1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.linear;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.DimensionMismatchException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
22 |
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * Calculates the Cholesky decomposition of a matrix.
|
---|
26 | * <p>The Cholesky decomposition of a real symmetric positive-definite
|
---|
27 | * matrix A consists of a lower triangular matrix L with same size such
|
---|
28 | * that: A = LL<sup>T</sup>. In a sense, this is the square root of A.</p>
|
---|
29 | * <p>This class is based on the class with similar name from the
|
---|
30 | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
|
---|
31 | * following changes:</p>
|
---|
32 | * <ul>
|
---|
33 | * <li>a {@link #getLT() getLT} method has been added,</li>
|
---|
34 | * <li>the {@code isspd} method has been removed, since the constructor of
|
---|
35 | * this class throws a {@link NonPositiveDefiniteMatrixException} when a
|
---|
36 | * matrix cannot be decomposed,</li>
|
---|
37 | * <li>a {@link #getDeterminant() getDeterminant} method has been added,</li>
|
---|
38 | * <li>the {@code solve} method has been replaced by a {@link #getSolver()
|
---|
39 | * getSolver} method and the equivalent method provided by the returned
|
---|
40 | * {@link DecompositionSolver}.</li>
|
---|
41 | * </ul>
|
---|
42 | *
|
---|
43 | * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
|
---|
44 | * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
|
---|
45 | * @since 2.0 (changed to concrete class in 3.0)
|
---|
46 | */
|
---|
47 | public class CholeskyDecomposition {
|
---|
48 | /**
|
---|
49 | * Default threshold above which off-diagonal elements are considered too different
|
---|
50 | * and matrix not symmetric.
|
---|
51 | */
|
---|
52 | public static final double DEFAULT_RELATIVE_SYMMETRY_THRESHOLD = 1.0e-15;
|
---|
53 | /**
|
---|
54 | * Default threshold below which diagonal elements are considered null
|
---|
55 | * and matrix not positive definite.
|
---|
56 | */
|
---|
57 | public static final double DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD = 1.0e-10;
|
---|
58 | /** Row-oriented storage for L<sup>T</sup> matrix data. */
|
---|
59 | private double[][] lTData;
|
---|
60 | /** Cached value of L. */
|
---|
61 | private RealMatrix cachedL;
|
---|
62 | /** Cached value of LT. */
|
---|
63 | private RealMatrix cachedLT;
|
---|
64 |
|
---|
65 | /**
|
---|
66 | * Calculates the Cholesky decomposition of the given matrix.
|
---|
67 | * <p>
|
---|
68 | * Calling this constructor is equivalent to call {@link
|
---|
69 | * #CholeskyDecomposition(RealMatrix, double, double)} with the
|
---|
70 | * thresholds set to the default values {@link
|
---|
71 | * #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} and {@link
|
---|
72 | * #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD}
|
---|
73 | * </p>
|
---|
74 | * @param matrix the matrix to decompose
|
---|
75 | * @throws NonSquareMatrixException if the matrix is not square.
|
---|
76 | * @throws NonSymmetricMatrixException if the matrix is not symmetric.
|
---|
77 | * @throws NonPositiveDefiniteMatrixException if the matrix is not
|
---|
78 | * strictly positive definite.
|
---|
79 | * @see #CholeskyDecomposition(RealMatrix, double, double)
|
---|
80 | * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
|
---|
81 | * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
|
---|
82 | */
|
---|
83 | public CholeskyDecomposition(final RealMatrix matrix) {
|
---|
84 | this(matrix, DEFAULT_RELATIVE_SYMMETRY_THRESHOLD,
|
---|
85 | DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /**
|
---|
89 | * Calculates the Cholesky decomposition of the given matrix.
|
---|
90 | * @param matrix the matrix to decompose
|
---|
91 | * @param relativeSymmetryThreshold threshold above which off-diagonal
|
---|
92 | * elements are considered too different and matrix not symmetric
|
---|
93 | * @param absolutePositivityThreshold threshold below which diagonal
|
---|
94 | * elements are considered null and matrix not positive definite
|
---|
95 | * @throws NonSquareMatrixException if the matrix is not square.
|
---|
96 | * @throws NonSymmetricMatrixException if the matrix is not symmetric.
|
---|
97 | * @throws NonPositiveDefiniteMatrixException if the matrix is not
|
---|
98 | * strictly positive definite.
|
---|
99 | * @see #CholeskyDecomposition(RealMatrix)
|
---|
100 | * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
|
---|
101 | * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
|
---|
102 | */
|
---|
103 | public CholeskyDecomposition(final RealMatrix matrix,
|
---|
104 | final double relativeSymmetryThreshold,
|
---|
105 | final double absolutePositivityThreshold) {
|
---|
106 | if (!matrix.isSquare()) {
|
---|
107 | throw new NonSquareMatrixException(matrix.getRowDimension(),
|
---|
108 | matrix.getColumnDimension());
|
---|
109 | }
|
---|
110 |
|
---|
111 | final int order = matrix.getRowDimension();
|
---|
112 | lTData = matrix.getData();
|
---|
113 | cachedL = null;
|
---|
114 | cachedLT = null;
|
---|
115 |
|
---|
116 | // check the matrix before transformation
|
---|
117 | for (int i = 0; i < order; ++i) {
|
---|
118 | final double[] lI = lTData[i];
|
---|
119 |
|
---|
120 | // check off-diagonal elements (and reset them to 0)
|
---|
121 | for (int j = i + 1; j < order; ++j) {
|
---|
122 | final double[] lJ = lTData[j];
|
---|
123 | final double lIJ = lI[j];
|
---|
124 | final double lJI = lJ[i];
|
---|
125 | final double maxDelta =
|
---|
126 | relativeSymmetryThreshold * FastMath.max(FastMath.abs(lIJ), FastMath.abs(lJI));
|
---|
127 | if (FastMath.abs(lIJ - lJI) > maxDelta) {
|
---|
128 | throw new NonSymmetricMatrixException(i, j, relativeSymmetryThreshold);
|
---|
129 | }
|
---|
130 | lJ[i] = 0;
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | // transform the matrix
|
---|
135 | for (int i = 0; i < order; ++i) {
|
---|
136 |
|
---|
137 | final double[] ltI = lTData[i];
|
---|
138 |
|
---|
139 | // check diagonal element
|
---|
140 | if (ltI[i] <= absolutePositivityThreshold) {
|
---|
141 | throw new NonPositiveDefiniteMatrixException(ltI[i], i, absolutePositivityThreshold);
|
---|
142 | }
|
---|
143 |
|
---|
144 | ltI[i] = FastMath.sqrt(ltI[i]);
|
---|
145 | final double inverse = 1.0 / ltI[i];
|
---|
146 |
|
---|
147 | for (int q = order - 1; q > i; --q) {
|
---|
148 | ltI[q] *= inverse;
|
---|
149 | final double[] ltQ = lTData[q];
|
---|
150 | for (int p = q; p < order; ++p) {
|
---|
151 | ltQ[p] -= ltI[q] * ltI[p];
|
---|
152 | }
|
---|
153 | }
|
---|
154 | }
|
---|
155 | }
|
---|
156 |
|
---|
157 | /**
|
---|
158 | * Returns the matrix L of the decomposition.
|
---|
159 | * <p>L is an lower-triangular matrix</p>
|
---|
160 | * @return the L matrix
|
---|
161 | */
|
---|
162 | public RealMatrix getL() {
|
---|
163 | if (cachedL == null) {
|
---|
164 | cachedL = getLT().transpose();
|
---|
165 | }
|
---|
166 | return cachedL;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /**
|
---|
170 | * Returns the transpose of the matrix L of the decomposition.
|
---|
171 | * <p>L<sup>T</sup> is an upper-triangular matrix</p>
|
---|
172 | * @return the transpose of the matrix L of the decomposition
|
---|
173 | */
|
---|
174 | public RealMatrix getLT() {
|
---|
175 |
|
---|
176 | if (cachedLT == null) {
|
---|
177 | cachedLT = MatrixUtils.createRealMatrix(lTData);
|
---|
178 | }
|
---|
179 |
|
---|
180 | // return the cached matrix
|
---|
181 | return cachedLT;
|
---|
182 | }
|
---|
183 |
|
---|
184 | /**
|
---|
185 | * Return the determinant of the matrix
|
---|
186 | * @return determinant of the matrix
|
---|
187 | */
|
---|
188 | public double getDeterminant() {
|
---|
189 | double determinant = 1.0;
|
---|
190 | for (int i = 0; i < lTData.length; ++i) {
|
---|
191 | double lTii = lTData[i][i];
|
---|
192 | determinant *= lTii * lTii;
|
---|
193 | }
|
---|
194 | return determinant;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /**
|
---|
198 | * Get a solver for finding the A × X = B solution in least square sense.
|
---|
199 | * @return a solver
|
---|
200 | */
|
---|
201 | public DecompositionSolver getSolver() {
|
---|
202 | return new Solver(lTData);
|
---|
203 | }
|
---|
204 |
|
---|
205 | /** Specialized solver. */
|
---|
206 | private static class Solver implements DecompositionSolver {
|
---|
207 | /** Row-oriented storage for L<sup>T</sup> matrix data. */
|
---|
208 | private final double[][] lTData;
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * Build a solver from decomposed matrix.
|
---|
212 | * @param lTData row-oriented storage for L<sup>T</sup> matrix data
|
---|
213 | */
|
---|
214 | private Solver(final double[][] lTData) {
|
---|
215 | this.lTData = lTData;
|
---|
216 | }
|
---|
217 |
|
---|
218 | /** {@inheritDoc} */
|
---|
219 | public boolean isNonSingular() {
|
---|
220 | // if we get this far, the matrix was positive definite, hence non-singular
|
---|
221 | return true;
|
---|
222 | }
|
---|
223 |
|
---|
224 | /** {@inheritDoc} */
|
---|
225 | public RealVector solve(final RealVector b) {
|
---|
226 | final int m = lTData.length;
|
---|
227 | if (b.getDimension() != m) {
|
---|
228 | throw new DimensionMismatchException(b.getDimension(), m);
|
---|
229 | }
|
---|
230 |
|
---|
231 | final double[] x = b.toArray();
|
---|
232 |
|
---|
233 | // Solve LY = b
|
---|
234 | for (int j = 0; j < m; j++) {
|
---|
235 | final double[] lJ = lTData[j];
|
---|
236 | x[j] /= lJ[j];
|
---|
237 | final double xJ = x[j];
|
---|
238 | for (int i = j + 1; i < m; i++) {
|
---|
239 | x[i] -= xJ * lJ[i];
|
---|
240 | }
|
---|
241 | }
|
---|
242 |
|
---|
243 | // Solve LTX = Y
|
---|
244 | for (int j = m - 1; j >= 0; j--) {
|
---|
245 | x[j] /= lTData[j][j];
|
---|
246 | final double xJ = x[j];
|
---|
247 | for (int i = 0; i < j; i++) {
|
---|
248 | x[i] -= xJ * lTData[i][j];
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 | return new ArrayRealVector(x, false);
|
---|
253 | }
|
---|
254 |
|
---|
255 | /** {@inheritDoc} */
|
---|
256 | public RealMatrix solve(RealMatrix b) {
|
---|
257 | final int m = lTData.length;
|
---|
258 | if (b.getRowDimension() != m) {
|
---|
259 | throw new DimensionMismatchException(b.getRowDimension(), m);
|
---|
260 | }
|
---|
261 |
|
---|
262 | final int nColB = b.getColumnDimension();
|
---|
263 | final double[][] x = b.getData();
|
---|
264 |
|
---|
265 | // Solve LY = b
|
---|
266 | for (int j = 0; j < m; j++) {
|
---|
267 | final double[] lJ = lTData[j];
|
---|
268 | final double lJJ = lJ[j];
|
---|
269 | final double[] xJ = x[j];
|
---|
270 | for (int k = 0; k < nColB; ++k) {
|
---|
271 | xJ[k] /= lJJ;
|
---|
272 | }
|
---|
273 | for (int i = j + 1; i < m; i++) {
|
---|
274 | final double[] xI = x[i];
|
---|
275 | final double lJI = lJ[i];
|
---|
276 | for (int k = 0; k < nColB; ++k) {
|
---|
277 | xI[k] -= xJ[k] * lJI;
|
---|
278 | }
|
---|
279 | }
|
---|
280 | }
|
---|
281 |
|
---|
282 | // Solve LTX = Y
|
---|
283 | for (int j = m - 1; j >= 0; j--) {
|
---|
284 | final double lJJ = lTData[j][j];
|
---|
285 | final double[] xJ = x[j];
|
---|
286 | for (int k = 0; k < nColB; ++k) {
|
---|
287 | xJ[k] /= lJJ;
|
---|
288 | }
|
---|
289 | for (int i = 0; i < j; i++) {
|
---|
290 | final double[] xI = x[i];
|
---|
291 | final double lIJ = lTData[i][j];
|
---|
292 | for (int k = 0; k < nColB; ++k) {
|
---|
293 | xI[k] -= xJ[k] * lIJ;
|
---|
294 | }
|
---|
295 | }
|
---|
296 | }
|
---|
297 |
|
---|
298 | return new Array2DRowRealMatrix(x);
|
---|
299 | }
|
---|
300 |
|
---|
301 | /**
|
---|
302 | * Get the inverse of the decomposed matrix.
|
---|
303 | *
|
---|
304 | * @return the inverse matrix.
|
---|
305 | */
|
---|
306 | public RealMatrix getInverse() {
|
---|
307 | return solve(MatrixUtils.createRealIdentityMatrix(lTData.length));
|
---|
308 | }
|
---|
309 | }
|
---|
310 | }
|
---|