1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.fitting;
|
---|
18 |
|
---|
19 | import java.util.ArrayList;
|
---|
20 | import java.util.Collection;
|
---|
21 | import java.util.Collections;
|
---|
22 | import java.util.Comparator;
|
---|
23 | import java.util.List;
|
---|
24 |
|
---|
25 | import agents.anac.y2019.harddealer.math3.analysis.function.Gaussian;
|
---|
26 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
27 | import agents.anac.y2019.harddealer.math3.exception.NullArgumentException;
|
---|
28 | import agents.anac.y2019.harddealer.math3.exception.NumberIsTooSmallException;
|
---|
29 | import agents.anac.y2019.harddealer.math3.exception.OutOfRangeException;
|
---|
30 | import agents.anac.y2019.harddealer.math3.exception.ZeroException;
|
---|
31 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
32 | import agents.anac.y2019.harddealer.math3.fitting.leastsquares.LeastSquaresBuilder;
|
---|
33 | import agents.anac.y2019.harddealer.math3.fitting.leastsquares.LeastSquaresProblem;
|
---|
34 | import agents.anac.y2019.harddealer.math3.linear.DiagonalMatrix;
|
---|
35 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
36 |
|
---|
37 | /**
|
---|
38 | * Fits points to a {@link
|
---|
39 | * agents.anac.y2019.harddealer.math3.analysis.function.Gaussian.Parametric Gaussian}
|
---|
40 | * function.
|
---|
41 | * <br/>
|
---|
42 | * The {@link #withStartPoint(double[]) initial guess values} must be passed
|
---|
43 | * in the following order:
|
---|
44 | * <ul>
|
---|
45 | * <li>Normalization</li>
|
---|
46 | * <li>Mean</li>
|
---|
47 | * <li>Sigma</li>
|
---|
48 | * </ul>
|
---|
49 | * The optimal values will be returned in the same order.
|
---|
50 | *
|
---|
51 | * <p>
|
---|
52 | * Usage example:
|
---|
53 | * <pre>
|
---|
54 | * WeightedObservedPoints obs = new WeightedObservedPoints();
|
---|
55 | * obs.add(4.0254623, 531026.0);
|
---|
56 | * obs.add(4.03128248, 984167.0);
|
---|
57 | * obs.add(4.03839603, 1887233.0);
|
---|
58 | * obs.add(4.04421621, 2687152.0);
|
---|
59 | * obs.add(4.05132976, 3461228.0);
|
---|
60 | * obs.add(4.05326982, 3580526.0);
|
---|
61 | * obs.add(4.05779662, 3439750.0);
|
---|
62 | * obs.add(4.0636168, 2877648.0);
|
---|
63 | * obs.add(4.06943698, 2175960.0);
|
---|
64 | * obs.add(4.07525716, 1447024.0);
|
---|
65 | * obs.add(4.08237071, 717104.0);
|
---|
66 | * obs.add(4.08366408, 620014.0);
|
---|
67 | * double[] parameters = GaussianCurveFitter.create().fit(obs.toList());
|
---|
68 | * </pre>
|
---|
69 | *
|
---|
70 | * @since 3.3
|
---|
71 | */
|
---|
72 | public class GaussianCurveFitter extends AbstractCurveFitter {
|
---|
73 | /** Parametric function to be fitted. */
|
---|
74 | private static final Gaussian.Parametric FUNCTION = new Gaussian.Parametric() {
|
---|
75 | /** {@inheritDoc} */
|
---|
76 | @Override
|
---|
77 | public double value(double x, double ... p) {
|
---|
78 | double v = Double.POSITIVE_INFINITY;
|
---|
79 | try {
|
---|
80 | v = super.value(x, p);
|
---|
81 | } catch (NotStrictlyPositiveException e) { // NOPMD
|
---|
82 | // Do nothing.
|
---|
83 | }
|
---|
84 | return v;
|
---|
85 | }
|
---|
86 |
|
---|
87 | /** {@inheritDoc} */
|
---|
88 | @Override
|
---|
89 | public double[] gradient(double x, double ... p) {
|
---|
90 | double[] v = { Double.POSITIVE_INFINITY,
|
---|
91 | Double.POSITIVE_INFINITY,
|
---|
92 | Double.POSITIVE_INFINITY };
|
---|
93 | try {
|
---|
94 | v = super.gradient(x, p);
|
---|
95 | } catch (NotStrictlyPositiveException e) { // NOPMD
|
---|
96 | // Do nothing.
|
---|
97 | }
|
---|
98 | return v;
|
---|
99 | }
|
---|
100 | };
|
---|
101 | /** Initial guess. */
|
---|
102 | private final double[] initialGuess;
|
---|
103 | /** Maximum number of iterations of the optimization algorithm. */
|
---|
104 | private final int maxIter;
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * Contructor used by the factory methods.
|
---|
108 | *
|
---|
109 | * @param initialGuess Initial guess. If set to {@code null}, the initial guess
|
---|
110 | * will be estimated using the {@link ParameterGuesser}.
|
---|
111 | * @param maxIter Maximum number of iterations of the optimization algorithm.
|
---|
112 | */
|
---|
113 | private GaussianCurveFitter(double[] initialGuess,
|
---|
114 | int maxIter) {
|
---|
115 | this.initialGuess = initialGuess;
|
---|
116 | this.maxIter = maxIter;
|
---|
117 | }
|
---|
118 |
|
---|
119 | /**
|
---|
120 | * Creates a default curve fitter.
|
---|
121 | * The initial guess for the parameters will be {@link ParameterGuesser}
|
---|
122 | * computed automatically, and the maximum number of iterations of the
|
---|
123 | * optimization algorithm is set to {@link Integer#MAX_VALUE}.
|
---|
124 | *
|
---|
125 | * @return a curve fitter.
|
---|
126 | *
|
---|
127 | * @see #withStartPoint(double[])
|
---|
128 | * @see #withMaxIterations(int)
|
---|
129 | */
|
---|
130 | public static GaussianCurveFitter create() {
|
---|
131 | return new GaussianCurveFitter(null, Integer.MAX_VALUE);
|
---|
132 | }
|
---|
133 |
|
---|
134 | /**
|
---|
135 | * Configure the start point (initial guess).
|
---|
136 | * @param newStart new start point (initial guess)
|
---|
137 | * @return a new instance.
|
---|
138 | */
|
---|
139 | public GaussianCurveFitter withStartPoint(double[] newStart) {
|
---|
140 | return new GaussianCurveFitter(newStart.clone(),
|
---|
141 | maxIter);
|
---|
142 | }
|
---|
143 |
|
---|
144 | /**
|
---|
145 | * Configure the maximum number of iterations.
|
---|
146 | * @param newMaxIter maximum number of iterations
|
---|
147 | * @return a new instance.
|
---|
148 | */
|
---|
149 | public GaussianCurveFitter withMaxIterations(int newMaxIter) {
|
---|
150 | return new GaussianCurveFitter(initialGuess,
|
---|
151 | newMaxIter);
|
---|
152 | }
|
---|
153 |
|
---|
154 | /** {@inheritDoc} */
|
---|
155 | @Override
|
---|
156 | protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
|
---|
157 |
|
---|
158 | // Prepare least-squares problem.
|
---|
159 | final int len = observations.size();
|
---|
160 | final double[] target = new double[len];
|
---|
161 | final double[] weights = new double[len];
|
---|
162 |
|
---|
163 | int i = 0;
|
---|
164 | for (WeightedObservedPoint obs : observations) {
|
---|
165 | target[i] = obs.getY();
|
---|
166 | weights[i] = obs.getWeight();
|
---|
167 | ++i;
|
---|
168 | }
|
---|
169 |
|
---|
170 | final AbstractCurveFitter.TheoreticalValuesFunction model =
|
---|
171 | new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations);
|
---|
172 |
|
---|
173 | final double[] startPoint = initialGuess != null ?
|
---|
174 | initialGuess :
|
---|
175 | // Compute estimation.
|
---|
176 | new ParameterGuesser(observations).guess();
|
---|
177 |
|
---|
178 | // Return a new least squares problem set up to fit a Gaussian curve to the
|
---|
179 | // observed points.
|
---|
180 | return new LeastSquaresBuilder().
|
---|
181 | maxEvaluations(Integer.MAX_VALUE).
|
---|
182 | maxIterations(maxIter).
|
---|
183 | start(startPoint).
|
---|
184 | target(target).
|
---|
185 | weight(new DiagonalMatrix(weights)).
|
---|
186 | model(model.getModelFunction(), model.getModelFunctionJacobian()).
|
---|
187 | build();
|
---|
188 |
|
---|
189 | }
|
---|
190 |
|
---|
191 | /**
|
---|
192 | * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
|
---|
193 | * of a {@link agents.anac.y2019.harddealer.math3.analysis.function.Gaussian.Parametric}
|
---|
194 | * based on the specified observed points.
|
---|
195 | */
|
---|
196 | public static class ParameterGuesser {
|
---|
197 | /** Normalization factor. */
|
---|
198 | private final double norm;
|
---|
199 | /** Mean. */
|
---|
200 | private final double mean;
|
---|
201 | /** Standard deviation. */
|
---|
202 | private final double sigma;
|
---|
203 |
|
---|
204 | /**
|
---|
205 | * Constructs instance with the specified observed points.
|
---|
206 | *
|
---|
207 | * @param observations Observed points from which to guess the
|
---|
208 | * parameters of the Gaussian.
|
---|
209 | * @throws NullArgumentException if {@code observations} is
|
---|
210 | * {@code null}.
|
---|
211 | * @throws NumberIsTooSmallException if there are less than 3
|
---|
212 | * observations.
|
---|
213 | */
|
---|
214 | public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
|
---|
215 | if (observations == null) {
|
---|
216 | throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
|
---|
217 | }
|
---|
218 | if (observations.size() < 3) {
|
---|
219 | throw new NumberIsTooSmallException(observations.size(), 3, true);
|
---|
220 | }
|
---|
221 |
|
---|
222 | final List<WeightedObservedPoint> sorted = sortObservations(observations);
|
---|
223 | final double[] params = basicGuess(sorted.toArray(new WeightedObservedPoint[0]));
|
---|
224 |
|
---|
225 | norm = params[0];
|
---|
226 | mean = params[1];
|
---|
227 | sigma = params[2];
|
---|
228 | }
|
---|
229 |
|
---|
230 | /**
|
---|
231 | * Gets an estimation of the parameters.
|
---|
232 | *
|
---|
233 | * @return the guessed parameters, in the following order:
|
---|
234 | * <ul>
|
---|
235 | * <li>Normalization factor</li>
|
---|
236 | * <li>Mean</li>
|
---|
237 | * <li>Standard deviation</li>
|
---|
238 | * </ul>
|
---|
239 | */
|
---|
240 | public double[] guess() {
|
---|
241 | return new double[] { norm, mean, sigma };
|
---|
242 | }
|
---|
243 |
|
---|
244 | /**
|
---|
245 | * Sort the observations.
|
---|
246 | *
|
---|
247 | * @param unsorted Input observations.
|
---|
248 | * @return the input observations, sorted.
|
---|
249 | */
|
---|
250 | private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
|
---|
251 | final List<WeightedObservedPoint> observations = new ArrayList<WeightedObservedPoint>(unsorted);
|
---|
252 |
|
---|
253 | final Comparator<WeightedObservedPoint> cmp = new Comparator<WeightedObservedPoint>() {
|
---|
254 | /** {@inheritDoc} */
|
---|
255 | public int compare(WeightedObservedPoint p1,
|
---|
256 | WeightedObservedPoint p2) {
|
---|
257 | if (p1 == null && p2 == null) {
|
---|
258 | return 0;
|
---|
259 | }
|
---|
260 | if (p1 == null) {
|
---|
261 | return -1;
|
---|
262 | }
|
---|
263 | if (p2 == null) {
|
---|
264 | return 1;
|
---|
265 | }
|
---|
266 | final int cmpX = Double.compare(p1.getX(), p2.getX());
|
---|
267 | if (cmpX < 0) {
|
---|
268 | return -1;
|
---|
269 | }
|
---|
270 | if (cmpX > 0) {
|
---|
271 | return 1;
|
---|
272 | }
|
---|
273 | final int cmpY = Double.compare(p1.getY(), p2.getY());
|
---|
274 | if (cmpY < 0) {
|
---|
275 | return -1;
|
---|
276 | }
|
---|
277 | if (cmpY > 0) {
|
---|
278 | return 1;
|
---|
279 | }
|
---|
280 | final int cmpW = Double.compare(p1.getWeight(), p2.getWeight());
|
---|
281 | if (cmpW < 0) {
|
---|
282 | return -1;
|
---|
283 | }
|
---|
284 | if (cmpW > 0) {
|
---|
285 | return 1;
|
---|
286 | }
|
---|
287 | return 0;
|
---|
288 | }
|
---|
289 | };
|
---|
290 |
|
---|
291 | Collections.sort(observations, cmp);
|
---|
292 | return observations;
|
---|
293 | }
|
---|
294 |
|
---|
295 | /**
|
---|
296 | * Guesses the parameters based on the specified observed points.
|
---|
297 | *
|
---|
298 | * @param points Observed points, sorted.
|
---|
299 | * @return the guessed parameters (normalization factor, mean and
|
---|
300 | * sigma).
|
---|
301 | */
|
---|
302 | private double[] basicGuess(WeightedObservedPoint[] points) {
|
---|
303 | final int maxYIdx = findMaxY(points);
|
---|
304 | final double n = points[maxYIdx].getY();
|
---|
305 | final double m = points[maxYIdx].getX();
|
---|
306 |
|
---|
307 | double fwhmApprox;
|
---|
308 | try {
|
---|
309 | final double halfY = n + ((m - n) / 2);
|
---|
310 | final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
|
---|
311 | final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
|
---|
312 | fwhmApprox = fwhmX2 - fwhmX1;
|
---|
313 | } catch (OutOfRangeException e) {
|
---|
314 | // TODO: Exceptions should not be used for flow control.
|
---|
315 | fwhmApprox = points[points.length - 1].getX() - points[0].getX();
|
---|
316 | }
|
---|
317 | final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2)));
|
---|
318 |
|
---|
319 | return new double[] { n, m, s };
|
---|
320 | }
|
---|
321 |
|
---|
322 | /**
|
---|
323 | * Finds index of point in specified points with the largest Y.
|
---|
324 | *
|
---|
325 | * @param points Points to search.
|
---|
326 | * @return the index in specified points array.
|
---|
327 | */
|
---|
328 | private int findMaxY(WeightedObservedPoint[] points) {
|
---|
329 | int maxYIdx = 0;
|
---|
330 | for (int i = 1; i < points.length; i++) {
|
---|
331 | if (points[i].getY() > points[maxYIdx].getY()) {
|
---|
332 | maxYIdx = i;
|
---|
333 | }
|
---|
334 | }
|
---|
335 | return maxYIdx;
|
---|
336 | }
|
---|
337 |
|
---|
338 | /**
|
---|
339 | * Interpolates using the specified points to determine X at the
|
---|
340 | * specified Y.
|
---|
341 | *
|
---|
342 | * @param points Points to use for interpolation.
|
---|
343 | * @param startIdx Index within points from which to start the search for
|
---|
344 | * interpolation bounds points.
|
---|
345 | * @param idxStep Index step for searching interpolation bounds points.
|
---|
346 | * @param y Y value for which X should be determined.
|
---|
347 | * @return the value of X for the specified Y.
|
---|
348 | * @throws ZeroException if {@code idxStep} is 0.
|
---|
349 | * @throws OutOfRangeException if specified {@code y} is not within the
|
---|
350 | * range of the specified {@code points}.
|
---|
351 | */
|
---|
352 | private double interpolateXAtY(WeightedObservedPoint[] points,
|
---|
353 | int startIdx,
|
---|
354 | int idxStep,
|
---|
355 | double y)
|
---|
356 | throws OutOfRangeException {
|
---|
357 | if (idxStep == 0) {
|
---|
358 | throw new ZeroException();
|
---|
359 | }
|
---|
360 | final WeightedObservedPoint[] twoPoints
|
---|
361 | = getInterpolationPointsForY(points, startIdx, idxStep, y);
|
---|
362 | final WeightedObservedPoint p1 = twoPoints[0];
|
---|
363 | final WeightedObservedPoint p2 = twoPoints[1];
|
---|
364 | if (p1.getY() == y) {
|
---|
365 | return p1.getX();
|
---|
366 | }
|
---|
367 | if (p2.getY() == y) {
|
---|
368 | return p2.getX();
|
---|
369 | }
|
---|
370 | return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
|
---|
371 | (p2.getY() - p1.getY()));
|
---|
372 | }
|
---|
373 |
|
---|
374 | /**
|
---|
375 | * Gets the two bounding interpolation points from the specified points
|
---|
376 | * suitable for determining X at the specified Y.
|
---|
377 | *
|
---|
378 | * @param points Points to use for interpolation.
|
---|
379 | * @param startIdx Index within points from which to start search for
|
---|
380 | * interpolation bounds points.
|
---|
381 | * @param idxStep Index step for search for interpolation bounds points.
|
---|
382 | * @param y Y value for which X should be determined.
|
---|
383 | * @return the array containing two points suitable for determining X at
|
---|
384 | * the specified Y.
|
---|
385 | * @throws ZeroException if {@code idxStep} is 0.
|
---|
386 | * @throws OutOfRangeException if specified {@code y} is not within the
|
---|
387 | * range of the specified {@code points}.
|
---|
388 | */
|
---|
389 | private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
|
---|
390 | int startIdx,
|
---|
391 | int idxStep,
|
---|
392 | double y)
|
---|
393 | throws OutOfRangeException {
|
---|
394 | if (idxStep == 0) {
|
---|
395 | throw new ZeroException();
|
---|
396 | }
|
---|
397 | for (int i = startIdx;
|
---|
398 | idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
|
---|
399 | i += idxStep) {
|
---|
400 | final WeightedObservedPoint p1 = points[i];
|
---|
401 | final WeightedObservedPoint p2 = points[i + idxStep];
|
---|
402 | if (isBetween(y, p1.getY(), p2.getY())) {
|
---|
403 | if (idxStep < 0) {
|
---|
404 | return new WeightedObservedPoint[] { p2, p1 };
|
---|
405 | } else {
|
---|
406 | return new WeightedObservedPoint[] { p1, p2 };
|
---|
407 | }
|
---|
408 | }
|
---|
409 | }
|
---|
410 |
|
---|
411 | // Boundaries are replaced by dummy values because the raised
|
---|
412 | // exception is caught and the message never displayed.
|
---|
413 | // TODO: Exceptions should not be used for flow control.
|
---|
414 | throw new OutOfRangeException(y,
|
---|
415 | Double.NEGATIVE_INFINITY,
|
---|
416 | Double.POSITIVE_INFINITY);
|
---|
417 | }
|
---|
418 |
|
---|
419 | /**
|
---|
420 | * Determines whether a value is between two other values.
|
---|
421 | *
|
---|
422 | * @param value Value to test whether it is between {@code boundary1}
|
---|
423 | * and {@code boundary2}.
|
---|
424 | * @param boundary1 One end of the range.
|
---|
425 | * @param boundary2 Other end of the range.
|
---|
426 | * @return {@code true} if {@code value} is between {@code boundary1} and
|
---|
427 | * {@code boundary2} (inclusive), {@code false} otherwise.
|
---|
428 | */
|
---|
429 | private boolean isBetween(double value,
|
---|
430 | double boundary1,
|
---|
431 | double boundary2) {
|
---|
432 | return (value >= boundary1 && value <= boundary2) ||
|
---|
433 | (value >= boundary2 && value <= boundary1);
|
---|
434 | }
|
---|
435 | }
|
---|
436 | }
|
---|