1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 |
|
---|
18 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
19 |
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
21 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
22 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
23 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
24 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * Implementation of the Zipf distribution.
|
---|
28 | * <p>
|
---|
29 | * <strong>Parameters:</strong>
|
---|
30 | * For a random variable {@code X} whose values are distributed according to this
|
---|
31 | * distribution, the probability mass function is given by
|
---|
32 | * <pre>
|
---|
33 | * P(X = k) = H(N,s) * 1 / k^s for {@code k = 1,2,...,N}.
|
---|
34 | * </pre>
|
---|
35 | * {@code H(N,s)} is the normalizing constant
|
---|
36 | * which corresponds to the generalized harmonic number of order N of s.
|
---|
37 | * <p>
|
---|
38 | * <ul>
|
---|
39 | * <li>{@code N} is the number of elements</li>
|
---|
40 | * <li>{@code s} is the exponent</li>
|
---|
41 | * </ul>
|
---|
42 | * @see <a href="https://en.wikipedia.org/wiki/Zipf's_law">Zipf's law (Wikipedia)</a>
|
---|
43 | * @see <a href="https://en.wikipedia.org/wiki/Harmonic_number#Generalized_harmonic_numbers">Generalized harmonic numbers</a>
|
---|
44 | */
|
---|
45 | public class ZipfDistribution extends AbstractIntegerDistribution {
|
---|
46 | /** Serializable version identifier. */
|
---|
47 | private static final long serialVersionUID = -140627372283420404L;
|
---|
48 | /** Number of elements. */
|
---|
49 | private final int numberOfElements;
|
---|
50 | /** Exponent parameter of the distribution. */
|
---|
51 | private final double exponent;
|
---|
52 | /** Cached numerical mean */
|
---|
53 | private double numericalMean = Double.NaN;
|
---|
54 | /** Whether or not the numerical mean has been calculated */
|
---|
55 | private boolean numericalMeanIsCalculated = false;
|
---|
56 | /** Cached numerical variance */
|
---|
57 | private double numericalVariance = Double.NaN;
|
---|
58 | /** Whether or not the numerical variance has been calculated */
|
---|
59 | private boolean numericalVarianceIsCalculated = false;
|
---|
60 | /** The sampler to be used for the sample() method */
|
---|
61 | private transient ZipfRejectionInversionSampler sampler;
|
---|
62 |
|
---|
63 | /**
|
---|
64 | * Create a new Zipf distribution with the given number of elements and
|
---|
65 | * exponent.
|
---|
66 | * <p>
|
---|
67 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
68 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
69 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
70 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
71 | * as random generator via the appropriate constructors to avoid the
|
---|
72 | * additional initialisation overhead.
|
---|
73 | *
|
---|
74 | * @param numberOfElements Number of elements.
|
---|
75 | * @param exponent Exponent.
|
---|
76 | * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0}
|
---|
77 | * or {@code exponent <= 0}.
|
---|
78 | */
|
---|
79 | public ZipfDistribution(final int numberOfElements, final double exponent) {
|
---|
80 | this(new Well19937c(), numberOfElements, exponent);
|
---|
81 | }
|
---|
82 |
|
---|
83 | /**
|
---|
84 | * Creates a Zipf distribution.
|
---|
85 | *
|
---|
86 | * @param rng Random number generator.
|
---|
87 | * @param numberOfElements Number of elements.
|
---|
88 | * @param exponent Exponent.
|
---|
89 | * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0}
|
---|
90 | * or {@code exponent <= 0}.
|
---|
91 | * @since 3.1
|
---|
92 | */
|
---|
93 | public ZipfDistribution(RandomGenerator rng,
|
---|
94 | int numberOfElements,
|
---|
95 | double exponent)
|
---|
96 | throws NotStrictlyPositiveException {
|
---|
97 | super(rng);
|
---|
98 |
|
---|
99 | if (numberOfElements <= 0) {
|
---|
100 | throw new NotStrictlyPositiveException(LocalizedFormats.DIMENSION,
|
---|
101 | numberOfElements);
|
---|
102 | }
|
---|
103 | if (exponent <= 0) {
|
---|
104 | throw new NotStrictlyPositiveException(LocalizedFormats.EXPONENT,
|
---|
105 | exponent);
|
---|
106 | }
|
---|
107 |
|
---|
108 | this.numberOfElements = numberOfElements;
|
---|
109 | this.exponent = exponent;
|
---|
110 | }
|
---|
111 |
|
---|
112 | /**
|
---|
113 | * Get the number of elements (e.g. corpus size) for the distribution.
|
---|
114 | *
|
---|
115 | * @return the number of elements
|
---|
116 | */
|
---|
117 | public int getNumberOfElements() {
|
---|
118 | return numberOfElements;
|
---|
119 | }
|
---|
120 |
|
---|
121 | /**
|
---|
122 | * Get the exponent characterizing the distribution.
|
---|
123 | *
|
---|
124 | * @return the exponent
|
---|
125 | */
|
---|
126 | public double getExponent() {
|
---|
127 | return exponent;
|
---|
128 | }
|
---|
129 |
|
---|
130 | /** {@inheritDoc} */
|
---|
131 | public double probability(final int x) {
|
---|
132 | if (x <= 0 || x > numberOfElements) {
|
---|
133 | return 0.0;
|
---|
134 | }
|
---|
135 |
|
---|
136 | return (1.0 / FastMath.pow(x, exponent)) / generalizedHarmonic(numberOfElements, exponent);
|
---|
137 | }
|
---|
138 |
|
---|
139 | /** {@inheritDoc} */
|
---|
140 | @Override
|
---|
141 | public double logProbability(int x) {
|
---|
142 | if (x <= 0 || x > numberOfElements) {
|
---|
143 | return Double.NEGATIVE_INFINITY;
|
---|
144 | }
|
---|
145 |
|
---|
146 | return -FastMath.log(x) * exponent - FastMath.log(generalizedHarmonic(numberOfElements, exponent));
|
---|
147 | }
|
---|
148 |
|
---|
149 | /** {@inheritDoc} */
|
---|
150 | public double cumulativeProbability(final int x) {
|
---|
151 | if (x <= 0) {
|
---|
152 | return 0.0;
|
---|
153 | } else if (x >= numberOfElements) {
|
---|
154 | return 1.0;
|
---|
155 | }
|
---|
156 |
|
---|
157 | return generalizedHarmonic(x, exponent) / generalizedHarmonic(numberOfElements, exponent);
|
---|
158 | }
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * {@inheritDoc}
|
---|
162 | *
|
---|
163 | * For number of elements {@code N} and exponent {@code s}, the mean is
|
---|
164 | * {@code Hs1 / Hs}, where
|
---|
165 | * <ul>
|
---|
166 | * <li>{@code Hs1 = generalizedHarmonic(N, s - 1)},</li>
|
---|
167 | * <li>{@code Hs = generalizedHarmonic(N, s)}.</li>
|
---|
168 | * </ul>
|
---|
169 | */
|
---|
170 | public double getNumericalMean() {
|
---|
171 | if (!numericalMeanIsCalculated) {
|
---|
172 | numericalMean = calculateNumericalMean();
|
---|
173 | numericalMeanIsCalculated = true;
|
---|
174 | }
|
---|
175 | return numericalMean;
|
---|
176 | }
|
---|
177 |
|
---|
178 | /**
|
---|
179 | * Used by {@link #getNumericalMean()}.
|
---|
180 | *
|
---|
181 | * @return the mean of this distribution
|
---|
182 | */
|
---|
183 | protected double calculateNumericalMean() {
|
---|
184 | final int N = getNumberOfElements();
|
---|
185 | final double s = getExponent();
|
---|
186 |
|
---|
187 | final double Hs1 = generalizedHarmonic(N, s - 1);
|
---|
188 | final double Hs = generalizedHarmonic(N, s);
|
---|
189 |
|
---|
190 | return Hs1 / Hs;
|
---|
191 | }
|
---|
192 |
|
---|
193 | /**
|
---|
194 | * {@inheritDoc}
|
---|
195 | *
|
---|
196 | * For number of elements {@code N} and exponent {@code s}, the mean is
|
---|
197 | * {@code (Hs2 / Hs) - (Hs1^2 / Hs^2)}, where
|
---|
198 | * <ul>
|
---|
199 | * <li>{@code Hs2 = generalizedHarmonic(N, s - 2)},</li>
|
---|
200 | * <li>{@code Hs1 = generalizedHarmonic(N, s - 1)},</li>
|
---|
201 | * <li>{@code Hs = generalizedHarmonic(N, s)}.</li>
|
---|
202 | * </ul>
|
---|
203 | */
|
---|
204 | public double getNumericalVariance() {
|
---|
205 | if (!numericalVarianceIsCalculated) {
|
---|
206 | numericalVariance = calculateNumericalVariance();
|
---|
207 | numericalVarianceIsCalculated = true;
|
---|
208 | }
|
---|
209 | return numericalVariance;
|
---|
210 | }
|
---|
211 |
|
---|
212 | /**
|
---|
213 | * Used by {@link #getNumericalVariance()}.
|
---|
214 | *
|
---|
215 | * @return the variance of this distribution
|
---|
216 | */
|
---|
217 | protected double calculateNumericalVariance() {
|
---|
218 | final int N = getNumberOfElements();
|
---|
219 | final double s = getExponent();
|
---|
220 |
|
---|
221 | final double Hs2 = generalizedHarmonic(N, s - 2);
|
---|
222 | final double Hs1 = generalizedHarmonic(N, s - 1);
|
---|
223 | final double Hs = generalizedHarmonic(N, s);
|
---|
224 |
|
---|
225 | return (Hs2 / Hs) - ((Hs1 * Hs1) / (Hs * Hs));
|
---|
226 | }
|
---|
227 |
|
---|
228 | /**
|
---|
229 | * Calculates the Nth generalized harmonic number. See
|
---|
230 | * <a href="http://mathworld.wolfram.com/HarmonicSeries.html">Harmonic
|
---|
231 | * Series</a>.
|
---|
232 | *
|
---|
233 | * @param n Term in the series to calculate (must be larger than 1)
|
---|
234 | * @param m Exponent (special case {@code m = 1} is the harmonic series).
|
---|
235 | * @return the n<sup>th</sup> generalized harmonic number.
|
---|
236 | */
|
---|
237 | private double generalizedHarmonic(final int n, final double m) {
|
---|
238 | double value = 0;
|
---|
239 | for (int k = n; k > 0; --k) {
|
---|
240 | value += 1.0 / FastMath.pow(k, m);
|
---|
241 | }
|
---|
242 | return value;
|
---|
243 | }
|
---|
244 |
|
---|
245 | /**
|
---|
246 | * {@inheritDoc}
|
---|
247 | *
|
---|
248 | * The lower bound of the support is always 1 no matter the parameters.
|
---|
249 | *
|
---|
250 | * @return lower bound of the support (always 1)
|
---|
251 | */
|
---|
252 | public int getSupportLowerBound() {
|
---|
253 | return 1;
|
---|
254 | }
|
---|
255 |
|
---|
256 | /**
|
---|
257 | * {@inheritDoc}
|
---|
258 | *
|
---|
259 | * The upper bound of the support is the number of elements.
|
---|
260 | *
|
---|
261 | * @return upper bound of the support
|
---|
262 | */
|
---|
263 | public int getSupportUpperBound() {
|
---|
264 | return getNumberOfElements();
|
---|
265 | }
|
---|
266 |
|
---|
267 | /**
|
---|
268 | * {@inheritDoc}
|
---|
269 | *
|
---|
270 | * The support of this distribution is connected.
|
---|
271 | *
|
---|
272 | * @return {@code true}
|
---|
273 | */
|
---|
274 | public boolean isSupportConnected() {
|
---|
275 | return true;
|
---|
276 | }
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * {@inheritDoc}
|
---|
280 | */
|
---|
281 | @Override
|
---|
282 | public int sample() {
|
---|
283 | if (sampler == null) {
|
---|
284 | sampler = new ZipfRejectionInversionSampler(numberOfElements, exponent);
|
---|
285 | }
|
---|
286 | return sampler.sample(random);
|
---|
287 | }
|
---|
288 |
|
---|
289 | /**
|
---|
290 | * Utility class implementing a rejection inversion sampling method for a discrete,
|
---|
291 | * bounded Zipf distribution that is based on the method described in
|
---|
292 | * <p>
|
---|
293 | * Wolfgang Hörmann and Gerhard Derflinger
|
---|
294 | * "Rejection-inversion to generate variates from monotone discrete distributions."
|
---|
295 | * ACM Transactions on Modeling and Computer Simulation (TOMACS) 6.3 (1996): 169-184.
|
---|
296 | * <p>
|
---|
297 | * The paper describes an algorithm for exponents larger than 1 (Algorithm ZRI).
|
---|
298 | * The original method uses {@code H(x) := (v + x)^(1 - q) / (1 - q)}
|
---|
299 | * as the integral of the hat function. This function is undefined for
|
---|
300 | * q = 1, which is the reason for the limitation of the exponent.
|
---|
301 | * If instead the integral function
|
---|
302 | * {@code H(x) := ((v + x)^(1 - q) - 1) / (1 - q)} is used,
|
---|
303 | * for which a meaningful limit exists for q = 1,
|
---|
304 | * the method works for all positive exponents.
|
---|
305 | * <p>
|
---|
306 | * The following implementation uses v := 0 and generates integral numbers
|
---|
307 | * in the range [1, numberOfElements]. This is different to the original method
|
---|
308 | * where v is defined to be positive and numbers are taken from [0, i_max].
|
---|
309 | * This explains why the implementation looks slightly different.
|
---|
310 | *
|
---|
311 | * @since 3.6
|
---|
312 | */
|
---|
313 | static final class ZipfRejectionInversionSampler {
|
---|
314 |
|
---|
315 | /** Exponent parameter of the distribution. */
|
---|
316 | private final double exponent;
|
---|
317 | /** Number of elements. */
|
---|
318 | private final int numberOfElements;
|
---|
319 | /** Constant equal to {@code hIntegral(1.5) - 1}. */
|
---|
320 | private final double hIntegralX1;
|
---|
321 | /** Constant equal to {@code hIntegral(numberOfElements + 0.5)}. */
|
---|
322 | private final double hIntegralNumberOfElements;
|
---|
323 | /** Constant equal to {@code 2 - hIntegralInverse(hIntegral(2.5) - h(2)}. */
|
---|
324 | private final double s;
|
---|
325 |
|
---|
326 | /** Simple constructor.
|
---|
327 | * @param numberOfElements number of elements
|
---|
328 | * @param exponent exponent parameter of the distribution
|
---|
329 | */
|
---|
330 | ZipfRejectionInversionSampler(final int numberOfElements, final double exponent) {
|
---|
331 | this.exponent = exponent;
|
---|
332 | this.numberOfElements = numberOfElements;
|
---|
333 | this.hIntegralX1 = hIntegral(1.5) - 1d;
|
---|
334 | this.hIntegralNumberOfElements = hIntegral(numberOfElements + 0.5);
|
---|
335 | this.s = 2d - hIntegralInverse(hIntegral(2.5) - h(2));
|
---|
336 | }
|
---|
337 |
|
---|
338 | /** Generate one integral number in the range [1, numberOfElements].
|
---|
339 | * @param random random generator to use
|
---|
340 | * @return generated integral number in the range [1, numberOfElements]
|
---|
341 | */
|
---|
342 | int sample(final RandomGenerator random) {
|
---|
343 | while(true) {
|
---|
344 |
|
---|
345 | final double u = hIntegralNumberOfElements + random.nextDouble() * (hIntegralX1 - hIntegralNumberOfElements);
|
---|
346 | // u is uniformly distributed in (hIntegralX1, hIntegralNumberOfElements]
|
---|
347 |
|
---|
348 | double x = hIntegralInverse(u);
|
---|
349 |
|
---|
350 | int k = (int)(x + 0.5);
|
---|
351 |
|
---|
352 | // Limit k to the range [1, numberOfElements]
|
---|
353 | // (k could be outside due to numerical inaccuracies)
|
---|
354 | if (k < 1) {
|
---|
355 | k = 1;
|
---|
356 | }
|
---|
357 | else if (k > numberOfElements) {
|
---|
358 | k = numberOfElements;
|
---|
359 | }
|
---|
360 |
|
---|
361 | // Here, the distribution of k is given by:
|
---|
362 | //
|
---|
363 | // P(k = 1) = C * (hIntegral(1.5) - hIntegralX1) = C
|
---|
364 | // P(k = m) = C * (hIntegral(m + 1/2) - hIntegral(m - 1/2)) for m >= 2
|
---|
365 | //
|
---|
366 | // where C := 1 / (hIntegralNumberOfElements - hIntegralX1)
|
---|
367 |
|
---|
368 | if (k - x <= s || u >= hIntegral(k + 0.5) - h(k)) {
|
---|
369 |
|
---|
370 | // Case k = 1:
|
---|
371 | //
|
---|
372 | // The right inequality is always true, because replacing k by 1 gives
|
---|
373 | // u >= hIntegral(1.5) - h(1) = hIntegralX1 and u is taken from
|
---|
374 | // (hIntegralX1, hIntegralNumberOfElements].
|
---|
375 | //
|
---|
376 | // Therefore, the acceptance rate for k = 1 is P(accepted | k = 1) = 1
|
---|
377 | // and the probability that 1 is returned as random value is
|
---|
378 | // P(k = 1 and accepted) = P(accepted | k = 1) * P(k = 1) = C = C / 1^exponent
|
---|
379 | //
|
---|
380 | // Case k >= 2:
|
---|
381 | //
|
---|
382 | // The left inequality (k - x <= s) is just a short cut
|
---|
383 | // to avoid the more expensive evaluation of the right inequality
|
---|
384 | // (u >= hIntegral(k + 0.5) - h(k)) in many cases.
|
---|
385 | //
|
---|
386 | // If the left inequality is true, the right inequality is also true:
|
---|
387 | // Theorem 2 in the paper is valid for all positive exponents, because
|
---|
388 | // the requirements h'(x) = -exponent/x^(exponent + 1) < 0 and
|
---|
389 | // (-1/hInverse'(x))'' = (1+1/exponent) * x^(1/exponent-1) >= 0
|
---|
390 | // are both fulfilled.
|
---|
391 | // Therefore, f(x) := x - hIntegralInverse(hIntegral(x + 0.5) - h(x))
|
---|
392 | // is a non-decreasing function. If k - x <= s holds,
|
---|
393 | // k - x <= s + f(k) - f(2) is obviously also true which is equivalent to
|
---|
394 | // -x <= -hIntegralInverse(hIntegral(k + 0.5) - h(k)),
|
---|
395 | // -hIntegralInverse(u) <= -hIntegralInverse(hIntegral(k + 0.5) - h(k)),
|
---|
396 | // and finally u >= hIntegral(k + 0.5) - h(k).
|
---|
397 | //
|
---|
398 | // Hence, the right inequality determines the acceptance rate:
|
---|
399 | // P(accepted | k = m) = h(m) / (hIntegrated(m+1/2) - hIntegrated(m-1/2))
|
---|
400 | // The probability that m is returned is given by
|
---|
401 | // P(k = m and accepted) = P(accepted | k = m) * P(k = m) = C * h(m) = C / m^exponent.
|
---|
402 | //
|
---|
403 | // In both cases the probabilities are proportional to the probability mass function
|
---|
404 | // of the Zipf distribution.
|
---|
405 |
|
---|
406 | return k;
|
---|
407 | }
|
---|
408 | }
|
---|
409 | }
|
---|
410 |
|
---|
411 | /**
|
---|
412 | * {@code H(x) :=}
|
---|
413 | * <ul>
|
---|
414 | * <li>{@code (x^(1-exponent) - 1)/(1 - exponent)}, if {@code exponent != 1}</li>
|
---|
415 | * <li>{@code log(x)}, if {@code exponent == 1}</li>
|
---|
416 | * </ul>
|
---|
417 | * H(x) is an integral function of h(x),
|
---|
418 | * the derivative of H(x) is h(x).
|
---|
419 | *
|
---|
420 | * @param x free parameter
|
---|
421 | * @return {@code H(x)}
|
---|
422 | */
|
---|
423 | private double hIntegral(final double x) {
|
---|
424 | final double logX = FastMath.log(x);
|
---|
425 | return helper2((1d-exponent)*logX)*logX;
|
---|
426 | }
|
---|
427 |
|
---|
428 | /**
|
---|
429 | * {@code h(x) := 1/x^exponent}
|
---|
430 | *
|
---|
431 | * @param x free parameter
|
---|
432 | * @return h(x)
|
---|
433 | */
|
---|
434 | private double h(final double x) {
|
---|
435 | return FastMath.exp(-exponent * FastMath.log(x));
|
---|
436 | }
|
---|
437 |
|
---|
438 | /**
|
---|
439 | * The inverse function of H(x).
|
---|
440 | *
|
---|
441 | * @param x free parameter
|
---|
442 | * @return y for which {@code H(y) = x}
|
---|
443 | */
|
---|
444 | private double hIntegralInverse(final double x) {
|
---|
445 | double t = x*(1d-exponent);
|
---|
446 | if (t < -1d) {
|
---|
447 | // Limit value to the range [-1, +inf).
|
---|
448 | // t could be smaller than -1 in some rare cases due to numerical errors.
|
---|
449 | t = -1;
|
---|
450 | }
|
---|
451 | return FastMath.exp(helper1(t)*x);
|
---|
452 | }
|
---|
453 |
|
---|
454 | /**
|
---|
455 | * Helper function that calculates {@code log(1+x)/x}.
|
---|
456 | * <p>
|
---|
457 | * A Taylor series expansion is used, if x is close to 0.
|
---|
458 | *
|
---|
459 | * @param x a value larger than or equal to -1
|
---|
460 | * @return {@code log(1+x)/x}
|
---|
461 | */
|
---|
462 | static double helper1(final double x) {
|
---|
463 | if (FastMath.abs(x)>1e-8) {
|
---|
464 | return FastMath.log1p(x)/x;
|
---|
465 | }
|
---|
466 | else {
|
---|
467 | return 1.-x*((1./2.)-x*((1./3.)-x*(1./4.)));
|
---|
468 | }
|
---|
469 | }
|
---|
470 |
|
---|
471 | /**
|
---|
472 | * Helper function to calculate {@code (exp(x)-1)/x}.
|
---|
473 | * <p>
|
---|
474 | * A Taylor series expansion is used, if x is close to 0.
|
---|
475 | *
|
---|
476 | * @param x free parameter
|
---|
477 | * @return {@code (exp(x)-1)/x} if x is non-zero, or 1 if x=0
|
---|
478 | */
|
---|
479 | static double helper2(final double x) {
|
---|
480 | if (FastMath.abs(x)>1e-8) {
|
---|
481 | return FastMath.expm1(x)/x;
|
---|
482 | }
|
---|
483 | else {
|
---|
484 | return 1.+x*(1./2.)*(1.+x*(1./3.)*(1.+x*(1./4.)));
|
---|
485 | }
|
---|
486 | }
|
---|
487 | }
|
---|
488 | }
|
---|