1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.linear;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
21 | import agents.anac.y2019.harddealer.math3.util.Precision;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Class transforming a general real matrix to Hessenberg form.
|
---|
25 | * <p>A m × m matrix A can be written as the product of three matrices: A = P
|
---|
26 | * × H × P<sup>T</sup> with P an orthogonal matrix and H a Hessenberg
|
---|
27 | * matrix. Both P and H are m × m matrices.</p>
|
---|
28 | * <p>Transformation to Hessenberg form is often not a goal by itself, but it is an
|
---|
29 | * intermediate step in more general decomposition algorithms like
|
---|
30 | * {@link EigenDecomposition eigen decomposition}. This class is therefore
|
---|
31 | * intended for internal use by the library and is not public. As a consequence
|
---|
32 | * of this explicitly limited scope, many methods directly returns references to
|
---|
33 | * internal arrays, not copies.</p>
|
---|
34 | * <p>This class is based on the method orthes in class EigenvalueDecomposition
|
---|
35 | * from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library.</p>
|
---|
36 | *
|
---|
37 | * @see <a href="http://mathworld.wolfram.com/HessenbergDecomposition.html">MathWorld</a>
|
---|
38 | * @see <a href="http://en.wikipedia.org/wiki/Householder_transformation">Householder Transformations</a>
|
---|
39 | * @since 3.1
|
---|
40 | */
|
---|
41 | class HessenbergTransformer {
|
---|
42 | /** Householder vectors. */
|
---|
43 | private final double householderVectors[][];
|
---|
44 | /** Temporary storage vector. */
|
---|
45 | private final double ort[];
|
---|
46 | /** Cached value of P. */
|
---|
47 | private RealMatrix cachedP;
|
---|
48 | /** Cached value of Pt. */
|
---|
49 | private RealMatrix cachedPt;
|
---|
50 | /** Cached value of H. */
|
---|
51 | private RealMatrix cachedH;
|
---|
52 |
|
---|
53 | /**
|
---|
54 | * Build the transformation to Hessenberg form of a general matrix.
|
---|
55 | *
|
---|
56 | * @param matrix matrix to transform
|
---|
57 | * @throws NonSquareMatrixException if the matrix is not square
|
---|
58 | */
|
---|
59 | HessenbergTransformer(final RealMatrix matrix) {
|
---|
60 | if (!matrix.isSquare()) {
|
---|
61 | throw new NonSquareMatrixException(matrix.getRowDimension(),
|
---|
62 | matrix.getColumnDimension());
|
---|
63 | }
|
---|
64 |
|
---|
65 | final int m = matrix.getRowDimension();
|
---|
66 | householderVectors = matrix.getData();
|
---|
67 | ort = new double[m];
|
---|
68 | cachedP = null;
|
---|
69 | cachedPt = null;
|
---|
70 | cachedH = null;
|
---|
71 |
|
---|
72 | // transform matrix
|
---|
73 | transform();
|
---|
74 | }
|
---|
75 |
|
---|
76 | /**
|
---|
77 | * Returns the matrix P of the transform.
|
---|
78 | * <p>P is an orthogonal matrix, i.e. its inverse is also its transpose.</p>
|
---|
79 | *
|
---|
80 | * @return the P matrix
|
---|
81 | */
|
---|
82 | public RealMatrix getP() {
|
---|
83 | if (cachedP == null) {
|
---|
84 | final int n = householderVectors.length;
|
---|
85 | final int high = n - 1;
|
---|
86 | final double[][] pa = new double[n][n];
|
---|
87 |
|
---|
88 | for (int i = 0; i < n; i++) {
|
---|
89 | for (int j = 0; j < n; j++) {
|
---|
90 | pa[i][j] = (i == j) ? 1 : 0;
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | for (int m = high - 1; m >= 1; m--) {
|
---|
95 | if (householderVectors[m][m - 1] != 0.0) {
|
---|
96 | for (int i = m + 1; i <= high; i++) {
|
---|
97 | ort[i] = householderVectors[i][m - 1];
|
---|
98 | }
|
---|
99 |
|
---|
100 | for (int j = m; j <= high; j++) {
|
---|
101 | double g = 0.0;
|
---|
102 |
|
---|
103 | for (int i = m; i <= high; i++) {
|
---|
104 | g += ort[i] * pa[i][j];
|
---|
105 | }
|
---|
106 |
|
---|
107 | // Double division avoids possible underflow
|
---|
108 | g = (g / ort[m]) / householderVectors[m][m - 1];
|
---|
109 |
|
---|
110 | for (int i = m; i <= high; i++) {
|
---|
111 | pa[i][j] += g * ort[i];
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|
115 | }
|
---|
116 |
|
---|
117 | cachedP = MatrixUtils.createRealMatrix(pa);
|
---|
118 | }
|
---|
119 | return cachedP;
|
---|
120 | }
|
---|
121 |
|
---|
122 | /**
|
---|
123 | * Returns the transpose of the matrix P of the transform.
|
---|
124 | * <p>P is an orthogonal matrix, i.e. its inverse is also its transpose.</p>
|
---|
125 | *
|
---|
126 | * @return the transpose of the P matrix
|
---|
127 | */
|
---|
128 | public RealMatrix getPT() {
|
---|
129 | if (cachedPt == null) {
|
---|
130 | cachedPt = getP().transpose();
|
---|
131 | }
|
---|
132 |
|
---|
133 | // return the cached matrix
|
---|
134 | return cachedPt;
|
---|
135 | }
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Returns the Hessenberg matrix H of the transform.
|
---|
139 | *
|
---|
140 | * @return the H matrix
|
---|
141 | */
|
---|
142 | public RealMatrix getH() {
|
---|
143 | if (cachedH == null) {
|
---|
144 | final int m = householderVectors.length;
|
---|
145 | final double[][] h = new double[m][m];
|
---|
146 | for (int i = 0; i < m; ++i) {
|
---|
147 | if (i > 0) {
|
---|
148 | // copy the entry of the lower sub-diagonal
|
---|
149 | h[i][i - 1] = householderVectors[i][i - 1];
|
---|
150 | }
|
---|
151 |
|
---|
152 | // copy upper triangular part of the matrix
|
---|
153 | for (int j = i; j < m; ++j) {
|
---|
154 | h[i][j] = householderVectors[i][j];
|
---|
155 | }
|
---|
156 | }
|
---|
157 | cachedH = MatrixUtils.createRealMatrix(h);
|
---|
158 | }
|
---|
159 |
|
---|
160 | // return the cached matrix
|
---|
161 | return cachedH;
|
---|
162 | }
|
---|
163 |
|
---|
164 | /**
|
---|
165 | * Get the Householder vectors of the transform.
|
---|
166 | * <p>Note that since this class is only intended for internal use, it returns
|
---|
167 | * directly a reference to its internal arrays, not a copy.</p>
|
---|
168 | *
|
---|
169 | * @return the main diagonal elements of the B matrix
|
---|
170 | */
|
---|
171 | double[][] getHouseholderVectorsRef() {
|
---|
172 | return householderVectors;
|
---|
173 | }
|
---|
174 |
|
---|
175 | /**
|
---|
176 | * Transform original matrix to Hessenberg form.
|
---|
177 | * <p>Transformation is done using Householder transforms.</p>
|
---|
178 | */
|
---|
179 | private void transform() {
|
---|
180 | final int n = householderVectors.length;
|
---|
181 | final int high = n - 1;
|
---|
182 |
|
---|
183 | for (int m = 1; m <= high - 1; m++) {
|
---|
184 | // Scale column.
|
---|
185 | double scale = 0;
|
---|
186 | for (int i = m; i <= high; i++) {
|
---|
187 | scale += FastMath.abs(householderVectors[i][m - 1]);
|
---|
188 | }
|
---|
189 |
|
---|
190 | if (!Precision.equals(scale, 0)) {
|
---|
191 | // Compute Householder transformation.
|
---|
192 | double h = 0;
|
---|
193 | for (int i = high; i >= m; i--) {
|
---|
194 | ort[i] = householderVectors[i][m - 1] / scale;
|
---|
195 | h += ort[i] * ort[i];
|
---|
196 | }
|
---|
197 | final double g = (ort[m] > 0) ? -FastMath.sqrt(h) : FastMath.sqrt(h);
|
---|
198 |
|
---|
199 | h -= ort[m] * g;
|
---|
200 | ort[m] -= g;
|
---|
201 |
|
---|
202 | // Apply Householder similarity transformation
|
---|
203 | // H = (I - u*u' / h) * H * (I - u*u' / h)
|
---|
204 |
|
---|
205 | for (int j = m; j < n; j++) {
|
---|
206 | double f = 0;
|
---|
207 | for (int i = high; i >= m; i--) {
|
---|
208 | f += ort[i] * householderVectors[i][j];
|
---|
209 | }
|
---|
210 | f /= h;
|
---|
211 | for (int i = m; i <= high; i++) {
|
---|
212 | householderVectors[i][j] -= f * ort[i];
|
---|
213 | }
|
---|
214 | }
|
---|
215 |
|
---|
216 | for (int i = 0; i <= high; i++) {
|
---|
217 | double f = 0;
|
---|
218 | for (int j = high; j >= m; j--) {
|
---|
219 | f += ort[j] * householderVectors[i][j];
|
---|
220 | }
|
---|
221 | f /= h;
|
---|
222 | for (int j = m; j <= high; j++) {
|
---|
223 | householderVectors[i][j] -= f * ort[j];
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 | ort[m] = scale * ort[m];
|
---|
228 | householderVectors[m][m - 1] = scale * g;
|
---|
229 | }
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|