1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.fitting;
|
---|
18 |
|
---|
19 | import java.util.Collection;
|
---|
20 |
|
---|
21 | import agents.anac.y2019.harddealer.math3.analysis.MultivariateVectorFunction;
|
---|
22 | import agents.anac.y2019.harddealer.math3.analysis.MultivariateMatrixFunction;
|
---|
23 | import agents.anac.y2019.harddealer.math3.analysis.ParametricUnivariateFunction;
|
---|
24 | import agents.anac.y2019.harddealer.math3.fitting.leastsquares.LeastSquaresOptimizer;
|
---|
25 | import agents.anac.y2019.harddealer.math3.fitting.leastsquares.LeastSquaresProblem;
|
---|
26 | import agents.anac.y2019.harddealer.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
|
---|
27 |
|
---|
28 | /**
|
---|
29 | * Base class that contains common code for fitting parametric univariate
|
---|
30 | * real functions <code>y = f(p<sub>i</sub>;x)</code>, where {@code x} is
|
---|
31 | * the independent variable and the <code>p<sub>i</sub></code> are the
|
---|
32 | * <em>parameters</em>.
|
---|
33 | * <br/>
|
---|
34 | * A fitter will find the optimal values of the parameters by
|
---|
35 | * <em>fitting</em> the curve so it remains very close to a set of
|
---|
36 | * {@code N} observed points <code>(x<sub>k</sub>, y<sub>k</sub>)</code>,
|
---|
37 | * {@code 0 <= k < N}.
|
---|
38 | * <br/>
|
---|
39 | * An algorithm usually performs the fit by finding the parameter
|
---|
40 | * values that minimizes the objective function
|
---|
41 | * <pre><code>
|
---|
42 | * ∑y<sub>k</sub> - f(x<sub>k</sub>)<sup>2</sup>,
|
---|
43 | * </code></pre>
|
---|
44 | * which is actually a least-squares problem.
|
---|
45 | * This class contains boilerplate code for calling the
|
---|
46 | * {@link #fit(Collection)} method for obtaining the parameters.
|
---|
47 | * The problem setup, such as the choice of optimization algorithm
|
---|
48 | * for fitting a specific function is delegated to subclasses.
|
---|
49 | *
|
---|
50 | * @since 3.3
|
---|
51 | */
|
---|
52 | public abstract class AbstractCurveFitter {
|
---|
53 | /**
|
---|
54 | * Fits a curve.
|
---|
55 | * This method computes the coefficients of the curve that best
|
---|
56 | * fit the sample of observed points.
|
---|
57 | *
|
---|
58 | * @param points Observations.
|
---|
59 | * @return the fitted parameters.
|
---|
60 | */
|
---|
61 | public double[] fit(Collection<WeightedObservedPoint> points) {
|
---|
62 | // Perform the fit.
|
---|
63 | return getOptimizer().optimize(getProblem(points)).getPoint().toArray();
|
---|
64 | }
|
---|
65 |
|
---|
66 | /**
|
---|
67 | * Creates an optimizer set up to fit the appropriate curve.
|
---|
68 | * <p>
|
---|
69 | * The default implementation uses a {@link LevenbergMarquardtOptimizer
|
---|
70 | * Levenberg-Marquardt} optimizer.
|
---|
71 | * </p>
|
---|
72 | * @return the optimizer to use for fitting the curve to the
|
---|
73 | * given {@code points}.
|
---|
74 | */
|
---|
75 | protected LeastSquaresOptimizer getOptimizer() {
|
---|
76 | return new LevenbergMarquardtOptimizer();
|
---|
77 | }
|
---|
78 |
|
---|
79 | /**
|
---|
80 | * Creates a least squares problem corresponding to the appropriate curve.
|
---|
81 | *
|
---|
82 | * @param points Sample points.
|
---|
83 | * @return the least squares problem to use for fitting the curve to the
|
---|
84 | * given {@code points}.
|
---|
85 | */
|
---|
86 | protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points);
|
---|
87 |
|
---|
88 | /**
|
---|
89 | * Vector function for computing function theoretical values.
|
---|
90 | */
|
---|
91 | protected static class TheoreticalValuesFunction {
|
---|
92 | /** Function to fit. */
|
---|
93 | private final ParametricUnivariateFunction f;
|
---|
94 | /** Observations. */
|
---|
95 | private final double[] points;
|
---|
96 |
|
---|
97 | /**
|
---|
98 | * @param f function to fit.
|
---|
99 | * @param observations Observations.
|
---|
100 | */
|
---|
101 | public TheoreticalValuesFunction(final ParametricUnivariateFunction f,
|
---|
102 | final Collection<WeightedObservedPoint> observations) {
|
---|
103 | this.f = f;
|
---|
104 |
|
---|
105 | final int len = observations.size();
|
---|
106 | this.points = new double[len];
|
---|
107 | int i = 0;
|
---|
108 | for (WeightedObservedPoint obs : observations) {
|
---|
109 | this.points[i++] = obs.getX();
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | /**
|
---|
114 | * @return the model function values.
|
---|
115 | */
|
---|
116 | public MultivariateVectorFunction getModelFunction() {
|
---|
117 | return new MultivariateVectorFunction() {
|
---|
118 | /** {@inheritDoc} */
|
---|
119 | public double[] value(double[] p) {
|
---|
120 | final int len = points.length;
|
---|
121 | final double[] values = new double[len];
|
---|
122 | for (int i = 0; i < len; i++) {
|
---|
123 | values[i] = f.value(points[i], p);
|
---|
124 | }
|
---|
125 |
|
---|
126 | return values;
|
---|
127 | }
|
---|
128 | };
|
---|
129 | }
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * @return the model function Jacobian.
|
---|
133 | */
|
---|
134 | public MultivariateMatrixFunction getModelFunctionJacobian() {
|
---|
135 | return new MultivariateMatrixFunction() {
|
---|
136 | /** {@inheritDoc} */
|
---|
137 | public double[][] value(double[] p) {
|
---|
138 | final int len = points.length;
|
---|
139 | final double[][] jacobian = new double[len][];
|
---|
140 | for (int i = 0; i < len; i++) {
|
---|
141 | jacobian[i] = f.gradient(points[i], p);
|
---|
142 | }
|
---|
143 | return jacobian;
|
---|
144 | }
|
---|
145 | };
|
---|
146 | }
|
---|
147 | }
|
---|
148 | }
|
---|