source: src/main/java/agents/anac/y2019/harddealer/math3/linear/RectangularCholeskyDecomposition.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 7.5 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package agents.anac.y2019.harddealer.math3.linear;
19
20import agents.anac.y2019.harddealer.math3.util.FastMath;
21
22/**
23 * Calculates the rectangular Cholesky decomposition of a matrix.
24 * <p>The rectangular Cholesky decomposition of a real symmetric positive
25 * semidefinite matrix A consists of a rectangular matrix B with the same
26 * number of rows such that: A is almost equal to BB<sup>T</sup>, depending
27 * on a user-defined tolerance. In a sense, this is the square root of A.</p>
28 * <p>The difference with respect to the regular {@link CholeskyDecomposition}
29 * is that rows/columns may be permuted (hence the rectangular shape instead
30 * of the traditional triangular shape) and there is a threshold to ignore
31 * small diagonal elements. This is used for example to generate {@link
32 * agents.anac.y2019.harddealer.math3.random.CorrelatedRandomVectorGenerator correlated
33 * random n-dimensions vectors} in a p-dimension subspace (p < n).
34 * In other words, it allows generating random vectors from a covariance
35 * matrix that is only positive semidefinite, and not positive definite.</p>
36 * <p>Rectangular Cholesky decomposition is <em>not</em> suited for solving
37 * linear systems, so it does not provide any {@link DecompositionSolver
38 * decomposition solver}.</p>
39 *
40 * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
41 * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
42 * @since 2.0 (changed to concrete class in 3.0)
43 */
44public class RectangularCholeskyDecomposition {
45
46 /** Permutated Cholesky root of the symmetric positive semidefinite matrix. */
47 private final RealMatrix root;
48
49 /** Rank of the symmetric positive semidefinite matrix. */
50 private int rank;
51
52 /**
53 * Decompose a symmetric positive semidefinite matrix.
54 * <p>
55 * <b>Note:</b> this constructor follows the linpack method to detect dependent
56 * columns by proceeding with the Cholesky algorithm until a nonpositive diagonal
57 * element is encountered.
58 *
59 * @see <a href="http://eprints.ma.man.ac.uk/1193/01/covered/MIMS_ep2008_56.pdf">
60 * Analysis of the Cholesky Decomposition of a Semi-definite Matrix</a>
61 *
62 * @param matrix Symmetric positive semidefinite matrix.
63 * @exception NonPositiveDefiniteMatrixException if the matrix is not
64 * positive semidefinite.
65 * @since 3.1
66 */
67 public RectangularCholeskyDecomposition(RealMatrix matrix)
68 throws NonPositiveDefiniteMatrixException {
69 this(matrix, 0);
70 }
71
72 /**
73 * Decompose a symmetric positive semidefinite matrix.
74 *
75 * @param matrix Symmetric positive semidefinite matrix.
76 * @param small Diagonal elements threshold under which columns are
77 * considered to be dependent on previous ones and are discarded.
78 * @exception NonPositiveDefiniteMatrixException if the matrix is not
79 * positive semidefinite.
80 */
81 public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
82 throws NonPositiveDefiniteMatrixException {
83
84 final int order = matrix.getRowDimension();
85 final double[][] c = matrix.getData();
86 final double[][] b = new double[order][order];
87
88 int[] index = new int[order];
89 for (int i = 0; i < order; ++i) {
90 index[i] = i;
91 }
92
93 int r = 0;
94 for (boolean loop = true; loop;) {
95
96 // find maximal diagonal element
97 int swapR = r;
98 for (int i = r + 1; i < order; ++i) {
99 int ii = index[i];
100 int isr = index[swapR];
101 if (c[ii][ii] > c[isr][isr]) {
102 swapR = i;
103 }
104 }
105
106
107 // swap elements
108 if (swapR != r) {
109 final int tmpIndex = index[r];
110 index[r] = index[swapR];
111 index[swapR] = tmpIndex;
112 final double[] tmpRow = b[r];
113 b[r] = b[swapR];
114 b[swapR] = tmpRow;
115 }
116
117 // check diagonal element
118 int ir = index[r];
119 if (c[ir][ir] <= small) {
120
121 if (r == 0) {
122 throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small);
123 }
124
125 // check remaining diagonal elements
126 for (int i = r; i < order; ++i) {
127 if (c[index[i]][index[i]] < -small) {
128 // there is at least one sufficiently negative diagonal element,
129 // the symmetric positive semidefinite matrix is wrong
130 throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small);
131 }
132 }
133
134 // all remaining diagonal elements are close to zero, we consider we have
135 // found the rank of the symmetric positive semidefinite matrix
136 loop = false;
137
138 } else {
139
140 // transform the matrix
141 final double sqrt = FastMath.sqrt(c[ir][ir]);
142 b[r][r] = sqrt;
143 final double inverse = 1 / sqrt;
144 final double inverse2 = 1 / c[ir][ir];
145 for (int i = r + 1; i < order; ++i) {
146 final int ii = index[i];
147 final double e = inverse * c[ii][ir];
148 b[i][r] = e;
149 c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2;
150 for (int j = r + 1; j < i; ++j) {
151 final int ij = index[j];
152 final double f = c[ii][ij] - e * b[j][r];
153 c[ii][ij] = f;
154 c[ij][ii] = f;
155 }
156 }
157
158 // prepare next iteration
159 loop = ++r < order;
160 }
161 }
162
163 // build the root matrix
164 rank = r;
165 root = MatrixUtils.createRealMatrix(order, r);
166 for (int i = 0; i < order; ++i) {
167 for (int j = 0; j < r; ++j) {
168 root.setEntry(index[i], j, b[i][j]);
169 }
170 }
171
172 }
173
174 /** Get the root of the covariance matrix.
175 * The root is the rectangular matrix <code>B</code> such that
176 * the covariance matrix is equal to <code>B.B<sup>T</sup></code>
177 * @return root of the square matrix
178 * @see #getRank()
179 */
180 public RealMatrix getRootMatrix() {
181 return root;
182 }
183
184 /** Get the rank of the symmetric positive semidefinite matrix.
185 * The r is the number of independent rows in the symmetric positive semidefinite
186 * matrix, it is also the number of columns of the rectangular
187 * matrix of the decomposition.
188 * @return r of the square matrix.
189 * @see #getRootMatrix()
190 */
191 public int getRank() {
192 return rank;
193 }
194
195}
Note: See TracBrowser for help on using the repository browser.