source: src/main/java/agents/anac/y2019/harddealer/math3/fitting/leastsquares/LevenbergMarquardtOptimizer.java

Last change on this file was 204, checked in by Katsuhide Fujita, 5 years ago

Fixed errors of ANAC2019 agents

  • Property svn:executable set to *
File size: 42.0 KB
Line 
1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17package agents.anac.y2019.harddealer.math3.fitting.leastsquares;
18
19import java.util.Arrays;
20
21import agents.anac.y2019.harddealer.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
22import agents.anac.y2019.harddealer.math3.linear.ArrayRealVector;
23import agents.anac.y2019.harddealer.math3.linear.RealMatrix;
24import agents.anac.y2019.harddealer.math3.exception.ConvergenceException;
25import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
26import agents.anac.y2019.harddealer.math3.optim.ConvergenceChecker;
27import agents.anac.y2019.harddealer.math3.util.Incrementor;
28import agents.anac.y2019.harddealer.math3.util.Precision;
29import agents.anac.y2019.harddealer.math3.util.FastMath;
30
31
32/**
33 * This class solves a least-squares problem using the Levenberg-Marquardt
34 * algorithm.
35 *
36 * <p>This implementation <em>should</em> work even for over-determined systems
37 * (i.e. systems having more point than equations). Over-determined systems
38 * are solved by ignoring the point which have the smallest impact according
39 * to their jacobian column norm. Only the rank of the matrix and some loop bounds
40 * are changed to implement this.</p>
41 *
42 * <p>The resolution engine is a simple translation of the MINPACK <a
43 * href="http://www.netlib.org/minpack/lmder.f">lmder</a> routine with minor
44 * changes. The changes include the over-determined resolution, the use of
45 * inherited convergence checker and the Q.R. decomposition which has been
46 * rewritten following the algorithm described in the
47 * P. Lascaux and R. Theodor book <i>Analyse num&eacute;rique matricielle
48 * appliqu&eacute;e &agrave; l'art de l'ing&eacute;nieur</i>, Masson 1986.</p>
49 * <p>The authors of the original fortran version are:
50 * <ul>
51 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
52 * <li>Burton S. Garbow</li>
53 * <li>Kenneth E. Hillstrom</li>
54 * <li>Jorge J. More</li>
55 * </ul>
56 * The redistribution policy for MINPACK is available <a
57 * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
58 * is reproduced below.</p>
59 *
60 * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
61 * <tr><td>
62 * Minpack Copyright Notice (1999) University of Chicago.
63 * All rights reserved
64 * </td></tr>
65 * <tr><td>
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * <ol>
70 * <li>Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.</li>
72 * <li>Redistributions in binary form must reproduce the above
73 * copyright notice, this list of conditions and the following
74 * disclaimer in the documentation and/or other materials provided
75 * with the distribution.</li>
76 * <li>The end-user documentation included with the redistribution, if any,
77 * must include the following acknowledgment:
78 * <code>This product includes software developed by the University of
79 * Chicago, as Operator of Argonne National Laboratory.</code>
80 * Alternately, this acknowledgment may appear in the software itself,
81 * if and wherever such third-party acknowledgments normally appear.</li>
82 * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
83 * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
84 * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
85 * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
86 * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
87 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
88 * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
89 * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
90 * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
91 * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
92 * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
93 * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
94 * BE CORRECTED.</strong></li>
95 * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
96 * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
97 * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
98 * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
99 * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
100 * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
101 * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
102 * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
103 * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
104 * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
105 * <ol></td></tr>
106 * </table>
107 *
108 * @since 3.3
109 */
110public class LevenbergMarquardtOptimizer implements LeastSquaresOptimizer {
111
112 /** Twice the "epsilon machine". */
113 private static final double TWO_EPS = 2 * Precision.EPSILON;
114
115 /* configuration parameters */
116 /** Positive input variable used in determining the initial step bound. */
117 private final double initialStepBoundFactor;
118 /** Desired relative error in the sum of squares. */
119 private final double costRelativeTolerance;
120 /** Desired relative error in the approximate solution parameters. */
121 private final double parRelativeTolerance;
122 /** Desired max cosine on the orthogonality between the function vector
123 * and the columns of the jacobian. */
124 private final double orthoTolerance;
125 /** Threshold for QR ranking. */
126 private final double qrRankingThreshold;
127
128 /** Default constructor.
129 * <p>
130 * The default values for the algorithm settings are:
131 * <ul>
132 * <li>Initial step bound factor: 100</li>
133 * <li>Cost relative tolerance: 1e-10</li>
134 * <li>Parameters relative tolerance: 1e-10</li>
135 * <li>Orthogonality tolerance: 1e-10</li>
136 * <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li>
137 * </ul>
138 **/
139 public LevenbergMarquardtOptimizer() {
140 this(100, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN);
141 }
142
143 /**
144 * Construct an instance with all parameters specified.
145 *
146 * @param initialStepBoundFactor initial step bound factor
147 * @param costRelativeTolerance cost relative tolerance
148 * @param parRelativeTolerance parameters relative tolerance
149 * @param orthoTolerance orthogonality tolerance
150 * @param qrRankingThreshold threshold in the QR decomposition. Columns with a 2
151 * norm less than this threshold are considered to be
152 * all 0s.
153 */
154 public LevenbergMarquardtOptimizer(
155 final double initialStepBoundFactor,
156 final double costRelativeTolerance,
157 final double parRelativeTolerance,
158 final double orthoTolerance,
159 final double qrRankingThreshold) {
160 this.initialStepBoundFactor = initialStepBoundFactor;
161 this.costRelativeTolerance = costRelativeTolerance;
162 this.parRelativeTolerance = parRelativeTolerance;
163 this.orthoTolerance = orthoTolerance;
164 this.qrRankingThreshold = qrRankingThreshold;
165 }
166
167 /**
168 * @param newInitialStepBoundFactor Positive input variable used in
169 * determining the initial step bound. This bound is set to the
170 * product of initialStepBoundFactor and the euclidean norm of
171 * {@code diag * x} if non-zero, or else to {@code newInitialStepBoundFactor}
172 * itself. In most cases factor should lie in the interval
173 * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value.
174 * of the matrix is reduced.
175 * @return a new instance.
176 */
177 public LevenbergMarquardtOptimizer withInitialStepBoundFactor(double newInitialStepBoundFactor) {
178 return new LevenbergMarquardtOptimizer(
179 newInitialStepBoundFactor,
180 costRelativeTolerance,
181 parRelativeTolerance,
182 orthoTolerance,
183 qrRankingThreshold);
184 }
185
186 /**
187 * @param newCostRelativeTolerance Desired relative error in the sum of squares.
188 * @return a new instance.
189 */
190 public LevenbergMarquardtOptimizer withCostRelativeTolerance(double newCostRelativeTolerance) {
191 return new LevenbergMarquardtOptimizer(
192 initialStepBoundFactor,
193 newCostRelativeTolerance,
194 parRelativeTolerance,
195 orthoTolerance,
196 qrRankingThreshold);
197 }
198
199 /**
200 * @param newParRelativeTolerance Desired relative error in the approximate solution
201 * parameters.
202 * @return a new instance.
203 */
204 public LevenbergMarquardtOptimizer withParameterRelativeTolerance(double newParRelativeTolerance) {
205 return new LevenbergMarquardtOptimizer(
206 initialStepBoundFactor,
207 costRelativeTolerance,
208 newParRelativeTolerance,
209 orthoTolerance,
210 qrRankingThreshold);
211 }
212
213 /**
214 * Modifies the given parameter.
215 *
216 * @param newOrthoTolerance Desired max cosine on the orthogonality between
217 * the function vector and the columns of the Jacobian.
218 * @return a new instance.
219 */
220 public LevenbergMarquardtOptimizer withOrthoTolerance(double newOrthoTolerance) {
221 return new LevenbergMarquardtOptimizer(
222 initialStepBoundFactor,
223 costRelativeTolerance,
224 parRelativeTolerance,
225 newOrthoTolerance,
226 qrRankingThreshold);
227 }
228
229 /**
230 * @param newQRRankingThreshold Desired threshold for QR ranking.
231 * If the squared norm of a column vector is smaller or equal to this
232 * threshold during QR decomposition, it is considered to be a zero vector
233 * and hence the rank of the matrix is reduced.
234 * @return a new instance.
235 */
236 public LevenbergMarquardtOptimizer withRankingThreshold(double newQRRankingThreshold) {
237 return new LevenbergMarquardtOptimizer(
238 initialStepBoundFactor,
239 costRelativeTolerance,
240 parRelativeTolerance,
241 orthoTolerance,
242 newQRRankingThreshold);
243 }
244
245 /**
246 * Gets the value of a tuning parameter.
247 * @see #withInitialStepBoundFactor(double)
248 *
249 * @return the parameter's value.
250 */
251 public double getInitialStepBoundFactor() {
252 return initialStepBoundFactor;
253 }
254
255 /**
256 * Gets the value of a tuning parameter.
257 * @see #withCostRelativeTolerance(double)
258 *
259 * @return the parameter's value.
260 */
261 public double getCostRelativeTolerance() {
262 return costRelativeTolerance;
263 }
264
265 /**
266 * Gets the value of a tuning parameter.
267 * @see #withParameterRelativeTolerance(double)
268 *
269 * @return the parameter's value.
270 */
271 public double getParameterRelativeTolerance() {
272 return parRelativeTolerance;
273 }
274
275 /**
276 * Gets the value of a tuning parameter.
277 * @see #withOrthoTolerance(double)
278 *
279 * @return the parameter's value.
280 */
281 public double getOrthoTolerance() {
282 return orthoTolerance;
283 }
284
285 /**
286 * Gets the value of a tuning parameter.
287 * @see #withRankingThreshold(double)
288 *
289 * @return the parameter's value.
290 */
291 public double getRankingThreshold() {
292 return qrRankingThreshold;
293 }
294
295 /** {@inheritDoc} */
296 public Optimum optimize(final LeastSquaresProblem problem) {
297 // Pull in relevant data from the problem as locals.
298 final int nR = problem.getObservationSize(); // Number of observed data.
299 final int nC = problem.getParameterSize(); // Number of parameters.
300 // Counters.
301 final Incrementor iterationCounter = problem.getIterationCounter();
302 final Incrementor evaluationCounter = problem.getEvaluationCounter();
303 // Convergence criterion.
304 final ConvergenceChecker<Evaluation> checker = problem.getConvergenceChecker();
305
306 // arrays shared with the other private methods
307 final int solvedCols = FastMath.min(nR, nC);
308 /* Parameters evolution direction associated with lmPar. */
309 double[] lmDir = new double[nC];
310 /* Levenberg-Marquardt parameter. */
311 double lmPar = 0;
312
313 // local point
314 double delta = 0;
315 double xNorm = 0;
316 double[] diag = new double[nC];
317 double[] oldX = new double[nC];
318 double[] oldRes = new double[nR];
319 double[] qtf = new double[nR];
320 double[] work1 = new double[nC];
321 double[] work2 = new double[nC];
322 double[] work3 = new double[nC];
323
324
325 // Evaluate the function at the starting point and calculate its norm.
326 evaluationCounter.incrementCount();
327 //value will be reassigned in the loop
328 Evaluation current = problem.evaluate(problem.getStart());
329 double[] currentResiduals = current.getResiduals().toArray();
330 double currentCost = current.getCost();
331 double[] currentPoint = current.getPoint().toArray();
332
333 // Outer loop.
334 boolean firstIteration = true;
335 while (true) {
336 iterationCounter.incrementCount();
337
338 final Evaluation previous = current;
339
340 // QR decomposition of the jacobian matrix
341 final InternalData internalData
342 = qrDecomposition(current.getJacobian(), solvedCols);
343 final double[][] weightedJacobian = internalData.weightedJacobian;
344 final int[] permutation = internalData.permutation;
345 final double[] diagR = internalData.diagR;
346 final double[] jacNorm = internalData.jacNorm;
347
348 //residuals already have weights applied
349 double[] weightedResidual = currentResiduals;
350 for (int i = 0; i < nR; i++) {
351 qtf[i] = weightedResidual[i];
352 }
353
354 // compute Qt.res
355 qTy(qtf, internalData);
356
357 // now we don't need Q anymore,
358 // so let jacobian contain the R matrix with its diagonal elements
359 for (int k = 0; k < solvedCols; ++k) {
360 int pk = permutation[k];
361 weightedJacobian[k][pk] = diagR[pk];
362 }
363
364 if (firstIteration) {
365 // scale the point according to the norms of the columns
366 // of the initial jacobian
367 xNorm = 0;
368 for (int k = 0; k < nC; ++k) {
369 double dk = jacNorm[k];
370 if (dk == 0) {
371 dk = 1.0;
372 }
373 double xk = dk * currentPoint[k];
374 xNorm += xk * xk;
375 diag[k] = dk;
376 }
377 xNorm = FastMath.sqrt(xNorm);
378
379 // initialize the step bound delta
380 delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
381 }
382
383 // check orthogonality between function vector and jacobian columns
384 double maxCosine = 0;
385 if (currentCost != 0) {
386 for (int j = 0; j < solvedCols; ++j) {
387 int pj = permutation[j];
388 double s = jacNorm[pj];
389 if (s != 0) {
390 double sum = 0;
391 for (int i = 0; i <= j; ++i) {
392 sum += weightedJacobian[i][pj] * qtf[i];
393 }
394 maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost));
395 }
396 }
397 }
398 if (maxCosine <= orthoTolerance) {
399 // Convergence has been reached.
400 return new OptimumImpl(
401 current,
402 evaluationCounter.getCount(),
403 iterationCounter.getCount());
404 }
405
406 // rescale if necessary
407 for (int j = 0; j < nC; ++j) {
408 diag[j] = FastMath.max(diag[j], jacNorm[j]);
409 }
410
411 // Inner loop.
412 for (double ratio = 0; ratio < 1.0e-4;) {
413
414 // save the state
415 for (int j = 0; j < solvedCols; ++j) {
416 int pj = permutation[j];
417 oldX[pj] = currentPoint[pj];
418 }
419 final double previousCost = currentCost;
420 double[] tmpVec = weightedResidual;
421 weightedResidual = oldRes;
422 oldRes = tmpVec;
423
424 // determine the Levenberg-Marquardt parameter
425 lmPar = determineLMParameter(qtf, delta, diag,
426 internalData, solvedCols,
427 work1, work2, work3, lmDir, lmPar);
428
429 // compute the new point and the norm of the evolution direction
430 double lmNorm = 0;
431 for (int j = 0; j < solvedCols; ++j) {
432 int pj = permutation[j];
433 lmDir[pj] = -lmDir[pj];
434 currentPoint[pj] = oldX[pj] + lmDir[pj];
435 double s = diag[pj] * lmDir[pj];
436 lmNorm += s * s;
437 }
438 lmNorm = FastMath.sqrt(lmNorm);
439 // on the first iteration, adjust the initial step bound.
440 if (firstIteration) {
441 delta = FastMath.min(delta, lmNorm);
442 }
443
444 // Evaluate the function at x + p and calculate its norm.
445 evaluationCounter.incrementCount();
446 current = problem.evaluate(new ArrayRealVector(currentPoint));
447 currentResiduals = current.getResiduals().toArray();
448 currentCost = current.getCost();
449 currentPoint = current.getPoint().toArray();
450
451 // compute the scaled actual reduction
452 double actRed = -1.0;
453 if (0.1 * currentCost < previousCost) {
454 double r = currentCost / previousCost;
455 actRed = 1.0 - r * r;
456 }
457
458 // compute the scaled predicted reduction
459 // and the scaled directional derivative
460 for (int j = 0; j < solvedCols; ++j) {
461 int pj = permutation[j];
462 double dirJ = lmDir[pj];
463 work1[j] = 0;
464 for (int i = 0; i <= j; ++i) {
465 work1[i] += weightedJacobian[i][pj] * dirJ;
466 }
467 }
468 double coeff1 = 0;
469 for (int j = 0; j < solvedCols; ++j) {
470 coeff1 += work1[j] * work1[j];
471 }
472 double pc2 = previousCost * previousCost;
473 coeff1 /= pc2;
474 double coeff2 = lmPar * lmNorm * lmNorm / pc2;
475 double preRed = coeff1 + 2 * coeff2;
476 double dirDer = -(coeff1 + coeff2);
477
478 // ratio of the actual to the predicted reduction
479 ratio = (preRed == 0) ? 0 : (actRed / preRed);
480
481 // update the step bound
482 if (ratio <= 0.25) {
483 double tmp =
484 (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
485 if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) {
486 tmp = 0.1;
487 }
488 delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
489 lmPar /= tmp;
490 } else if ((lmPar == 0) || (ratio >= 0.75)) {
491 delta = 2 * lmNorm;
492 lmPar *= 0.5;
493 }
494
495 // test for successful iteration.
496 if (ratio >= 1.0e-4) {
497 // successful iteration, update the norm
498 firstIteration = false;
499 xNorm = 0;
500 for (int k = 0; k < nC; ++k) {
501 double xK = diag[k] * currentPoint[k];
502 xNorm += xK * xK;
503 }
504 xNorm = FastMath.sqrt(xNorm);
505
506 // tests for convergence.
507 if (checker != null && checker.converged(iterationCounter.getCount(), previous, current)) {
508 return new OptimumImpl(current, evaluationCounter.getCount(), iterationCounter.getCount());
509 }
510 } else {
511 // failed iteration, reset the previous values
512 currentCost = previousCost;
513 for (int j = 0; j < solvedCols; ++j) {
514 int pj = permutation[j];
515 currentPoint[pj] = oldX[pj];
516 }
517 tmpVec = weightedResidual;
518 weightedResidual = oldRes;
519 oldRes = tmpVec;
520 // Reset "current" to previous values.
521 current = previous;
522 }
523
524 // Default convergence criteria.
525 if ((FastMath.abs(actRed) <= costRelativeTolerance &&
526 preRed <= costRelativeTolerance &&
527 ratio <= 2.0) ||
528 delta <= parRelativeTolerance * xNorm) {
529 return new OptimumImpl(current, evaluationCounter.getCount(), iterationCounter.getCount());
530 }
531
532 // tests for termination and stringent tolerances
533 if (FastMath.abs(actRed) <= TWO_EPS &&
534 preRed <= TWO_EPS &&
535 ratio <= 2.0) {
536 throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
537 costRelativeTolerance);
538 } else if (delta <= TWO_EPS * xNorm) {
539 throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
540 parRelativeTolerance);
541 } else if (maxCosine <= TWO_EPS) {
542 throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
543 orthoTolerance);
544 }
545 }
546 }
547 }
548
549 /**
550 * Holds internal data.
551 * This structure was created so that all optimizer fields can be "final".
552 * Code should be further refactored in order to not pass around arguments
553 * that will modified in-place (cf. "work" arrays).
554 */
555 private static class InternalData {
556 /** Weighted Jacobian. */
557 private final double[][] weightedJacobian;
558 /** Columns permutation array. */
559 private final int[] permutation;
560 /** Rank of the Jacobian matrix. */
561 private final int rank;
562 /** Diagonal elements of the R matrix in the QR decomposition. */
563 private final double[] diagR;
564 /** Norms of the columns of the jacobian matrix. */
565 private final double[] jacNorm;
566 /** Coefficients of the Householder transforms vectors. */
567 private final double[] beta;
568
569 /**
570 * @param weightedJacobian Weighted Jacobian.
571 * @param permutation Columns permutation array.
572 * @param rank Rank of the Jacobian matrix.
573 * @param diagR Diagonal elements of the R matrix in the QR decomposition.
574 * @param jacNorm Norms of the columns of the jacobian matrix.
575 * @param beta Coefficients of the Householder transforms vectors.
576 */
577 InternalData(double[][] weightedJacobian,
578 int[] permutation,
579 int rank,
580 double[] diagR,
581 double[] jacNorm,
582 double[] beta) {
583 this.weightedJacobian = weightedJacobian;
584 this.permutation = permutation;
585 this.rank = rank;
586 this.diagR = diagR;
587 this.jacNorm = jacNorm;
588 this.beta = beta;
589 }
590 }
591
592 /**
593 * Determines the Levenberg-Marquardt parameter.
594 *
595 * <p>This implementation is a translation in Java of the MINPACK
596 * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a>
597 * routine.</p>
598 * <p>This method sets the lmPar and lmDir attributes.</p>
599 * <p>The authors of the original fortran function are:</p>
600 * <ul>
601 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
602 * <li>Burton S. Garbow</li>
603 * <li>Kenneth E. Hillstrom</li>
604 * <li>Jorge J. More</li>
605 * </ul>
606 * <p>Luc Maisonobe did the Java translation.</p>
607 *
608 * @param qy Array containing qTy.
609 * @param delta Upper bound on the euclidean norm of diagR * lmDir.
610 * @param diag Diagonal matrix.
611 * @param internalData Data (modified in-place in this method).
612 * @param solvedCols Number of solved point.
613 * @param work1 work array
614 * @param work2 work array
615 * @param work3 work array
616 * @param lmDir the "returned" LM direction will be stored in this array.
617 * @param lmPar the value of the LM parameter from the previous iteration.
618 * @return the new LM parameter
619 */
620 private double determineLMParameter(double[] qy, double delta, double[] diag,
621 InternalData internalData, int solvedCols,
622 double[] work1, double[] work2, double[] work3,
623 double[] lmDir, double lmPar) {
624 final double[][] weightedJacobian = internalData.weightedJacobian;
625 final int[] permutation = internalData.permutation;
626 final int rank = internalData.rank;
627 final double[] diagR = internalData.diagR;
628
629 final int nC = weightedJacobian[0].length;
630
631 // compute and store in x the gauss-newton direction, if the
632 // jacobian is rank-deficient, obtain a least squares solution
633 for (int j = 0; j < rank; ++j) {
634 lmDir[permutation[j]] = qy[j];
635 }
636 for (int j = rank; j < nC; ++j) {
637 lmDir[permutation[j]] = 0;
638 }
639 for (int k = rank - 1; k >= 0; --k) {
640 int pk = permutation[k];
641 double ypk = lmDir[pk] / diagR[pk];
642 for (int i = 0; i < k; ++i) {
643 lmDir[permutation[i]] -= ypk * weightedJacobian[i][pk];
644 }
645 lmDir[pk] = ypk;
646 }
647
648 // evaluate the function at the origin, and test
649 // for acceptance of the Gauss-Newton direction
650 double dxNorm = 0;
651 for (int j = 0; j < solvedCols; ++j) {
652 int pj = permutation[j];
653 double s = diag[pj] * lmDir[pj];
654 work1[pj] = s;
655 dxNorm += s * s;
656 }
657 dxNorm = FastMath.sqrt(dxNorm);
658 double fp = dxNorm - delta;
659 if (fp <= 0.1 * delta) {
660 lmPar = 0;
661 return lmPar;
662 }
663
664 // if the jacobian is not rank deficient, the Newton step provides
665 // a lower bound, parl, for the zero of the function,
666 // otherwise set this bound to zero
667 double sum2;
668 double parl = 0;
669 if (rank == solvedCols) {
670 for (int j = 0; j < solvedCols; ++j) {
671 int pj = permutation[j];
672 work1[pj] *= diag[pj] / dxNorm;
673 }
674 sum2 = 0;
675 for (int j = 0; j < solvedCols; ++j) {
676 int pj = permutation[j];
677 double sum = 0;
678 for (int i = 0; i < j; ++i) {
679 sum += weightedJacobian[i][pj] * work1[permutation[i]];
680 }
681 double s = (work1[pj] - sum) / diagR[pj];
682 work1[pj] = s;
683 sum2 += s * s;
684 }
685 parl = fp / (delta * sum2);
686 }
687
688 // calculate an upper bound, paru, for the zero of the function
689 sum2 = 0;
690 for (int j = 0; j < solvedCols; ++j) {
691 int pj = permutation[j];
692 double sum = 0;
693 for (int i = 0; i <= j; ++i) {
694 sum += weightedJacobian[i][pj] * qy[i];
695 }
696 sum /= diag[pj];
697 sum2 += sum * sum;
698 }
699 double gNorm = FastMath.sqrt(sum2);
700 double paru = gNorm / delta;
701 if (paru == 0) {
702 paru = Precision.SAFE_MIN / FastMath.min(delta, 0.1);
703 }
704
705 // if the input par lies outside of the interval (parl,paru),
706 // set par to the closer endpoint
707 lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
708 if (lmPar == 0) {
709 lmPar = gNorm / dxNorm;
710 }
711
712 for (int countdown = 10; countdown >= 0; --countdown) {
713
714 // evaluate the function at the current value of lmPar
715 if (lmPar == 0) {
716 lmPar = FastMath.max(Precision.SAFE_MIN, 0.001 * paru);
717 }
718 double sPar = FastMath.sqrt(lmPar);
719 for (int j = 0; j < solvedCols; ++j) {
720 int pj = permutation[j];
721 work1[pj] = sPar * diag[pj];
722 }
723 determineLMDirection(qy, work1, work2, internalData, solvedCols, work3, lmDir);
724
725 dxNorm = 0;
726 for (int j = 0; j < solvedCols; ++j) {
727 int pj = permutation[j];
728 double s = diag[pj] * lmDir[pj];
729 work3[pj] = s;
730 dxNorm += s * s;
731 }
732 dxNorm = FastMath.sqrt(dxNorm);
733 double previousFP = fp;
734 fp = dxNorm - delta;
735
736 // if the function is small enough, accept the current value
737 // of lmPar, also test for the exceptional cases where parl is zero
738 if (FastMath.abs(fp) <= 0.1 * delta ||
739 (parl == 0 &&
740 fp <= previousFP &&
741 previousFP < 0)) {
742 return lmPar;
743 }
744
745 // compute the Newton correction
746 for (int j = 0; j < solvedCols; ++j) {
747 int pj = permutation[j];
748 work1[pj] = work3[pj] * diag[pj] / dxNorm;
749 }
750 for (int j = 0; j < solvedCols; ++j) {
751 int pj = permutation[j];
752 work1[pj] /= work2[j];
753 double tmp = work1[pj];
754 for (int i = j + 1; i < solvedCols; ++i) {
755 work1[permutation[i]] -= weightedJacobian[i][pj] * tmp;
756 }
757 }
758 sum2 = 0;
759 for (int j = 0; j < solvedCols; ++j) {
760 double s = work1[permutation[j]];
761 sum2 += s * s;
762 }
763 double correction = fp / (delta * sum2);
764
765 // depending on the sign of the function, update parl or paru.
766 if (fp > 0) {
767 parl = FastMath.max(parl, lmPar);
768 } else if (fp < 0) {
769 paru = FastMath.min(paru, lmPar);
770 }
771
772 // compute an improved estimate for lmPar
773 lmPar = FastMath.max(parl, lmPar + correction);
774 }
775
776 return lmPar;
777 }
778
779 /**
780 * Solve a*x = b and d*x = 0 in the least squares sense.
781 * <p>This implementation is a translation in Java of the MINPACK
782 * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv</a>
783 * routine.</p>
784 * <p>This method sets the lmDir and lmDiag attributes.</p>
785 * <p>The authors of the original fortran function are:</p>
786 * <ul>
787 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
788 * <li>Burton S. Garbow</li>
789 * <li>Kenneth E. Hillstrom</li>
790 * <li>Jorge J. More</li>
791 * </ul>
792 * <p>Luc Maisonobe did the Java translation.</p>
793 *
794 * @param qy array containing qTy
795 * @param diag diagonal matrix
796 * @param lmDiag diagonal elements associated with lmDir
797 * @param internalData Data (modified in-place in this method).
798 * @param solvedCols Number of sloved point.
799 * @param work work array
800 * @param lmDir the "returned" LM direction is stored in this array
801 */
802 private void determineLMDirection(double[] qy, double[] diag,
803 double[] lmDiag,
804 InternalData internalData,
805 int solvedCols,
806 double[] work,
807 double[] lmDir) {
808 final int[] permutation = internalData.permutation;
809 final double[][] weightedJacobian = internalData.weightedJacobian;
810 final double[] diagR = internalData.diagR;
811
812 // copy R and Qty to preserve input and initialize s
813 // in particular, save the diagonal elements of R in lmDir
814 for (int j = 0; j < solvedCols; ++j) {
815 int pj = permutation[j];
816 for (int i = j + 1; i < solvedCols; ++i) {
817 weightedJacobian[i][pj] = weightedJacobian[j][permutation[i]];
818 }
819 lmDir[j] = diagR[pj];
820 work[j] = qy[j];
821 }
822
823 // eliminate the diagonal matrix d using a Givens rotation
824 for (int j = 0; j < solvedCols; ++j) {
825
826 // prepare the row of d to be eliminated, locating the
827 // diagonal element using p from the Q.R. factorization
828 int pj = permutation[j];
829 double dpj = diag[pj];
830 if (dpj != 0) {
831 Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
832 }
833 lmDiag[j] = dpj;
834
835 // the transformations to eliminate the row of d
836 // modify only a single element of Qty
837 // beyond the first n, which is initially zero.
838 double qtbpj = 0;
839 for (int k = j; k < solvedCols; ++k) {
840 int pk = permutation[k];
841
842 // determine a Givens rotation which eliminates the
843 // appropriate element in the current row of d
844 if (lmDiag[k] != 0) {
845
846 final double sin;
847 final double cos;
848 double rkk = weightedJacobian[k][pk];
849 if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
850 final double cotan = rkk / lmDiag[k];
851 sin = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
852 cos = sin * cotan;
853 } else {
854 final double tan = lmDiag[k] / rkk;
855 cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
856 sin = cos * tan;
857 }
858
859 // compute the modified diagonal element of R and
860 // the modified element of (Qty,0)
861 weightedJacobian[k][pk] = cos * rkk + sin * lmDiag[k];
862 final double temp = cos * work[k] + sin * qtbpj;
863 qtbpj = -sin * work[k] + cos * qtbpj;
864 work[k] = temp;
865
866 // accumulate the tranformation in the row of s
867 for (int i = k + 1; i < solvedCols; ++i) {
868 double rik = weightedJacobian[i][pk];
869 final double temp2 = cos * rik + sin * lmDiag[i];
870 lmDiag[i] = -sin * rik + cos * lmDiag[i];
871 weightedJacobian[i][pk] = temp2;
872 }
873 }
874 }
875
876 // store the diagonal element of s and restore
877 // the corresponding diagonal element of R
878 lmDiag[j] = weightedJacobian[j][permutation[j]];
879 weightedJacobian[j][permutation[j]] = lmDir[j];
880 }
881
882 // solve the triangular system for z, if the system is
883 // singular, then obtain a least squares solution
884 int nSing = solvedCols;
885 for (int j = 0; j < solvedCols; ++j) {
886 if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
887 nSing = j;
888 }
889 if (nSing < solvedCols) {
890 work[j] = 0;
891 }
892 }
893 if (nSing > 0) {
894 for (int j = nSing - 1; j >= 0; --j) {
895 int pj = permutation[j];
896 double sum = 0;
897 for (int i = j + 1; i < nSing; ++i) {
898 sum += weightedJacobian[i][pj] * work[i];
899 }
900 work[j] = (work[j] - sum) / lmDiag[j];
901 }
902 }
903
904 // permute the components of z back to components of lmDir
905 for (int j = 0; j < lmDir.length; ++j) {
906 lmDir[permutation[j]] = work[j];
907 }
908 }
909
910 /**
911 * Decompose a matrix A as A.P = Q.R using Householder transforms.
912 * <p>As suggested in the P. Lascaux and R. Theodor book
913 * <i>Analyse num&eacute;rique matricielle appliqu&eacute;e &agrave;
914 * l'art de l'ing&eacute;nieur</i> (Masson, 1986), instead of representing
915 * the Householder transforms with u<sub>k</sub> unit vectors such that:
916 * <pre>
917 * H<sub>k</sub> = I - 2u<sub>k</sub>.u<sub>k</sub><sup>t</sup>
918 * </pre>
919 * we use <sub>k</sub> non-unit vectors such that:
920 * <pre>
921 * H<sub>k</sub> = I - beta<sub>k</sub>v<sub>k</sub>.v<sub>k</sub><sup>t</sup>
922 * </pre>
923 * where v<sub>k</sub> = a<sub>k</sub> - alpha<sub>k</sub> e<sub>k</sub>.
924 * The beta<sub>k</sub> coefficients are provided upon exit as recomputing
925 * them from the v<sub>k</sub> vectors would be costly.</p>
926 * <p>This decomposition handles rank deficient cases since the tranformations
927 * are performed in non-increasing columns norms order thanks to columns
928 * pivoting. The diagonal elements of the R matrix are therefore also in
929 * non-increasing absolute values order.</p>
930 *
931 * @param jacobian Weighted Jacobian matrix at the current point.
932 * @param solvedCols Number of solved point.
933 * @return data used in other methods of this class.
934 * @throws ConvergenceException if the decomposition cannot be performed.
935 */
936 private InternalData qrDecomposition(RealMatrix jacobian,
937 int solvedCols) throws ConvergenceException {
938 // Code in this class assumes that the weighted Jacobian is -(W^(1/2) J),
939 // hence the multiplication by -1.
940 final double[][] weightedJacobian = jacobian.scalarMultiply(-1).getData();
941
942 final int nR = weightedJacobian.length;
943 final int nC = weightedJacobian[0].length;
944
945 final int[] permutation = new int[nC];
946 final double[] diagR = new double[nC];
947 final double[] jacNorm = new double[nC];
948 final double[] beta = new double[nC];
949
950 // initializations
951 for (int k = 0; k < nC; ++k) {
952 permutation[k] = k;
953 double norm2 = 0;
954 for (int i = 0; i < nR; ++i) {
955 double akk = weightedJacobian[i][k];
956 norm2 += akk * akk;
957 }
958 jacNorm[k] = FastMath.sqrt(norm2);
959 }
960
961 // transform the matrix column after column
962 for (int k = 0; k < nC; ++k) {
963
964 // select the column with the greatest norm on active components
965 int nextColumn = -1;
966 double ak2 = Double.NEGATIVE_INFINITY;
967 for (int i = k; i < nC; ++i) {
968 double norm2 = 0;
969 for (int j = k; j < nR; ++j) {
970 double aki = weightedJacobian[j][permutation[i]];
971 norm2 += aki * aki;
972 }
973 if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
974 throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
975 nR, nC);
976 }
977 if (norm2 > ak2) {
978 nextColumn = i;
979 ak2 = norm2;
980 }
981 }
982 if (ak2 <= qrRankingThreshold) {
983 return new InternalData(weightedJacobian, permutation, k, diagR, jacNorm, beta);
984 }
985 int pk = permutation[nextColumn];
986 permutation[nextColumn] = permutation[k];
987 permutation[k] = pk;
988
989 // choose alpha such that Hk.u = alpha ek
990 double akk = weightedJacobian[k][pk];
991 double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
992 double betak = 1.0 / (ak2 - akk * alpha);
993 beta[pk] = betak;
994
995 // transform the current column
996 diagR[pk] = alpha;
997 weightedJacobian[k][pk] -= alpha;
998
999 // transform the remaining columns
1000 for (int dk = nC - 1 - k; dk > 0; --dk) {
1001 double gamma = 0;
1002 for (int j = k; j < nR; ++j) {
1003 gamma += weightedJacobian[j][pk] * weightedJacobian[j][permutation[k + dk]];
1004 }
1005 gamma *= betak;
1006 for (int j = k; j < nR; ++j) {
1007 weightedJacobian[j][permutation[k + dk]] -= gamma * weightedJacobian[j][pk];
1008 }
1009 }
1010 }
1011
1012 return new InternalData(weightedJacobian, permutation, solvedCols, diagR, jacNorm, beta);
1013 }
1014
1015 /**
1016 * Compute the product Qt.y for some Q.R. decomposition.
1017 *
1018 * @param y vector to multiply (will be overwritten with the result)
1019 * @param internalData Data.
1020 */
1021 private void qTy(double[] y,
1022 InternalData internalData) {
1023 final double[][] weightedJacobian = internalData.weightedJacobian;
1024 final int[] permutation = internalData.permutation;
1025 final double[] beta = internalData.beta;
1026
1027 final int nR = weightedJacobian.length;
1028 final int nC = weightedJacobian[0].length;
1029
1030 for (int k = 0; k < nC; ++k) {
1031 int pk = permutation[k];
1032 double gamma = 0;
1033 for (int i = k; i < nR; ++i) {
1034 gamma += weightedJacobian[i][pk] * y[i];
1035 }
1036 gamma *= beta[pk];
1037 for (int i = k; i < nR; ++i) {
1038 y[i] -= gamma * weightedJacobian[i][pk];
1039 }
1040 }
1041 }
1042}
Note: See TracBrowser for help on using the repository browser.