1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.linear;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.Field;
|
---|
21 | import agents.anac.y2019.harddealer.math3.FieldElement;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.util.MathArrays;
|
---|
24 |
|
---|
25 | /**
|
---|
26 | * Calculates the LUP-decomposition of a square matrix.
|
---|
27 | * <p>The LUP-decomposition of a matrix A consists of three matrices
|
---|
28 | * L, U and P that satisfy: PA = LU, L is lower triangular, and U is
|
---|
29 | * upper triangular and P is a permutation matrix. All matrices are
|
---|
30 | * m×m.</p>
|
---|
31 | * <p>Since {@link FieldElement field elements} do not provide an ordering
|
---|
32 | * operator, the permutation matrix is computed here only in order to avoid
|
---|
33 | * a zero pivot element, no attempt is done to get the largest pivot
|
---|
34 | * element.</p>
|
---|
35 | * <p>This class is based on the class with similar name from the
|
---|
36 | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library.</p>
|
---|
37 | * <ul>
|
---|
38 | * <li>a {@link #getP() getP} method has been added,</li>
|
---|
39 | * <li>the {@code det} method has been renamed as {@link #getDeterminant()
|
---|
40 | * getDeterminant},</li>
|
---|
41 | * <li>the {@code getDoublePivot} method has been removed (but the int based
|
---|
42 | * {@link #getPivot() getPivot} method has been kept),</li>
|
---|
43 | * <li>the {@code solve} and {@code isNonSingular} methods have been replaced
|
---|
44 | * by a {@link #getSolver() getSolver} method and the equivalent methods
|
---|
45 | * provided by the returned {@link DecompositionSolver}.</li>
|
---|
46 | * </ul>
|
---|
47 | *
|
---|
48 | * @param <T> the type of the field elements
|
---|
49 | * @see <a href="http://mathworld.wolfram.com/LUDecomposition.html">MathWorld</a>
|
---|
50 | * @see <a href="http://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</a>
|
---|
51 | * @since 2.0 (changed to concrete class in 3.0)
|
---|
52 | */
|
---|
53 | public class FieldLUDecomposition<T extends FieldElement<T>> {
|
---|
54 |
|
---|
55 | /** Field to which the elements belong. */
|
---|
56 | private final Field<T> field;
|
---|
57 |
|
---|
58 | /** Entries of LU decomposition. */
|
---|
59 | private T[][] lu;
|
---|
60 |
|
---|
61 | /** Pivot permutation associated with LU decomposition. */
|
---|
62 | private int[] pivot;
|
---|
63 |
|
---|
64 | /** Parity of the permutation associated with the LU decomposition. */
|
---|
65 | private boolean even;
|
---|
66 |
|
---|
67 | /** Singularity indicator. */
|
---|
68 | private boolean singular;
|
---|
69 |
|
---|
70 | /** Cached value of L. */
|
---|
71 | private FieldMatrix<T> cachedL;
|
---|
72 |
|
---|
73 | /** Cached value of U. */
|
---|
74 | private FieldMatrix<T> cachedU;
|
---|
75 |
|
---|
76 | /** Cached value of P. */
|
---|
77 | private FieldMatrix<T> cachedP;
|
---|
78 |
|
---|
79 | /**
|
---|
80 | * Calculates the LU-decomposition of the given matrix.
|
---|
81 | * @param matrix The matrix to decompose.
|
---|
82 | * @throws NonSquareMatrixException if matrix is not square
|
---|
83 | */
|
---|
84 | public FieldLUDecomposition(FieldMatrix<T> matrix) {
|
---|
85 | if (!matrix.isSquare()) {
|
---|
86 | throw new NonSquareMatrixException(matrix.getRowDimension(),
|
---|
87 | matrix.getColumnDimension());
|
---|
88 | }
|
---|
89 |
|
---|
90 | final int m = matrix.getColumnDimension();
|
---|
91 | field = matrix.getField();
|
---|
92 | lu = matrix.getData();
|
---|
93 | pivot = new int[m];
|
---|
94 | cachedL = null;
|
---|
95 | cachedU = null;
|
---|
96 | cachedP = null;
|
---|
97 |
|
---|
98 | // Initialize permutation array and parity
|
---|
99 | for (int row = 0; row < m; row++) {
|
---|
100 | pivot[row] = row;
|
---|
101 | }
|
---|
102 | even = true;
|
---|
103 | singular = false;
|
---|
104 |
|
---|
105 | // Loop over columns
|
---|
106 | for (int col = 0; col < m; col++) {
|
---|
107 |
|
---|
108 | T sum = field.getZero();
|
---|
109 |
|
---|
110 | // upper
|
---|
111 | for (int row = 0; row < col; row++) {
|
---|
112 | final T[] luRow = lu[row];
|
---|
113 | sum = luRow[col];
|
---|
114 | for (int i = 0; i < row; i++) {
|
---|
115 | sum = sum.subtract(luRow[i].multiply(lu[i][col]));
|
---|
116 | }
|
---|
117 | luRow[col] = sum;
|
---|
118 | }
|
---|
119 |
|
---|
120 | // lower
|
---|
121 | int nonZero = col; // permutation row
|
---|
122 | for (int row = col; row < m; row++) {
|
---|
123 | final T[] luRow = lu[row];
|
---|
124 | sum = luRow[col];
|
---|
125 | for (int i = 0; i < col; i++) {
|
---|
126 | sum = sum.subtract(luRow[i].multiply(lu[i][col]));
|
---|
127 | }
|
---|
128 | luRow[col] = sum;
|
---|
129 |
|
---|
130 | if (lu[nonZero][col].equals(field.getZero())) {
|
---|
131 | // try to select a better permutation choice
|
---|
132 | ++nonZero;
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | // Singularity check
|
---|
137 | if (nonZero >= m) {
|
---|
138 | singular = true;
|
---|
139 | return;
|
---|
140 | }
|
---|
141 |
|
---|
142 | // Pivot if necessary
|
---|
143 | if (nonZero != col) {
|
---|
144 | T tmp = field.getZero();
|
---|
145 | for (int i = 0; i < m; i++) {
|
---|
146 | tmp = lu[nonZero][i];
|
---|
147 | lu[nonZero][i] = lu[col][i];
|
---|
148 | lu[col][i] = tmp;
|
---|
149 | }
|
---|
150 | int temp = pivot[nonZero];
|
---|
151 | pivot[nonZero] = pivot[col];
|
---|
152 | pivot[col] = temp;
|
---|
153 | even = !even;
|
---|
154 | }
|
---|
155 |
|
---|
156 | // Divide the lower elements by the "winning" diagonal elt.
|
---|
157 | final T luDiag = lu[col][col];
|
---|
158 | for (int row = col + 1; row < m; row++) {
|
---|
159 | final T[] luRow = lu[row];
|
---|
160 | luRow[col] = luRow[col].divide(luDiag);
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | }
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * Returns the matrix L of the decomposition.
|
---|
168 | * <p>L is a lower-triangular matrix</p>
|
---|
169 | * @return the L matrix (or null if decomposed matrix is singular)
|
---|
170 | */
|
---|
171 | public FieldMatrix<T> getL() {
|
---|
172 | if ((cachedL == null) && !singular) {
|
---|
173 | final int m = pivot.length;
|
---|
174 | cachedL = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
175 | for (int i = 0; i < m; ++i) {
|
---|
176 | final T[] luI = lu[i];
|
---|
177 | for (int j = 0; j < i; ++j) {
|
---|
178 | cachedL.setEntry(i, j, luI[j]);
|
---|
179 | }
|
---|
180 | cachedL.setEntry(i, i, field.getOne());
|
---|
181 | }
|
---|
182 | }
|
---|
183 | return cachedL;
|
---|
184 | }
|
---|
185 |
|
---|
186 | /**
|
---|
187 | * Returns the matrix U of the decomposition.
|
---|
188 | * <p>U is an upper-triangular matrix</p>
|
---|
189 | * @return the U matrix (or null if decomposed matrix is singular)
|
---|
190 | */
|
---|
191 | public FieldMatrix<T> getU() {
|
---|
192 | if ((cachedU == null) && !singular) {
|
---|
193 | final int m = pivot.length;
|
---|
194 | cachedU = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
195 | for (int i = 0; i < m; ++i) {
|
---|
196 | final T[] luI = lu[i];
|
---|
197 | for (int j = i; j < m; ++j) {
|
---|
198 | cachedU.setEntry(i, j, luI[j]);
|
---|
199 | }
|
---|
200 | }
|
---|
201 | }
|
---|
202 | return cachedU;
|
---|
203 | }
|
---|
204 |
|
---|
205 | /**
|
---|
206 | * Returns the P rows permutation matrix.
|
---|
207 | * <p>P is a sparse matrix with exactly one element set to 1.0 in
|
---|
208 | * each row and each column, all other elements being set to 0.0.</p>
|
---|
209 | * <p>The positions of the 1 elements are given by the {@link #getPivot()
|
---|
210 | * pivot permutation vector}.</p>
|
---|
211 | * @return the P rows permutation matrix (or null if decomposed matrix is singular)
|
---|
212 | * @see #getPivot()
|
---|
213 | */
|
---|
214 | public FieldMatrix<T> getP() {
|
---|
215 | if ((cachedP == null) && !singular) {
|
---|
216 | final int m = pivot.length;
|
---|
217 | cachedP = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
218 | for (int i = 0; i < m; ++i) {
|
---|
219 | cachedP.setEntry(i, pivot[i], field.getOne());
|
---|
220 | }
|
---|
221 | }
|
---|
222 | return cachedP;
|
---|
223 | }
|
---|
224 |
|
---|
225 | /**
|
---|
226 | * Returns the pivot permutation vector.
|
---|
227 | * @return the pivot permutation vector
|
---|
228 | * @see #getP()
|
---|
229 | */
|
---|
230 | public int[] getPivot() {
|
---|
231 | return pivot.clone();
|
---|
232 | }
|
---|
233 |
|
---|
234 | /**
|
---|
235 | * Return the determinant of the matrix.
|
---|
236 | * @return determinant of the matrix
|
---|
237 | */
|
---|
238 | public T getDeterminant() {
|
---|
239 | if (singular) {
|
---|
240 | return field.getZero();
|
---|
241 | } else {
|
---|
242 | final int m = pivot.length;
|
---|
243 | T determinant = even ? field.getOne() : field.getZero().subtract(field.getOne());
|
---|
244 | for (int i = 0; i < m; i++) {
|
---|
245 | determinant = determinant.multiply(lu[i][i]);
|
---|
246 | }
|
---|
247 | return determinant;
|
---|
248 | }
|
---|
249 | }
|
---|
250 |
|
---|
251 | /**
|
---|
252 | * Get a solver for finding the A × X = B solution in exact linear sense.
|
---|
253 | * @return a solver
|
---|
254 | */
|
---|
255 | public FieldDecompositionSolver<T> getSolver() {
|
---|
256 | return new Solver<T>(field, lu, pivot, singular);
|
---|
257 | }
|
---|
258 |
|
---|
259 | /** Specialized solver.
|
---|
260 | * @param <T> the type of the field elements
|
---|
261 | */
|
---|
262 | private static class Solver<T extends FieldElement<T>> implements FieldDecompositionSolver<T> {
|
---|
263 |
|
---|
264 | /** Field to which the elements belong. */
|
---|
265 | private final Field<T> field;
|
---|
266 |
|
---|
267 | /** Entries of LU decomposition. */
|
---|
268 | private final T[][] lu;
|
---|
269 |
|
---|
270 | /** Pivot permutation associated with LU decomposition. */
|
---|
271 | private final int[] pivot;
|
---|
272 |
|
---|
273 | /** Singularity indicator. */
|
---|
274 | private final boolean singular;
|
---|
275 |
|
---|
276 | /**
|
---|
277 | * Build a solver from decomposed matrix.
|
---|
278 | * @param field field to which the matrix elements belong
|
---|
279 | * @param lu entries of LU decomposition
|
---|
280 | * @param pivot pivot permutation associated with LU decomposition
|
---|
281 | * @param singular singularity indicator
|
---|
282 | */
|
---|
283 | private Solver(final Field<T> field, final T[][] lu,
|
---|
284 | final int[] pivot, final boolean singular) {
|
---|
285 | this.field = field;
|
---|
286 | this.lu = lu;
|
---|
287 | this.pivot = pivot;
|
---|
288 | this.singular = singular;
|
---|
289 | }
|
---|
290 |
|
---|
291 | /** {@inheritDoc} */
|
---|
292 | public boolean isNonSingular() {
|
---|
293 | return !singular;
|
---|
294 | }
|
---|
295 |
|
---|
296 | /** {@inheritDoc} */
|
---|
297 | public FieldVector<T> solve(FieldVector<T> b) {
|
---|
298 | try {
|
---|
299 | return solve((ArrayFieldVector<T>) b);
|
---|
300 | } catch (ClassCastException cce) {
|
---|
301 |
|
---|
302 | final int m = pivot.length;
|
---|
303 | if (b.getDimension() != m) {
|
---|
304 | throw new DimensionMismatchException(b.getDimension(), m);
|
---|
305 | }
|
---|
306 | if (singular) {
|
---|
307 | throw new SingularMatrixException();
|
---|
308 | }
|
---|
309 |
|
---|
310 | // Apply permutations to b
|
---|
311 | final T[] bp = MathArrays.buildArray(field, m);
|
---|
312 | for (int row = 0; row < m; row++) {
|
---|
313 | bp[row] = b.getEntry(pivot[row]);
|
---|
314 | }
|
---|
315 |
|
---|
316 | // Solve LY = b
|
---|
317 | for (int col = 0; col < m; col++) {
|
---|
318 | final T bpCol = bp[col];
|
---|
319 | for (int i = col + 1; i < m; i++) {
|
---|
320 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
321 | }
|
---|
322 | }
|
---|
323 |
|
---|
324 | // Solve UX = Y
|
---|
325 | for (int col = m - 1; col >= 0; col--) {
|
---|
326 | bp[col] = bp[col].divide(lu[col][col]);
|
---|
327 | final T bpCol = bp[col];
|
---|
328 | for (int i = 0; i < col; i++) {
|
---|
329 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
330 | }
|
---|
331 | }
|
---|
332 |
|
---|
333 | return new ArrayFieldVector<T>(field, bp, false);
|
---|
334 |
|
---|
335 | }
|
---|
336 | }
|
---|
337 |
|
---|
338 | /** Solve the linear equation A × X = B.
|
---|
339 | * <p>The A matrix is implicit here. It is </p>
|
---|
340 | * @param b right-hand side of the equation A × X = B
|
---|
341 | * @return a vector X such that A × X = B
|
---|
342 | * @throws DimensionMismatchException if the matrices dimensions do not match.
|
---|
343 | * @throws SingularMatrixException if the decomposed matrix is singular.
|
---|
344 | */
|
---|
345 | public ArrayFieldVector<T> solve(ArrayFieldVector<T> b) {
|
---|
346 | final int m = pivot.length;
|
---|
347 | final int length = b.getDimension();
|
---|
348 | if (length != m) {
|
---|
349 | throw new DimensionMismatchException(length, m);
|
---|
350 | }
|
---|
351 | if (singular) {
|
---|
352 | throw new SingularMatrixException();
|
---|
353 | }
|
---|
354 |
|
---|
355 | // Apply permutations to b
|
---|
356 | final T[] bp = MathArrays.buildArray(field, m);
|
---|
357 | for (int row = 0; row < m; row++) {
|
---|
358 | bp[row] = b.getEntry(pivot[row]);
|
---|
359 | }
|
---|
360 |
|
---|
361 | // Solve LY = b
|
---|
362 | for (int col = 0; col < m; col++) {
|
---|
363 | final T bpCol = bp[col];
|
---|
364 | for (int i = col + 1; i < m; i++) {
|
---|
365 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | // Solve UX = Y
|
---|
370 | for (int col = m - 1; col >= 0; col--) {
|
---|
371 | bp[col] = bp[col].divide(lu[col][col]);
|
---|
372 | final T bpCol = bp[col];
|
---|
373 | for (int i = 0; i < col; i++) {
|
---|
374 | bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
|
---|
375 | }
|
---|
376 | }
|
---|
377 |
|
---|
378 | return new ArrayFieldVector<T>(bp, false);
|
---|
379 | }
|
---|
380 |
|
---|
381 | /** {@inheritDoc} */
|
---|
382 | public FieldMatrix<T> solve(FieldMatrix<T> b) {
|
---|
383 | final int m = pivot.length;
|
---|
384 | if (b.getRowDimension() != m) {
|
---|
385 | throw new DimensionMismatchException(b.getRowDimension(), m);
|
---|
386 | }
|
---|
387 | if (singular) {
|
---|
388 | throw new SingularMatrixException();
|
---|
389 | }
|
---|
390 |
|
---|
391 | final int nColB = b.getColumnDimension();
|
---|
392 |
|
---|
393 | // Apply permutations to b
|
---|
394 | final T[][] bp = MathArrays.buildArray(field, m, nColB);
|
---|
395 | for (int row = 0; row < m; row++) {
|
---|
396 | final T[] bpRow = bp[row];
|
---|
397 | final int pRow = pivot[row];
|
---|
398 | for (int col = 0; col < nColB; col++) {
|
---|
399 | bpRow[col] = b.getEntry(pRow, col);
|
---|
400 | }
|
---|
401 | }
|
---|
402 |
|
---|
403 | // Solve LY = b
|
---|
404 | for (int col = 0; col < m; col++) {
|
---|
405 | final T[] bpCol = bp[col];
|
---|
406 | for (int i = col + 1; i < m; i++) {
|
---|
407 | final T[] bpI = bp[i];
|
---|
408 | final T luICol = lu[i][col];
|
---|
409 | for (int j = 0; j < nColB; j++) {
|
---|
410 | bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
|
---|
411 | }
|
---|
412 | }
|
---|
413 | }
|
---|
414 |
|
---|
415 | // Solve UX = Y
|
---|
416 | for (int col = m - 1; col >= 0; col--) {
|
---|
417 | final T[] bpCol = bp[col];
|
---|
418 | final T luDiag = lu[col][col];
|
---|
419 | for (int j = 0; j < nColB; j++) {
|
---|
420 | bpCol[j] = bpCol[j].divide(luDiag);
|
---|
421 | }
|
---|
422 | for (int i = 0; i < col; i++) {
|
---|
423 | final T[] bpI = bp[i];
|
---|
424 | final T luICol = lu[i][col];
|
---|
425 | for (int j = 0; j < nColB; j++) {
|
---|
426 | bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol));
|
---|
427 | }
|
---|
428 | }
|
---|
429 | }
|
---|
430 |
|
---|
431 | return new Array2DRowFieldMatrix<T>(field, bp, false);
|
---|
432 |
|
---|
433 | }
|
---|
434 |
|
---|
435 | /** {@inheritDoc} */
|
---|
436 | public FieldMatrix<T> getInverse() {
|
---|
437 | final int m = pivot.length;
|
---|
438 | final T one = field.getOne();
|
---|
439 | FieldMatrix<T> identity = new Array2DRowFieldMatrix<T>(field, m, m);
|
---|
440 | for (int i = 0; i < m; ++i) {
|
---|
441 | identity.setEntry(i, i, one);
|
---|
442 | }
|
---|
443 | return solve(identity);
|
---|
444 | }
|
---|
445 | }
|
---|
446 | }
|
---|