source: src/main/java/agents/anac/y2019/harddealer/math3/geometry/partitioning/AbstractSubHyperplane.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 7.7 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.anac.y2019.harddealer.math3.geometry.partitioning;
18
19import java.util.HashMap;
20import java.util.Map;
21
22import agents.anac.y2019.harddealer.math3.geometry.Space;
23
24/** This class implements the dimension-independent parts of {@link SubHyperplane}.
25
26 * <p>sub-hyperplanes are obtained when parts of an {@link
27 * Hyperplane hyperplane} are chopped off by other hyperplanes that
28 * intersect it. The remaining part is a convex region. Such objects
29 * appear in {@link BSPTree BSP trees} as the intersection of a cut
30 * hyperplane with the convex region which it splits, the chopping
31 * hyperplanes are the cut hyperplanes closer to the tree root.</p>
32
33 * @param <S> Type of the embedding space.
34 * @param <T> Type of the embedded sub-space.
35
36 * @since 3.0
37 */
38public abstract class AbstractSubHyperplane<S extends Space, T extends Space>
39 implements SubHyperplane<S> {
40
41 /** Underlying hyperplane. */
42 private final Hyperplane<S> hyperplane;
43
44 /** Remaining region of the hyperplane. */
45 private final Region<T> remainingRegion;
46
47 /** Build a sub-hyperplane from an hyperplane and a region.
48 * @param hyperplane underlying hyperplane
49 * @param remainingRegion remaining region of the hyperplane
50 */
51 protected AbstractSubHyperplane(final Hyperplane<S> hyperplane,
52 final Region<T> remainingRegion) {
53 this.hyperplane = hyperplane;
54 this.remainingRegion = remainingRegion;
55 }
56
57 /** Build a sub-hyperplane from an hyperplane and a region.
58 * @param hyper underlying hyperplane
59 * @param remaining remaining region of the hyperplane
60 * @return a new sub-hyperplane
61 */
62 protected abstract AbstractSubHyperplane<S, T> buildNew(final Hyperplane<S> hyper,
63 final Region<T> remaining);
64
65 /** {@inheritDoc} */
66 public AbstractSubHyperplane<S, T> copySelf() {
67 return buildNew(hyperplane.copySelf(), remainingRegion);
68 }
69
70 /** Get the underlying hyperplane.
71 * @return underlying hyperplane
72 */
73 public Hyperplane<S> getHyperplane() {
74 return hyperplane;
75 }
76
77 /** Get the remaining region of the hyperplane.
78 * <p>The returned region is expressed in the canonical hyperplane
79 * frame and has the hyperplane dimension. For example a chopped
80 * hyperplane in the 3D euclidean is a 2D plane and the
81 * corresponding region is a convex 2D polygon.</p>
82 * @return remaining region of the hyperplane
83 */
84 public Region<T> getRemainingRegion() {
85 return remainingRegion;
86 }
87
88 /** {@inheritDoc} */
89 public double getSize() {
90 return remainingRegion.getSize();
91 }
92
93 /** {@inheritDoc} */
94 public AbstractSubHyperplane<S, T> reunite(final SubHyperplane<S> other) {
95 @SuppressWarnings("unchecked")
96 AbstractSubHyperplane<S, T> o = (AbstractSubHyperplane<S, T>) other;
97 return buildNew(hyperplane,
98 new RegionFactory<T>().union(remainingRegion, o.remainingRegion));
99 }
100
101 /** Apply a transform to the instance.
102 * <p>The instance must be a (D-1)-dimension sub-hyperplane with
103 * respect to the transform <em>not</em> a (D-2)-dimension
104 * sub-hyperplane the transform knows how to transform by
105 * itself. The transform will consist in transforming first the
106 * hyperplane and then the all region using the various methods
107 * provided by the transform.</p>
108 * @param transform D-dimension transform to apply
109 * @return the transformed instance
110 */
111 public AbstractSubHyperplane<S, T> applyTransform(final Transform<S, T> transform) {
112 final Hyperplane<S> tHyperplane = transform.apply(hyperplane);
113
114 // transform the tree, except for boundary attribute splitters
115 final Map<BSPTree<T>, BSPTree<T>> map = new HashMap<BSPTree<T>, BSPTree<T>>();
116 final BSPTree<T> tTree =
117 recurseTransform(remainingRegion.getTree(false), tHyperplane, transform, map);
118
119 // set up the boundary attributes splitters
120 for (final Map.Entry<BSPTree<T>, BSPTree<T>> entry : map.entrySet()) {
121 if (entry.getKey().getCut() != null) {
122 @SuppressWarnings("unchecked")
123 BoundaryAttribute<T> original = (BoundaryAttribute<T>) entry.getKey().getAttribute();
124 if (original != null) {
125 @SuppressWarnings("unchecked")
126 BoundaryAttribute<T> transformed = (BoundaryAttribute<T>) entry.getValue().getAttribute();
127 for (final BSPTree<T> splitter : original.getSplitters()) {
128 transformed.getSplitters().add(map.get(splitter));
129 }
130 }
131 }
132 }
133
134 return buildNew(tHyperplane, remainingRegion.buildNew(tTree));
135
136 }
137
138 /** Recursively transform a BSP-tree from a sub-hyperplane.
139 * @param node current BSP tree node
140 * @param transformed image of the instance hyperplane by the transform
141 * @param transform transform to apply
142 * @param map transformed nodes map
143 * @return a new tree
144 */
145 private BSPTree<T> recurseTransform(final BSPTree<T> node,
146 final Hyperplane<S> transformed,
147 final Transform<S, T> transform,
148 final Map<BSPTree<T>, BSPTree<T>> map) {
149
150 final BSPTree<T> transformedNode;
151 if (node.getCut() == null) {
152 transformedNode = new BSPTree<T>(node.getAttribute());
153 } else {
154
155 @SuppressWarnings("unchecked")
156 BoundaryAttribute<T> attribute = (BoundaryAttribute<T>) node.getAttribute();
157 if (attribute != null) {
158 final SubHyperplane<T> tPO = (attribute.getPlusOutside() == null) ?
159 null : transform.apply(attribute.getPlusOutside(), hyperplane, transformed);
160 final SubHyperplane<T> tPI = (attribute.getPlusInside() == null) ?
161 null : transform.apply(attribute.getPlusInside(), hyperplane, transformed);
162 // we start with an empty list of splitters, it will be filled in out of recursion
163 attribute = new BoundaryAttribute<T>(tPO, tPI, new NodesSet<T>());
164 }
165
166 transformedNode = new BSPTree<T>(transform.apply(node.getCut(), hyperplane, transformed),
167 recurseTransform(node.getPlus(), transformed, transform, map),
168 recurseTransform(node.getMinus(), transformed, transform, map),
169 attribute);
170 }
171
172 map.put(node, transformedNode);
173 return transformedNode;
174
175 }
176
177 /** {@inheritDoc} */
178 @Deprecated
179 public Side side(Hyperplane<S> hyper) {
180 return split(hyper).getSide();
181 }
182
183 /** {@inheritDoc} */
184 public abstract SplitSubHyperplane<S> split(Hyperplane<S> hyper);
185
186 /** {@inheritDoc} */
187 public boolean isEmpty() {
188 return remainingRegion.isEmpty();
189 }
190
191}
Note: See TracBrowser for help on using the repository browser.