */
|
---|
1169 | manager.fireTerminationEvent(event);
|
---|
1170 | return x;
|
---|
1171 | }
|
---|
1172 | /* Cause termination if beta is essentially zero. */
|
---|
1173 | final boolean earlyStop;
|
---|
1174 | earlyStop = state.betaEqualsZero() || state.hasConverged();
|
---|
1175 | manager.fireInitializationEvent(event);
|
---|
1176 | if (!earlyStop) {
|
---|
1177 | do {
|
---|
1178 | manager.incrementIterationCount();
|
---|
1179 | event = new DefaultIterativeLinearSolverEvent(this,
|
---|
1180 | manager.getIterations(),
|
---|
1181 | x,
|
---|
1182 | b,
|
---|
1183 | state.getNormOfResidual());
|
---|
1184 | manager.fireIterationStartedEvent(event);
|
---|
1185 | state.update();
|
---|
1186 | state.refineSolution(x);
|
---|
1187 | event = new DefaultIterativeLinearSolverEvent(this,
|
---|
1188 | manager.getIterations(),
|
---|
1189 | x,
|
---|
1190 | b,
|
---|
1191 | state.getNormOfResidual());
|
---|
1192 | manager.fireIterationPerformedEvent(event);
|
---|
1193 | } while (!state.hasConverged());
|
---|
1194 | }
|
---|
1195 | event = new DefaultIterativeLinearSolverEvent(this,
|
---|
1196 | manager.getIterations(),
|
---|
1197 | x,
|
---|
1198 | b,
|
---|
1199 | state.getNormOfResidual());
|
---|
1200 | manager.fireTerminationEvent(event);
|
---|
1201 | return x;
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 | /**
|
---|
1205 | * {@inheritDoc}
|
---|
1206 | *
|
---|
1207 | * @param x the vector to be updated with the solution; {@code x} should
|
---|
1208 | * not be considered as an initial guess (<a href="#initguess">more</a>)
|
---|
1209 | * @throws NonSelfAdjointOperatorException if {@link #getCheck()} is
|
---|
1210 | * {@code true}, and {@code a} is not self-adjoint
|
---|
1211 | * @throws IllConditionedOperatorException if {@code a} is ill-conditioned
|
---|
1212 | */
|
---|
1213 | @Override
|
---|
1214 | public RealVector solveInPlace(final RealLinearOperator a,
|
---|
1215 | final RealVector b, final RealVector x) throws NullArgumentException,
|
---|
1216 | NonSquareOperatorException, DimensionMismatchException,
|
---|
1217 | NonSelfAdjointOperatorException, IllConditionedOperatorException,
|
---|
1218 | MaxCountExceededException {
|
---|
1219 | return solveInPlace(a, null, b, x, false, 0.);
|
---|
1220 | }
|
---|
1221 | }
|
---|