1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.linear;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.analysis.function.Sqrt;
|
---|
20 | import agents.anac.y2019.harddealer.math3.util.MathArrays;
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * This class implements the standard Jacobi (diagonal) preconditioner. For a
|
---|
24 | * matrix A<sub>ij</sub>, this preconditioner is
|
---|
25 | * M = diag(1 / A<sub>11</sub>, 1 / A<sub>22</sub>, …).
|
---|
26 | *
|
---|
27 | * @since 3.0
|
---|
28 | */
|
---|
29 | public class JacobiPreconditioner extends RealLinearOperator {
|
---|
30 |
|
---|
31 | /** The diagonal coefficients of the preconditioner. */
|
---|
32 | private final ArrayRealVector diag;
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * Creates a new instance of this class.
|
---|
36 | *
|
---|
37 | * @param diag the diagonal coefficients of the linear operator to be
|
---|
38 | * preconditioned
|
---|
39 | * @param deep {@code true} if a deep copy of the above array should be
|
---|
40 | * performed
|
---|
41 | */
|
---|
42 | public JacobiPreconditioner(final double[] diag, final boolean deep) {
|
---|
43 | this.diag = new ArrayRealVector(diag, deep);
|
---|
44 | }
|
---|
45 |
|
---|
46 | /**
|
---|
47 | * Creates a new instance of this class. This method extracts the diagonal
|
---|
48 | * coefficients of the specified linear operator. If {@code a} does not
|
---|
49 | * extend {@link AbstractRealMatrix}, then the coefficients of the
|
---|
50 | * underlying matrix are not accessible, coefficient extraction is made by
|
---|
51 | * matrix-vector products with the basis vectors (and might therefore take
|
---|
52 | * some time). With matrices, direct entry access is carried out.
|
---|
53 | *
|
---|
54 | * @param a the linear operator for which the preconditioner should be built
|
---|
55 | * @return the diagonal preconditioner made of the inverse of the diagonal
|
---|
56 | * coefficients of the specified linear operator
|
---|
57 | * @throws NonSquareOperatorException if {@code a} is not square
|
---|
58 | */
|
---|
59 | public static JacobiPreconditioner create(final RealLinearOperator a)
|
---|
60 | throws NonSquareOperatorException {
|
---|
61 | final int n = a.getColumnDimension();
|
---|
62 | if (a.getRowDimension() != n) {
|
---|
63 | throw new NonSquareOperatorException(a.getRowDimension(), n);
|
---|
64 | }
|
---|
65 | final double[] diag = new double[n];
|
---|
66 | if (a instanceof AbstractRealMatrix) {
|
---|
67 | final AbstractRealMatrix m = (AbstractRealMatrix) a;
|
---|
68 | for (int i = 0; i < n; i++) {
|
---|
69 | diag[i] = m.getEntry(i, i);
|
---|
70 | }
|
---|
71 | } else {
|
---|
72 | final ArrayRealVector x = new ArrayRealVector(n);
|
---|
73 | for (int i = 0; i < n; i++) {
|
---|
74 | x.set(0.);
|
---|
75 | x.setEntry(i, 1.);
|
---|
76 | diag[i] = a.operate(x).getEntry(i);
|
---|
77 | }
|
---|
78 | }
|
---|
79 | return new JacobiPreconditioner(diag, false);
|
---|
80 | }
|
---|
81 |
|
---|
82 | /** {@inheritDoc} */
|
---|
83 | @Override
|
---|
84 | public int getColumnDimension() {
|
---|
85 | return diag.getDimension();
|
---|
86 | }
|
---|
87 |
|
---|
88 | /** {@inheritDoc} */
|
---|
89 | @Override
|
---|
90 | public int getRowDimension() {
|
---|
91 | return diag.getDimension();
|
---|
92 | }
|
---|
93 |
|
---|
94 | /** {@inheritDoc} */
|
---|
95 | @Override
|
---|
96 | public RealVector operate(final RealVector x) {
|
---|
97 | // Dimension check is carried out by ebeDivide
|
---|
98 | return new ArrayRealVector(MathArrays.ebeDivide(x.toArray(),
|
---|
99 | diag.toArray()),
|
---|
100 | false);
|
---|
101 | }
|
---|
102 |
|
---|
103 | /**
|
---|
104 | * Returns the square root of {@code this} diagonal operator. More
|
---|
105 | * precisely, this method returns
|
---|
106 | * P = diag(1 / √A<sub>11</sub>, 1 / √A<sub>22</sub>, …).
|
---|
107 | *
|
---|
108 | * @return the square root of {@code this} preconditioner
|
---|
109 | * @since 3.1
|
---|
110 | */
|
---|
111 | public RealLinearOperator sqrt() {
|
---|
112 | final RealVector sqrtDiag = diag.map(new Sqrt());
|
---|
113 | return new RealLinearOperator() {
|
---|
114 | /** {@inheritDoc} */
|
---|
115 | @Override
|
---|
116 | public RealVector operate(final RealVector x) {
|
---|
117 | return new ArrayRealVector(MathArrays.ebeDivide(x.toArray(),
|
---|
118 | sqrtDiag.toArray()),
|
---|
119 | false);
|
---|
120 | }
|
---|
121 |
|
---|
122 | /** {@inheritDoc} */
|
---|
123 | @Override
|
---|
124 | public int getRowDimension() {
|
---|
125 | return sqrtDiag.getDimension();
|
---|
126 | }
|
---|
127 |
|
---|
128 | /** {@inheritDoc} */
|
---|
129 | @Override
|
---|
130 | public int getColumnDimension() {
|
---|
131 | return sqrtDiag.getDimension();
|
---|
132 | }
|
---|
133 | };
|
---|
134 | }
|
---|
135 | }
|
---|