source: src/main/java/agents/anac/y2019/harddealer/math3/linear/SingularValueDecomposition.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 28.3 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.anac.y2019.harddealer.math3.linear;
18
19import agents.anac.y2019.harddealer.math3.exception.NumberIsTooLargeException;
20import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
21import agents.anac.y2019.harddealer.math3.util.FastMath;
22import agents.anac.y2019.harddealer.math3.util.Precision;
23
24/**
25 * Calculates the compact Singular Value Decomposition of a matrix.
26 * <p>
27 * The Singular Value Decomposition of matrix A is a set of three matrices: U,
28 * &Sigma; and V such that A = U &times; &Sigma; &times; V<sup>T</sup>. Let A be
29 * a m &times; n matrix, then U is a m &times; p orthogonal matrix, &Sigma; is a
30 * p &times; p diagonal matrix with positive or null elements, V is a p &times;
31 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where
32 * p=min(m,n).
33 * </p>
34 * <p>This class is similar to the class with similar name from the
35 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
36 * following changes:</p>
37 * <ul>
38 * <li>the {@code norm2} method which has been renamed as {@link #getNorm()
39 * getNorm},</li>
40 * <li>the {@code cond} method which has been renamed as {@link
41 * #getConditionNumber() getConditionNumber},</li>
42 * <li>the {@code rank} method which has been renamed as {@link #getRank()
43 * getRank},</li>
44 * <li>a {@link #getUT() getUT} method has been added,</li>
45 * <li>a {@link #getVT() getVT} method has been added,</li>
46 * <li>a {@link #getSolver() getSolver} method has been added,</li>
47 * <li>a {@link #getCovariance(double) getCovariance} method has been added.</li>
48 * </ul>
49 * @see <a href="http://mathworld.wolfram.com/SingularValueDecomposition.html">MathWorld</a>
50 * @see <a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Wikipedia</a>
51 * @since 2.0 (changed to concrete class in 3.0)
52 */
53public class SingularValueDecomposition {
54 /** Relative threshold for small singular values. */
55 private static final double EPS = 0x1.0p-52;
56 /** Absolute threshold for small singular values. */
57 private static final double TINY = 0x1.0p-966;
58 /** Computed singular values. */
59 private final double[] singularValues;
60 /** max(row dimension, column dimension). */
61 private final int m;
62 /** min(row dimension, column dimension). */
63 private final int n;
64 /** Indicator for transposed matrix. */
65 private final boolean transposed;
66 /** Cached value of U matrix. */
67 private final RealMatrix cachedU;
68 /** Cached value of transposed U matrix. */
69 private RealMatrix cachedUt;
70 /** Cached value of S (diagonal) matrix. */
71 private RealMatrix cachedS;
72 /** Cached value of V matrix. */
73 private final RealMatrix cachedV;
74 /** Cached value of transposed V matrix. */
75 private RealMatrix cachedVt;
76 /**
77 * Tolerance value for small singular values, calculated once we have
78 * populated "singularValues".
79 **/
80 private final double tol;
81
82 /**
83 * Calculates the compact Singular Value Decomposition of the given matrix.
84 *
85 * @param matrix Matrix to decompose.
86 */
87 public SingularValueDecomposition(final RealMatrix matrix) {
88 final double[][] A;
89
90 // "m" is always the largest dimension.
91 if (matrix.getRowDimension() < matrix.getColumnDimension()) {
92 transposed = true;
93 A = matrix.transpose().getData();
94 m = matrix.getColumnDimension();
95 n = matrix.getRowDimension();
96 } else {
97 transposed = false;
98 A = matrix.getData();
99 m = matrix.getRowDimension();
100 n = matrix.getColumnDimension();
101 }
102
103 singularValues = new double[n];
104 final double[][] U = new double[m][n];
105 final double[][] V = new double[n][n];
106 final double[] e = new double[n];
107 final double[] work = new double[m];
108 // Reduce A to bidiagonal form, storing the diagonal elements
109 // in s and the super-diagonal elements in e.
110 final int nct = FastMath.min(m - 1, n);
111 final int nrt = FastMath.max(0, n - 2);
112 for (int k = 0; k < FastMath.max(nct, nrt); k++) {
113 if (k < nct) {
114 // Compute the transformation for the k-th column and
115 // place the k-th diagonal in s[k].
116 // Compute 2-norm of k-th column without under/overflow.
117 singularValues[k] = 0;
118 for (int i = k; i < m; i++) {
119 singularValues[k] = FastMath.hypot(singularValues[k], A[i][k]);
120 }
121 if (singularValues[k] != 0) {
122 if (A[k][k] < 0) {
123 singularValues[k] = -singularValues[k];
124 }
125 for (int i = k; i < m; i++) {
126 A[i][k] /= singularValues[k];
127 }
128 A[k][k] += 1;
129 }
130 singularValues[k] = -singularValues[k];
131 }
132 for (int j = k + 1; j < n; j++) {
133 if (k < nct &&
134 singularValues[k] != 0) {
135 // Apply the transformation.
136 double t = 0;
137 for (int i = k; i < m; i++) {
138 t += A[i][k] * A[i][j];
139 }
140 t = -t / A[k][k];
141 for (int i = k; i < m; i++) {
142 A[i][j] += t * A[i][k];
143 }
144 }
145 // Place the k-th row of A into e for the
146 // subsequent calculation of the row transformation.
147 e[j] = A[k][j];
148 }
149 if (k < nct) {
150 // Place the transformation in U for subsequent back
151 // multiplication.
152 for (int i = k; i < m; i++) {
153 U[i][k] = A[i][k];
154 }
155 }
156 if (k < nrt) {
157 // Compute the k-th row transformation and place the
158 // k-th super-diagonal in e[k].
159 // Compute 2-norm without under/overflow.
160 e[k] = 0;
161 for (int i = k + 1; i < n; i++) {
162 e[k] = FastMath.hypot(e[k], e[i]);
163 }
164 if (e[k] != 0) {
165 if (e[k + 1] < 0) {
166 e[k] = -e[k];
167 }
168 for (int i = k + 1; i < n; i++) {
169 e[i] /= e[k];
170 }
171 e[k + 1] += 1;
172 }
173 e[k] = -e[k];
174 if (k + 1 < m &&
175 e[k] != 0) {
176 // Apply the transformation.
177 for (int i = k + 1; i < m; i++) {
178 work[i] = 0;
179 }
180 for (int j = k + 1; j < n; j++) {
181 for (int i = k + 1; i < m; i++) {
182 work[i] += e[j] * A[i][j];
183 }
184 }
185 for (int j = k + 1; j < n; j++) {
186 final double t = -e[j] / e[k + 1];
187 for (int i = k + 1; i < m; i++) {
188 A[i][j] += t * work[i];
189 }
190 }
191 }
192
193 // Place the transformation in V for subsequent
194 // back multiplication.
195 for (int i = k + 1; i < n; i++) {
196 V[i][k] = e[i];
197 }
198 }
199 }
200 // Set up the final bidiagonal matrix or order p.
201 int p = n;
202 if (nct < n) {
203 singularValues[nct] = A[nct][nct];
204 }
205 if (m < p) {
206 singularValues[p - 1] = 0;
207 }
208 if (nrt + 1 < p) {
209 e[nrt] = A[nrt][p - 1];
210 }
211 e[p - 1] = 0;
212
213 // Generate U.
214 for (int j = nct; j < n; j++) {
215 for (int i = 0; i < m; i++) {
216 U[i][j] = 0;
217 }
218 U[j][j] = 1;
219 }
220 for (int k = nct - 1; k >= 0; k--) {
221 if (singularValues[k] != 0) {
222 for (int j = k + 1; j < n; j++) {
223 double t = 0;
224 for (int i = k; i < m; i++) {
225 t += U[i][k] * U[i][j];
226 }
227 t = -t / U[k][k];
228 for (int i = k; i < m; i++) {
229 U[i][j] += t * U[i][k];
230 }
231 }
232 for (int i = k; i < m; i++) {
233 U[i][k] = -U[i][k];
234 }
235 U[k][k] = 1 + U[k][k];
236 for (int i = 0; i < k - 1; i++) {
237 U[i][k] = 0;
238 }
239 } else {
240 for (int i = 0; i < m; i++) {
241 U[i][k] = 0;
242 }
243 U[k][k] = 1;
244 }
245 }
246
247 // Generate V.
248 for (int k = n - 1; k >= 0; k--) {
249 if (k < nrt &&
250 e[k] != 0) {
251 for (int j = k + 1; j < n; j++) {
252 double t = 0;
253 for (int i = k + 1; i < n; i++) {
254 t += V[i][k] * V[i][j];
255 }
256 t = -t / V[k + 1][k];
257 for (int i = k + 1; i < n; i++) {
258 V[i][j] += t * V[i][k];
259 }
260 }
261 }
262 for (int i = 0; i < n; i++) {
263 V[i][k] = 0;
264 }
265 V[k][k] = 1;
266 }
267
268 // Main iteration loop for the singular values.
269 final int pp = p - 1;
270 while (p > 0) {
271 int k;
272 int kase;
273 // Here is where a test for too many iterations would go.
274 // This section of the program inspects for
275 // negligible elements in the s and e arrays. On
276 // completion the variables kase and k are set as follows.
277 // kase = 1 if s(p) and e[k-1] are negligible and k<p
278 // kase = 2 if s(k) is negligible and k<p
279 // kase = 3 if e[k-1] is negligible, k<p, and
280 // s(k), ..., s(p) are not negligible (qr step).
281 // kase = 4 if e(p-1) is negligible (convergence).
282 for (k = p - 2; k >= 0; k--) {
283 final double threshold
284 = TINY + EPS * (FastMath.abs(singularValues[k]) +
285 FastMath.abs(singularValues[k + 1]));
286
287 // the following condition is written this way in order
288 // to break out of the loop when NaN occurs, writing it
289 // as "if (FastMath.abs(e[k]) <= threshold)" would loop
290 // indefinitely in case of NaNs because comparison on NaNs
291 // always return false, regardless of what is checked
292 // see issue MATH-947
293 if (!(FastMath.abs(e[k]) > threshold)) {
294 e[k] = 0;
295 break;
296 }
297
298 }
299
300 if (k == p - 2) {
301 kase = 4;
302 } else {
303 int ks;
304 for (ks = p - 1; ks >= k; ks--) {
305 if (ks == k) {
306 break;
307 }
308 final double t = (ks != p ? FastMath.abs(e[ks]) : 0) +
309 (ks != k + 1 ? FastMath.abs(e[ks - 1]) : 0);
310 if (FastMath.abs(singularValues[ks]) <= TINY + EPS * t) {
311 singularValues[ks] = 0;
312 break;
313 }
314 }
315 if (ks == k) {
316 kase = 3;
317 } else if (ks == p - 1) {
318 kase = 1;
319 } else {
320 kase = 2;
321 k = ks;
322 }
323 }
324 k++;
325 // Perform the task indicated by kase.
326 switch (kase) {
327 // Deflate negligible s(p).
328 case 1: {
329 double f = e[p - 2];
330 e[p - 2] = 0;
331 for (int j = p - 2; j >= k; j--) {
332 double t = FastMath.hypot(singularValues[j], f);
333 final double cs = singularValues[j] / t;
334 final double sn = f / t;
335 singularValues[j] = t;
336 if (j != k) {
337 f = -sn * e[j - 1];
338 e[j - 1] = cs * e[j - 1];
339 }
340
341 for (int i = 0; i < n; i++) {
342 t = cs * V[i][j] + sn * V[i][p - 1];
343 V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
344 V[i][j] = t;
345 }
346 }
347 }
348 break;
349 // Split at negligible s(k).
350 case 2: {
351 double f = e[k - 1];
352 e[k - 1] = 0;
353 for (int j = k; j < p; j++) {
354 double t = FastMath.hypot(singularValues[j], f);
355 final double cs = singularValues[j] / t;
356 final double sn = f / t;
357 singularValues[j] = t;
358 f = -sn * e[j];
359 e[j] = cs * e[j];
360
361 for (int i = 0; i < m; i++) {
362 t = cs * U[i][j] + sn * U[i][k - 1];
363 U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
364 U[i][j] = t;
365 }
366 }
367 }
368 break;
369 // Perform one qr step.
370 case 3: {
371 // Calculate the shift.
372 final double maxPm1Pm2 = FastMath.max(FastMath.abs(singularValues[p - 1]),
373 FastMath.abs(singularValues[p - 2]));
374 final double scale = FastMath.max(FastMath.max(FastMath.max(maxPm1Pm2,
375 FastMath.abs(e[p - 2])),
376 FastMath.abs(singularValues[k])),
377 FastMath.abs(e[k]));
378 final double sp = singularValues[p - 1] / scale;
379 final double spm1 = singularValues[p - 2] / scale;
380 final double epm1 = e[p - 2] / scale;
381 final double sk = singularValues[k] / scale;
382 final double ek = e[k] / scale;
383 final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
384 final double c = (sp * epm1) * (sp * epm1);
385 double shift = 0;
386 if (b != 0 ||
387 c != 0) {
388 shift = FastMath.sqrt(b * b + c);
389 if (b < 0) {
390 shift = -shift;
391 }
392 shift = c / (b + shift);
393 }
394 double f = (sk + sp) * (sk - sp) + shift;
395 double g = sk * ek;
396 // Chase zeros.
397 for (int j = k; j < p - 1; j++) {
398 double t = FastMath.hypot(f, g);
399 double cs = f / t;
400 double sn = g / t;
401 if (j != k) {
402 e[j - 1] = t;
403 }
404 f = cs * singularValues[j] + sn * e[j];
405 e[j] = cs * e[j] - sn * singularValues[j];
406 g = sn * singularValues[j + 1];
407 singularValues[j + 1] = cs * singularValues[j + 1];
408
409 for (int i = 0; i < n; i++) {
410 t = cs * V[i][j] + sn * V[i][j + 1];
411 V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
412 V[i][j] = t;
413 }
414 t = FastMath.hypot(f, g);
415 cs = f / t;
416 sn = g / t;
417 singularValues[j] = t;
418 f = cs * e[j] + sn * singularValues[j + 1];
419 singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1];
420 g = sn * e[j + 1];
421 e[j + 1] = cs * e[j + 1];
422 if (j < m - 1) {
423 for (int i = 0; i < m; i++) {
424 t = cs * U[i][j] + sn * U[i][j + 1];
425 U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
426 U[i][j] = t;
427 }
428 }
429 }
430 e[p - 2] = f;
431 }
432 break;
433 // Convergence.
434 default: {
435 // Make the singular values positive.
436 if (singularValues[k] <= 0) {
437 singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0;
438
439 for (int i = 0; i <= pp; i++) {
440 V[i][k] = -V[i][k];
441 }
442 }
443 // Order the singular values.
444 while (k < pp) {
445 if (singularValues[k] >= singularValues[k + 1]) {
446 break;
447 }
448 double t = singularValues[k];
449 singularValues[k] = singularValues[k + 1];
450 singularValues[k + 1] = t;
451 if (k < n - 1) {
452 for (int i = 0; i < n; i++) {
453 t = V[i][k + 1];
454 V[i][k + 1] = V[i][k];
455 V[i][k] = t;
456 }
457 }
458 if (k < m - 1) {
459 for (int i = 0; i < m; i++) {
460 t = U[i][k + 1];
461 U[i][k + 1] = U[i][k];
462 U[i][k] = t;
463 }
464 }
465 k++;
466 }
467 p--;
468 }
469 break;
470 }
471 }
472
473 // Set the small value tolerance used to calculate rank and pseudo-inverse
474 tol = FastMath.max(m * singularValues[0] * EPS,
475 FastMath.sqrt(Precision.SAFE_MIN));
476
477 if (!transposed) {
478 cachedU = MatrixUtils.createRealMatrix(U);
479 cachedV = MatrixUtils.createRealMatrix(V);
480 } else {
481 cachedU = MatrixUtils.createRealMatrix(V);
482 cachedV = MatrixUtils.createRealMatrix(U);
483 }
484 }
485
486 /**
487 * Returns the matrix U of the decomposition.
488 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
489 * @return the U matrix
490 * @see #getUT()
491 */
492 public RealMatrix getU() {
493 // return the cached matrix
494 return cachedU;
495
496 }
497
498 /**
499 * Returns the transpose of the matrix U of the decomposition.
500 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
501 * @return the U matrix (or null if decomposed matrix is singular)
502 * @see #getU()
503 */
504 public RealMatrix getUT() {
505 if (cachedUt == null) {
506 cachedUt = getU().transpose();
507 }
508 // return the cached matrix
509 return cachedUt;
510 }
511
512 /**
513 * Returns the diagonal matrix &Sigma; of the decomposition.
514 * <p>&Sigma; is a diagonal matrix. The singular values are provided in
515 * non-increasing order, for compatibility with Jama.</p>
516 * @return the &Sigma; matrix
517 */
518 public RealMatrix getS() {
519 if (cachedS == null) {
520 // cache the matrix for subsequent calls
521 cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues);
522 }
523 return cachedS;
524 }
525
526 /**
527 * Returns the diagonal elements of the matrix &Sigma; of the decomposition.
528 * <p>The singular values are provided in non-increasing order, for
529 * compatibility with Jama.</p>
530 * @return the diagonal elements of the &Sigma; matrix
531 */
532 public double[] getSingularValues() {
533 return singularValues.clone();
534 }
535
536 /**
537 * Returns the matrix V of the decomposition.
538 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
539 * @return the V matrix (or null if decomposed matrix is singular)
540 * @see #getVT()
541 */
542 public RealMatrix getV() {
543 // return the cached matrix
544 return cachedV;
545 }
546
547 /**
548 * Returns the transpose of the matrix V of the decomposition.
549 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
550 * @return the V matrix (or null if decomposed matrix is singular)
551 * @see #getV()
552 */
553 public RealMatrix getVT() {
554 if (cachedVt == null) {
555 cachedVt = getV().transpose();
556 }
557 // return the cached matrix
558 return cachedVt;
559 }
560
561 /**
562 * Returns the n &times; n covariance matrix.
563 * <p>The covariance matrix is V &times; J &times; V<sup>T</sup>
564 * where J is the diagonal matrix of the inverse of the squares of
565 * the singular values.</p>
566 * @param minSingularValue value below which singular values are ignored
567 * (a 0 or negative value implies all singular value will be used)
568 * @return covariance matrix
569 * @exception IllegalArgumentException if minSingularValue is larger than
570 * the largest singular value, meaning all singular values are ignored
571 */
572 public RealMatrix getCovariance(final double minSingularValue) {
573 // get the number of singular values to consider
574 final int p = singularValues.length;
575 int dimension = 0;
576 while (dimension < p &&
577 singularValues[dimension] >= minSingularValue) {
578 ++dimension;
579 }
580
581 if (dimension == 0) {
582 throw new NumberIsTooLargeException(LocalizedFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE,
583 minSingularValue, singularValues[0], true);
584 }
585
586 final double[][] data = new double[dimension][p];
587 getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() {
588 /** {@inheritDoc} */
589 @Override
590 public void visit(final int row, final int column,
591 final double value) {
592 data[row][column] = value / singularValues[row];
593 }
594 }, 0, dimension - 1, 0, p - 1);
595
596 RealMatrix jv = new Array2DRowRealMatrix(data, false);
597 return jv.transpose().multiply(jv);
598 }
599
600 /**
601 * Returns the L<sub>2</sub> norm of the matrix.
602 * <p>The L<sub>2</sub> norm is max(|A &times; u|<sub>2</sub> /
603 * |u|<sub>2</sub>), where |.|<sub>2</sub> denotes the vectorial 2-norm
604 * (i.e. the traditional euclidian norm).</p>
605 * @return norm
606 */
607 public double getNorm() {
608 return singularValues[0];
609 }
610
611 /**
612 * Return the condition number of the matrix.
613 * @return condition number of the matrix
614 */
615 public double getConditionNumber() {
616 return singularValues[0] / singularValues[n - 1];
617 }
618
619 /**
620 * Computes the inverse of the condition number.
621 * In cases of rank deficiency, the {@link #getConditionNumber() condition
622 * number} will become undefined.
623 *
624 * @return the inverse of the condition number.
625 */
626 public double getInverseConditionNumber() {
627 return singularValues[n - 1] / singularValues[0];
628 }
629
630 /**
631 * Return the effective numerical matrix rank.
632 * <p>The effective numerical rank is the number of non-negligible
633 * singular values. The threshold used to identify non-negligible
634 * terms is max(m,n) &times; ulp(s<sub>1</sub>) where ulp(s<sub>1</sub>)
635 * is the least significant bit of the largest singular value.</p>
636 * @return effective numerical matrix rank
637 */
638 public int getRank() {
639 int r = 0;
640 for (int i = 0; i < singularValues.length; i++) {
641 if (singularValues[i] > tol) {
642 r++;
643 }
644 }
645 return r;
646 }
647
648 /**
649 * Get a solver for finding the A &times; X = B solution in least square sense.
650 * @return a solver
651 */
652 public DecompositionSolver getSolver() {
653 return new Solver(singularValues, getUT(), getV(), getRank() == m, tol);
654 }
655
656 /** Specialized solver. */
657 private static class Solver implements DecompositionSolver {
658 /** Pseudo-inverse of the initial matrix. */
659 private final RealMatrix pseudoInverse;
660 /** Singularity indicator. */
661 private boolean nonSingular;
662
663 /**
664 * Build a solver from decomposed matrix.
665 *
666 * @param singularValues Singular values.
667 * @param uT U<sup>T</sup> matrix of the decomposition.
668 * @param v V matrix of the decomposition.
669 * @param nonSingular Singularity indicator.
670 * @param tol tolerance for singular values
671 */
672 private Solver(final double[] singularValues, final RealMatrix uT,
673 final RealMatrix v, final boolean nonSingular, final double tol) {
674 final double[][] suT = uT.getData();
675 for (int i = 0; i < singularValues.length; ++i) {
676 final double a;
677 if (singularValues[i] > tol) {
678 a = 1 / singularValues[i];
679 } else {
680 a = 0;
681 }
682 final double[] suTi = suT[i];
683 for (int j = 0; j < suTi.length; ++j) {
684 suTi[j] *= a;
685 }
686 }
687 pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false));
688 this.nonSingular = nonSingular;
689 }
690
691 /**
692 * Solve the linear equation A &times; X = B in least square sense.
693 * <p>
694 * The m&times;n matrix A may not be square, the solution X is such that
695 * ||A &times; X - B|| is minimal.
696 * </p>
697 * @param b Right-hand side of the equation A &times; X = B
698 * @return a vector X that minimizes the two norm of A &times; X - B
699 * @throws agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException
700 * if the matrices dimensions do not match.
701 */
702 public RealVector solve(final RealVector b) {
703 return pseudoInverse.operate(b);
704 }
705
706 /**
707 * Solve the linear equation A &times; X = B in least square sense.
708 * <p>
709 * The m&times;n matrix A may not be square, the solution X is such that
710 * ||A &times; X - B|| is minimal.
711 * </p>
712 *
713 * @param b Right-hand side of the equation A &times; X = B
714 * @return a matrix X that minimizes the two norm of A &times; X - B
715 * @throws agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException
716 * if the matrices dimensions do not match.
717 */
718 public RealMatrix solve(final RealMatrix b) {
719 return pseudoInverse.multiply(b);
720 }
721
722 /**
723 * Check if the decomposed matrix is non-singular.
724 *
725 * @return {@code true} if the decomposed matrix is non-singular.
726 */
727 public boolean isNonSingular() {
728 return nonSingular;
729 }
730
731 /**
732 * Get the pseudo-inverse of the decomposed matrix.
733 *
734 * @return the inverse matrix.
735 */
736 public RealMatrix getInverse() {
737 return pseudoInverse;
738 }
739 }
740}
Note: See TracBrowser for help on using the repository browser.