1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.fitting;
|
---|
18 |
|
---|
19 | import java.util.Arrays;
|
---|
20 | import java.util.Comparator;
|
---|
21 | import agents.anac.y2019.harddealer.math3.analysis.function.Gaussian;
|
---|
22 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
23 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooSmallException;
|
---|
24 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
25 | import agents.anac.y2019.harddealer.math3.exception.ZeroException;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
28 | import agents.anac.y2019.harddealer.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
|
---|
29 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
30 |
|
---|
31 | /**
|
---|
32 | * Fits points to a {@link
|
---|
33 | * agents.anac.y2019.harddealer.math3.analysis.function.Gaussian.Parametric Gaussian} function.
|
---|
34 | * <p>
|
---|
35 | * Usage example:
|
---|
36 | * <pre>
|
---|
37 | * GaussianFitter fitter = new GaussianFitter(
|
---|
38 | * new LevenbergMarquardtOptimizer());
|
---|
39 | * fitter.addObservedPoint(4.0254623, 531026.0);
|
---|
40 | * fitter.addObservedPoint(4.03128248, 984167.0);
|
---|
41 | * fitter.addObservedPoint(4.03839603, 1887233.0);
|
---|
42 | * fitter.addObservedPoint(4.04421621, 2687152.0);
|
---|
43 | * fitter.addObservedPoint(4.05132976, 3461228.0);
|
---|
44 | * fitter.addObservedPoint(4.05326982, 3580526.0);
|
---|
45 | * fitter.addObservedPoint(4.05779662, 3439750.0);
|
---|
46 | * fitter.addObservedPoint(4.0636168, 2877648.0);
|
---|
47 | * fitter.addObservedPoint(4.06943698, 2175960.0);
|
---|
48 | * fitter.addObservedPoint(4.07525716, 1447024.0);
|
---|
49 | * fitter.addObservedPoint(4.08237071, 717104.0);
|
---|
50 | * fitter.addObservedPoint(4.08366408, 620014.0);
|
---|
51 | * double[] parameters = fitter.fit();
|
---|
52 | * </pre>
|
---|
53 | *
|
---|
54 | * @since 2.2
|
---|
55 | * @deprecated As of 3.3. Please use {@link GaussianCurveFitter} and
|
---|
56 | * {@link WeightedObservedPoints} instead.
|
---|
57 | */
|
---|
58 | @Deprecated
|
---|
59 | public class GaussianFitter extends CurveFitter<Gaussian.Parametric> {
|
---|
60 | /**
|
---|
61 | * Constructs an instance using the specified optimizer.
|
---|
62 | *
|
---|
63 | * @param optimizer Optimizer to use for the fitting.
|
---|
64 | */
|
---|
65 | public GaussianFitter(MultivariateVectorOptimizer optimizer) {
|
---|
66 | super(optimizer);
|
---|
67 | }
|
---|
68 |
|
---|
69 | /**
|
---|
70 | * Fits a Gaussian function to the observed points.
|
---|
71 | *
|
---|
72 | * @param initialGuess First guess values in the following order:
|
---|
73 | * <ul>
|
---|
74 | * <li>Norm</li>
|
---|
75 | * <li>Mean</li>
|
---|
76 | * <li>Sigma</li>
|
---|
77 | * </ul>
|
---|
78 | * @return the parameters of the Gaussian function that best fits the
|
---|
79 | * observed points (in the same order as above).
|
---|
80 | * @since 3.0
|
---|
81 | */
|
---|
82 | public double[] fit(double[] initialGuess) {
|
---|
83 | final Gaussian.Parametric f = new Gaussian.Parametric() {
|
---|
84 | /** {@inheritDoc} */
|
---|
85 | @Override
|
---|
86 | public double value(double x, double ... p) {
|
---|
87 | double v = Double.POSITIVE_INFINITY;
|
---|
88 | try {
|
---|
89 | v = super.value(x, p);
|
---|
90 | } catch (NotStrictlyPositiveException e) { // NOPMD
|
---|
91 | // Do nothing.
|
---|
92 | }
|
---|
93 | return v;
|
---|
94 | }
|
---|
95 |
|
---|
96 | /** {@inheritDoc} */
|
---|
97 | @Override
|
---|
98 | public double[] gradient(double x, double ... p) {
|
---|
99 | double[] v = { Double.POSITIVE_INFINITY,
|
---|
100 | Double.POSITIVE_INFINITY,
|
---|
101 | Double.POSITIVE_INFINITY };
|
---|
102 | try {
|
---|
103 | v = super.gradient(x, p);
|
---|
104 | } catch (NotStrictlyPositiveException e) { // NOPMD
|
---|
105 | // Do nothing.
|
---|
106 | }
|
---|
107 | return v;
|
---|
108 | }
|
---|
109 | };
|
---|
110 |
|
---|
111 | return fit(f, initialGuess);
|
---|
112 | }
|
---|
113 |
|
---|
114 | /**
|
---|
115 | * Fits a Gaussian function to the observed points.
|
---|
116 | *
|
---|
117 | * @return the parameters of the Gaussian function that best fits the
|
---|
118 | * observed points (in the same order as above).
|
---|
119 | */
|
---|
120 | public double[] fit() {
|
---|
121 | final double[] guess = (new ParameterGuesser(getObservations())).guess();
|
---|
122 | return fit(guess);
|
---|
123 | }
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
|
---|
127 | * of a {@link agents.anac.y2019.harddealer.math3.analysis.function.Gaussian.Parametric}
|
---|
128 | * based on the specified observed points.
|
---|
129 | */
|
---|
130 | public static class ParameterGuesser {
|
---|
131 | /** Normalization factor. */
|
---|
132 | private final double norm;
|
---|
133 | /** Mean. */
|
---|
134 | private final double mean;
|
---|
135 | /** Standard deviation. */
|
---|
136 | private final double sigma;
|
---|
137 |
|
---|
138 | /**
|
---|
139 | * Constructs instance with the specified observed points.
|
---|
140 | *
|
---|
141 | * @param observations Observed points from which to guess the
|
---|
142 | * parameters of the Gaussian.
|
---|
143 | * @throws NullArgumentException if {@code observations} is
|
---|
144 | * {@code null}.
|
---|
145 | * @throws NumberIsTooSmallException if there are less than 3
|
---|
146 | * observations.
|
---|
147 | */
|
---|
148 | public ParameterGuesser(WeightedObservedPoint[] observations) {
|
---|
149 | if (observations == null) {
|
---|
150 | throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
|
---|
151 | }
|
---|
152 | if (observations.length < 3) {
|
---|
153 | throw new NumberIsTooSmallException(observations.length, 3, true);
|
---|
154 | }
|
---|
155 |
|
---|
156 | final WeightedObservedPoint[] sorted = sortObservations(observations);
|
---|
157 | final double[] params = basicGuess(sorted);
|
---|
158 |
|
---|
159 | norm = params[0];
|
---|
160 | mean = params[1];
|
---|
161 | sigma = params[2];
|
---|
162 | }
|
---|
163 |
|
---|
164 | /**
|
---|
165 | * Gets an estimation of the parameters.
|
---|
166 | *
|
---|
167 | * @return the guessed parameters, in the following order:
|
---|
168 | * <ul>
|
---|
169 | * <li>Normalization factor</li>
|
---|
170 | * <li>Mean</li>
|
---|
171 | * <li>Standard deviation</li>
|
---|
172 | * </ul>
|
---|
173 | */
|
---|
174 | public double[] guess() {
|
---|
175 | return new double[] { norm, mean, sigma };
|
---|
176 | }
|
---|
177 |
|
---|
178 | /**
|
---|
179 | * Sort the observations.
|
---|
180 | *
|
---|
181 | * @param unsorted Input observations.
|
---|
182 | * @return the input observations, sorted.
|
---|
183 | */
|
---|
184 | private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
|
---|
185 | final WeightedObservedPoint[] observations = unsorted.clone();
|
---|
186 | final Comparator<WeightedObservedPoint> cmp
|
---|
187 | = new Comparator<WeightedObservedPoint>() {
|
---|
188 | /** {@inheritDoc} */
|
---|
189 | public int compare(WeightedObservedPoint p1,
|
---|
190 | WeightedObservedPoint p2) {
|
---|
191 | if (p1 == null && p2 == null) {
|
---|
192 | return 0;
|
---|
193 | }
|
---|
194 | if (p1 == null) {
|
---|
195 | return -1;
|
---|
196 | }
|
---|
197 | if (p2 == null) {
|
---|
198 | return 1;
|
---|
199 | }
|
---|
200 | final int cmpX = Double.compare(p1.getX(), p2.getX());
|
---|
201 | if (cmpX < 0) {
|
---|
202 | return -1;
|
---|
203 | }
|
---|
204 | if (cmpX > 0) {
|
---|
205 | return 1;
|
---|
206 | }
|
---|
207 | final int cmpY = Double.compare(p1.getY(), p2.getY());
|
---|
208 | if (cmpY < 0) {
|
---|
209 | return -1;
|
---|
210 | }
|
---|
211 | if (cmpY > 0) {
|
---|
212 | return 1;
|
---|
213 | }
|
---|
214 | final int cmpW = Double.compare(p1.getWeight(), p2.getWeight());
|
---|
215 | if (cmpW < 0) {
|
---|
216 | return -1;
|
---|
217 | }
|
---|
218 | if (cmpW > 0) {
|
---|
219 | return 1;
|
---|
220 | }
|
---|
221 | return 0;
|
---|
222 | }
|
---|
223 | };
|
---|
224 |
|
---|
225 | Arrays.sort(observations, cmp);
|
---|
226 | return observations;
|
---|
227 | }
|
---|
228 |
|
---|
229 | /**
|
---|
230 | * Guesses the parameters based on the specified observed points.
|
---|
231 | *
|
---|
232 | * @param points Observed points, sorted.
|
---|
233 | * @return the guessed parameters (normalization factor, mean and
|
---|
234 | * sigma).
|
---|
235 | */
|
---|
236 | private double[] basicGuess(WeightedObservedPoint[] points) {
|
---|
237 | final int maxYIdx = findMaxY(points);
|
---|
238 | final double n = points[maxYIdx].getY();
|
---|
239 | final double m = points[maxYIdx].getX();
|
---|
240 |
|
---|
241 | double fwhmApprox;
|
---|
242 | try {
|
---|
243 | final double halfY = n + ((m - n) / 2);
|
---|
244 | final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
|
---|
245 | final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
|
---|
246 | fwhmApprox = fwhmX2 - fwhmX1;
|
---|
247 | } catch (OutOfRangeException e) {
|
---|
248 | // TODO: Exceptions should not be used for flow control.
|
---|
249 | fwhmApprox = points[points.length - 1].getX() - points[0].getX();
|
---|
250 | }
|
---|
251 | final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2)));
|
---|
252 |
|
---|
253 | return new double[] { n, m, s };
|
---|
254 | }
|
---|
255 |
|
---|
256 | /**
|
---|
257 | * Finds index of point in specified points with the largest Y.
|
---|
258 | *
|
---|
259 | * @param points Points to search.
|
---|
260 | * @return the index in specified points array.
|
---|
261 | */
|
---|
262 | private int findMaxY(WeightedObservedPoint[] points) {
|
---|
263 | int maxYIdx = 0;
|
---|
264 | for (int i = 1; i < points.length; i++) {
|
---|
265 | if (points[i].getY() > points[maxYIdx].getY()) {
|
---|
266 | maxYIdx = i;
|
---|
267 | }
|
---|
268 | }
|
---|
269 | return maxYIdx;
|
---|
270 | }
|
---|
271 |
|
---|
272 | /**
|
---|
273 | * Interpolates using the specified points to determine X at the
|
---|
274 | * specified Y.
|
---|
275 | *
|
---|
276 | * @param points Points to use for interpolation.
|
---|
277 | * @param startIdx Index within points from which to start the search for
|
---|
278 | * interpolation bounds points.
|
---|
279 | * @param idxStep Index step for searching interpolation bounds points.
|
---|
280 | * @param y Y value for which X should be determined.
|
---|
281 | * @return the value of X for the specified Y.
|
---|
282 | * @throws ZeroException if {@code idxStep} is 0.
|
---|
283 | * @throws OutOfRangeException if specified {@code y} is not within the
|
---|
284 | * range of the specified {@code points}.
|
---|
285 | */
|
---|
286 | private double interpolateXAtY(WeightedObservedPoint[] points,
|
---|
287 | int startIdx,
|
---|
288 | int idxStep,
|
---|
289 | double y)
|
---|
290 | throws OutOfRangeException {
|
---|
291 | if (idxStep == 0) {
|
---|
292 | throw new ZeroException();
|
---|
293 | }
|
---|
294 | final WeightedObservedPoint[] twoPoints
|
---|
295 | = getInterpolationPointsForY(points, startIdx, idxStep, y);
|
---|
296 | final WeightedObservedPoint p1 = twoPoints[0];
|
---|
297 | final WeightedObservedPoint p2 = twoPoints[1];
|
---|
298 | if (p1.getY() == y) {
|
---|
299 | return p1.getX();
|
---|
300 | }
|
---|
301 | if (p2.getY() == y) {
|
---|
302 | return p2.getX();
|
---|
303 | }
|
---|
304 | return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
|
---|
305 | (p2.getY() - p1.getY()));
|
---|
306 | }
|
---|
307 |
|
---|
308 | /**
|
---|
309 | * Gets the two bounding interpolation points from the specified points
|
---|
310 | * suitable for determining X at the specified Y.
|
---|
311 | *
|
---|
312 | * @param points Points to use for interpolation.
|
---|
313 | * @param startIdx Index within points from which to start search for
|
---|
314 | * interpolation bounds points.
|
---|
315 | * @param idxStep Index step for search for interpolation bounds points.
|
---|
316 | * @param y Y value for which X should be determined.
|
---|
317 | * @return the array containing two points suitable for determining X at
|
---|
318 | * the specified Y.
|
---|
319 | * @throws ZeroException if {@code idxStep} is 0.
|
---|
320 | * @throws OutOfRangeException if specified {@code y} is not within the
|
---|
321 | * range of the specified {@code points}.
|
---|
322 | */
|
---|
323 | private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
|
---|
324 | int startIdx,
|
---|
325 | int idxStep,
|
---|
326 | double y)
|
---|
327 | throws OutOfRangeException {
|
---|
328 | if (idxStep == 0) {
|
---|
329 | throw new ZeroException();
|
---|
330 | }
|
---|
331 | for (int i = startIdx;
|
---|
332 | idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
|
---|
333 | i += idxStep) {
|
---|
334 | final WeightedObservedPoint p1 = points[i];
|
---|
335 | final WeightedObservedPoint p2 = points[i + idxStep];
|
---|
336 | if (isBetween(y, p1.getY(), p2.getY())) {
|
---|
337 | if (idxStep < 0) {
|
---|
338 | return new WeightedObservedPoint[] { p2, p1 };
|
---|
339 | } else {
|
---|
340 | return new WeightedObservedPoint[] { p1, p2 };
|
---|
341 | }
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | // Boundaries are replaced by dummy values because the raised
|
---|
346 | // exception is caught and the message never displayed.
|
---|
347 | // TODO: Exceptions should not be used for flow control.
|
---|
348 | throw new OutOfRangeException(y,
|
---|
349 | Double.NEGATIVE_INFINITY,
|
---|
350 | Double.POSITIVE_INFINITY);
|
---|
351 | }
|
---|
352 |
|
---|
353 | /**
|
---|
354 | * Determines whether a value is between two other values.
|
---|
355 | *
|
---|
356 | * @param value Value to test whether it is between {@code boundary1}
|
---|
357 | * and {@code boundary2}.
|
---|
358 | * @param boundary1 One end of the range.
|
---|
359 | * @param boundary2 Other end of the range.
|
---|
360 | * @return {@code true} if {@code value} is between {@code boundary1} and
|
---|
361 | * {@code boundary2} (inclusive), {@code false} otherwise.
|
---|
362 | */
|
---|
363 | private boolean isBetween(double value,
|
---|
364 | double boundary1,
|
---|
365 | double boundary2) {
|
---|
366 | return (value >= boundary1 && value <= boundary2) ||
|
---|
367 | (value >= boundary2 && value <= boundary1);
|
---|
368 | }
|
---|
369 | }
|
---|
370 | }
|
---|