1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.linear;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
21 |
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Calculates the rank-revealing QR-decomposition of a matrix, with column pivoting.
|
---|
25 | * <p>The rank-revealing QR-decomposition of a matrix A consists of three matrices Q,
|
---|
26 | * R and P such that AP=QR. Q is orthogonal (Q<sup>T</sup>Q = I), and R is upper triangular.
|
---|
27 | * If A is m×n, Q is m×m and R is m×n and P is n×n.</p>
|
---|
28 | * <p>QR decomposition with column pivoting produces a rank-revealing QR
|
---|
29 | * decomposition and the {@link #getRank(double)} method may be used to return the rank of the
|
---|
30 | * input matrix A.</p>
|
---|
31 | * <p>This class compute the decomposition using Householder reflectors.</p>
|
---|
32 | * <p>For efficiency purposes, the decomposition in packed form is transposed.
|
---|
33 | * This allows inner loop to iterate inside rows, which is much more cache-efficient
|
---|
34 | * in Java.</p>
|
---|
35 | * <p>This class is based on the class with similar name from the
|
---|
36 | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
|
---|
37 | * following changes:</p>
|
---|
38 | * <ul>
|
---|
39 | * <li>a {@link #getQT() getQT} method has been added,</li>
|
---|
40 | * <li>the {@code solve} and {@code isFullRank} methods have been replaced
|
---|
41 | * by a {@link #getSolver() getSolver} method and the equivalent methods
|
---|
42 | * provided by the returned {@link DecompositionSolver}.</li>
|
---|
43 | * </ul>
|
---|
44 | *
|
---|
45 | * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
|
---|
46 | * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
|
---|
47 | *
|
---|
48 | * @since 3.2
|
---|
49 | */
|
---|
50 | public class RRQRDecomposition extends QRDecomposition {
|
---|
51 |
|
---|
52 | /** An array to record the column pivoting for later creation of P. */
|
---|
53 | private int[] p;
|
---|
54 |
|
---|
55 | /** Cached value of P. */
|
---|
56 | private RealMatrix cachedP;
|
---|
57 |
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * Calculates the QR-decomposition of the given matrix.
|
---|
61 | * The singularity threshold defaults to zero.
|
---|
62 | *
|
---|
63 | * @param matrix The matrix to decompose.
|
---|
64 | *
|
---|
65 | * @see #RRQRDecomposition(RealMatrix, double)
|
---|
66 | */
|
---|
67 | public RRQRDecomposition(RealMatrix matrix) {
|
---|
68 | this(matrix, 0d);
|
---|
69 | }
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Calculates the QR-decomposition of the given matrix.
|
---|
73 | *
|
---|
74 | * @param matrix The matrix to decompose.
|
---|
75 | * @param threshold Singularity threshold.
|
---|
76 | * @see #RRQRDecomposition(RealMatrix)
|
---|
77 | */
|
---|
78 | public RRQRDecomposition(RealMatrix matrix, double threshold) {
|
---|
79 | super(matrix, threshold);
|
---|
80 | }
|
---|
81 |
|
---|
82 | /** Decompose matrix.
|
---|
83 | * @param qrt transposed matrix
|
---|
84 | */
|
---|
85 | @Override
|
---|
86 | protected void decompose(double[][] qrt) {
|
---|
87 | p = new int[qrt.length];
|
---|
88 | for (int i = 0; i < p.length; i++) {
|
---|
89 | p[i] = i;
|
---|
90 | }
|
---|
91 | super.decompose(qrt);
|
---|
92 | }
|
---|
93 |
|
---|
94 | /** Perform Householder reflection for a minor A(minor, minor) of A.
|
---|
95 | * @param minor minor index
|
---|
96 | * @param qrt transposed matrix
|
---|
97 | */
|
---|
98 | @Override
|
---|
99 | protected void performHouseholderReflection(int minor, double[][] qrt) {
|
---|
100 |
|
---|
101 | double l2NormSquaredMax = 0;
|
---|
102 | // Find the unreduced column with the greatest L2-Norm
|
---|
103 | int l2NormSquaredMaxIndex = minor;
|
---|
104 | for (int i = minor; i < qrt.length; i++) {
|
---|
105 | double l2NormSquared = 0;
|
---|
106 | for (int j = 0; j < qrt[i].length; j++) {
|
---|
107 | l2NormSquared += qrt[i][j] * qrt[i][j];
|
---|
108 | }
|
---|
109 | if (l2NormSquared > l2NormSquaredMax) {
|
---|
110 | l2NormSquaredMax = l2NormSquared;
|
---|
111 | l2NormSquaredMaxIndex = i;
|
---|
112 | }
|
---|
113 | }
|
---|
114 | // swap the current column with that with the greated L2-Norm and record in p
|
---|
115 | if (l2NormSquaredMaxIndex != minor) {
|
---|
116 | double[] tmp1 = qrt[minor];
|
---|
117 | qrt[minor] = qrt[l2NormSquaredMaxIndex];
|
---|
118 | qrt[l2NormSquaredMaxIndex] = tmp1;
|
---|
119 | int tmp2 = p[minor];
|
---|
120 | p[minor] = p[l2NormSquaredMaxIndex];
|
---|
121 | p[l2NormSquaredMaxIndex] = tmp2;
|
---|
122 | }
|
---|
123 |
|
---|
124 | super.performHouseholderReflection(minor, qrt);
|
---|
125 |
|
---|
126 | }
|
---|
127 |
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * Returns the pivot matrix, P, used in the QR Decomposition of matrix A such that AP = QR.
|
---|
131 | *
|
---|
132 | * If no pivoting is used in this decomposition then P is equal to the identity matrix.
|
---|
133 | *
|
---|
134 | * @return a permutation matrix.
|
---|
135 | */
|
---|
136 | public RealMatrix getP() {
|
---|
137 | if (cachedP == null) {
|
---|
138 | int n = p.length;
|
---|
139 | cachedP = MatrixUtils.createRealMatrix(n,n);
|
---|
140 | for (int i = 0; i < n; i++) {
|
---|
141 | cachedP.setEntry(p[i], i, 1);
|
---|
142 | }
|
---|
143 | }
|
---|
144 | return cachedP ;
|
---|
145 | }
|
---|
146 |
|
---|
147 | /**
|
---|
148 | * Return the effective numerical matrix rank.
|
---|
149 | * <p>The effective numerical rank is the number of non-negligible
|
---|
150 | * singular values.</p>
|
---|
151 | * <p>This implementation looks at Frobenius norms of the sequence of
|
---|
152 | * bottom right submatrices. When a large fall in norm is seen,
|
---|
153 | * the rank is returned. The drop is computed as:</p>
|
---|
154 | * <pre>
|
---|
155 | * (thisNorm/lastNorm) * rNorm < dropThreshold
|
---|
156 | * </pre>
|
---|
157 | * <p>
|
---|
158 | * where thisNorm is the Frobenius norm of the current submatrix,
|
---|
159 | * lastNorm is the Frobenius norm of the previous submatrix,
|
---|
160 | * rNorm is is the Frobenius norm of the complete matrix
|
---|
161 | * </p>
|
---|
162 | *
|
---|
163 | * @param dropThreshold threshold triggering rank computation
|
---|
164 | * @return effective numerical matrix rank
|
---|
165 | */
|
---|
166 | public int getRank(final double dropThreshold) {
|
---|
167 | RealMatrix r = getR();
|
---|
168 | int rows = r.getRowDimension();
|
---|
169 | int columns = r.getColumnDimension();
|
---|
170 | int rank = 1;
|
---|
171 | double lastNorm = r.getFrobeniusNorm();
|
---|
172 | double rNorm = lastNorm;
|
---|
173 | while (rank < FastMath.min(rows, columns)) {
|
---|
174 | double thisNorm = r.getSubMatrix(rank, rows - 1, rank, columns - 1).getFrobeniusNorm();
|
---|
175 | if (thisNorm == 0 || (thisNorm / lastNorm) * rNorm < dropThreshold) {
|
---|
176 | break;
|
---|
177 | }
|
---|
178 | lastNorm = thisNorm;
|
---|
179 | rank++;
|
---|
180 | }
|
---|
181 | return rank;
|
---|
182 | }
|
---|
183 |
|
---|
184 | /**
|
---|
185 | * Get a solver for finding the A × X = B solution in least square sense.
|
---|
186 | * <p>
|
---|
187 | * Least Square sense means a solver can be computed for an overdetermined system,
|
---|
188 | * (i.e. a system with more equations than unknowns, which corresponds to a tall A
|
---|
189 | * matrix with more rows than columns). In any case, if the matrix is singular
|
---|
190 | * within the tolerance set at {@link RRQRDecomposition#RRQRDecomposition(RealMatrix,
|
---|
191 | * double) construction}, an error will be triggered when
|
---|
192 | * the {@link DecompositionSolver#solve(RealVector) solve} method will be called.
|
---|
193 | * </p>
|
---|
194 | * @return a solver
|
---|
195 | */
|
---|
196 | @Override
|
---|
197 | public DecompositionSolver getSolver() {
|
---|
198 | return new Solver(super.getSolver(), this.getP());
|
---|
199 | }
|
---|
200 |
|
---|
201 | /** Specialized solver. */
|
---|
202 | private static class Solver implements DecompositionSolver {
|
---|
203 |
|
---|
204 | /** Upper level solver. */
|
---|
205 | private final DecompositionSolver upper;
|
---|
206 |
|
---|
207 | /** A permutation matrix for the pivots used in the QR decomposition */
|
---|
208 | private RealMatrix p;
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * Build a solver from decomposed matrix.
|
---|
212 | *
|
---|
213 | * @param upper upper level solver.
|
---|
214 | * @param p permutation matrix
|
---|
215 | */
|
---|
216 | private Solver(final DecompositionSolver upper, final RealMatrix p) {
|
---|
217 | this.upper = upper;
|
---|
218 | this.p = p;
|
---|
219 | }
|
---|
220 |
|
---|
221 | /** {@inheritDoc} */
|
---|
222 | public boolean isNonSingular() {
|
---|
223 | return upper.isNonSingular();
|
---|
224 | }
|
---|
225 |
|
---|
226 | /** {@inheritDoc} */
|
---|
227 | public RealVector solve(RealVector b) {
|
---|
228 | return p.operate(upper.solve(b));
|
---|
229 | }
|
---|
230 |
|
---|
231 | /** {@inheritDoc} */
|
---|
232 | public RealMatrix solve(RealMatrix b) {
|
---|
233 | return p.multiply(upper.solve(b));
|
---|
234 | }
|
---|
235 |
|
---|
236 | /**
|
---|
237 | * {@inheritDoc}
|
---|
238 | * @throws SingularMatrixException if the decomposed matrix is singular.
|
---|
239 | */
|
---|
240 | public RealMatrix getInverse() {
|
---|
241 | return solve(MatrixUtils.createRealIdentityMatrix(p.getRowDimension()));
|
---|
242 | }
|
---|
243 | }
|
---|
244 | }
|
---|