1 | /*
|
---|
2 | * Licensed to the Apache Software Foundation (ASF) under one or more
|
---|
3 | * contributor license agreements. See the NOTICE file distributed with
|
---|
4 | * this work for additional information regarding copyright ownership.
|
---|
5 | * The ASF licenses this file to You under the Apache License, Version 2.0
|
---|
6 | * (the "License"); you may not use this file except in compliance with
|
---|
7 | * the License. You may obtain a copy of the License at
|
---|
8 | *
|
---|
9 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
10 | *
|
---|
11 | * Unless required by applicable law or agreed to in writing, software
|
---|
12 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
14 | * See the License for the specific language governing permissions and
|
---|
15 | * limitations under the License.
|
---|
16 | */
|
---|
17 | package agents.anac.y2019.harddealer.math3.distribution;
|
---|
18 |
|
---|
19 | import agents.anac.y2019.harddealer.math3.exception.NotStrictlyPositiveException;
|
---|
20 | import agents.anac.y2019.harddealer.math3.exception.util.LocalizedFormats;
|
---|
21 | import agents.anac.y2019.harddealer.math3.random.RandomGenerator;
|
---|
22 | import agents.anac.y2019.harddealer.math3.random.Well19937c;
|
---|
23 | import agents.anac.y2019.harddealer.math3.special.Beta;
|
---|
24 | import agents.anac.y2019.harddealer.math3.special.Gamma;
|
---|
25 | import agents.anac.y2019.harddealer.math3.util.FastMath;
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * Implementation of Student's t-distribution.
|
---|
29 | *
|
---|
30 | * @see "<a href='http://en.wikipedia.org/wiki/Student's_t-distribution'>Student's t-distribution (Wikipedia)</a>"
|
---|
31 | * @see "<a href='http://mathworld.wolfram.com/Studentst-Distribution.html'>Student's t-distribution (MathWorld)</a>"
|
---|
32 | */
|
---|
33 | public class TDistribution extends AbstractRealDistribution {
|
---|
34 | /**
|
---|
35 | * Default inverse cumulative probability accuracy.
|
---|
36 | * @since 2.1
|
---|
37 | */
|
---|
38 | public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
|
---|
39 | /** Serializable version identifier */
|
---|
40 | private static final long serialVersionUID = -5852615386664158222L;
|
---|
41 | /** The degrees of freedom. */
|
---|
42 | private final double degreesOfFreedom;
|
---|
43 | /** Inverse cumulative probability accuracy. */
|
---|
44 | private final double solverAbsoluteAccuracy;
|
---|
45 | /** Static computation factor based on degreesOfFreedom. */
|
---|
46 | private final double factor;
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * Create a t distribution using the given degrees of freedom.
|
---|
50 | * <p>
|
---|
51 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
52 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
53 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
54 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
55 | * as random generator via the appropriate constructors to avoid the
|
---|
56 | * additional initialisation overhead.
|
---|
57 | *
|
---|
58 | * @param degreesOfFreedom Degrees of freedom.
|
---|
59 | * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
|
---|
60 | */
|
---|
61 | public TDistribution(double degreesOfFreedom)
|
---|
62 | throws NotStrictlyPositiveException {
|
---|
63 | this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
64 | }
|
---|
65 |
|
---|
66 | /**
|
---|
67 | * Create a t distribution using the given degrees of freedom and the
|
---|
68 | * specified inverse cumulative probability absolute accuracy.
|
---|
69 | * <p>
|
---|
70 | * <b>Note:</b> this constructor will implicitly create an instance of
|
---|
71 | * {@link Well19937c} as random generator to be used for sampling only (see
|
---|
72 | * {@link #sample()} and {@link #sample(int)}). In case no sampling is
|
---|
73 | * needed for the created distribution, it is advised to pass {@code null}
|
---|
74 | * as random generator via the appropriate constructors to avoid the
|
---|
75 | * additional initialisation overhead.
|
---|
76 | *
|
---|
77 | * @param degreesOfFreedom Degrees of freedom.
|
---|
78 | * @param inverseCumAccuracy the maximum absolute error in inverse
|
---|
79 | * cumulative probability estimates
|
---|
80 | * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
|
---|
81 | * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
|
---|
82 | * @since 2.1
|
---|
83 | */
|
---|
84 | public TDistribution(double degreesOfFreedom, double inverseCumAccuracy)
|
---|
85 | throws NotStrictlyPositiveException {
|
---|
86 | this(new Well19937c(), degreesOfFreedom, inverseCumAccuracy);
|
---|
87 | }
|
---|
88 |
|
---|
89 | /**
|
---|
90 | * Creates a t distribution.
|
---|
91 | *
|
---|
92 | * @param rng Random number generator.
|
---|
93 | * @param degreesOfFreedom Degrees of freedom.
|
---|
94 | * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
|
---|
95 | * @since 3.3
|
---|
96 | */
|
---|
97 | public TDistribution(RandomGenerator rng, double degreesOfFreedom)
|
---|
98 | throws NotStrictlyPositiveException {
|
---|
99 | this(rng, degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
|
---|
100 | }
|
---|
101 |
|
---|
102 | /**
|
---|
103 | * Creates a t distribution.
|
---|
104 | *
|
---|
105 | * @param rng Random number generator.
|
---|
106 | * @param degreesOfFreedom Degrees of freedom.
|
---|
107 | * @param inverseCumAccuracy the maximum absolute error in inverse
|
---|
108 | * cumulative probability estimates
|
---|
109 | * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
|
---|
110 | * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
|
---|
111 | * @since 3.1
|
---|
112 | */
|
---|
113 | public TDistribution(RandomGenerator rng,
|
---|
114 | double degreesOfFreedom,
|
---|
115 | double inverseCumAccuracy)
|
---|
116 | throws NotStrictlyPositiveException {
|
---|
117 | super(rng);
|
---|
118 |
|
---|
119 | if (degreesOfFreedom <= 0) {
|
---|
120 | throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM,
|
---|
121 | degreesOfFreedom);
|
---|
122 | }
|
---|
123 | this.degreesOfFreedom = degreesOfFreedom;
|
---|
124 | solverAbsoluteAccuracy = inverseCumAccuracy;
|
---|
125 |
|
---|
126 | final double n = degreesOfFreedom;
|
---|
127 | final double nPlus1Over2 = (n + 1) / 2;
|
---|
128 | factor = Gamma.logGamma(nPlus1Over2) -
|
---|
129 | 0.5 * (FastMath.log(FastMath.PI) + FastMath.log(n)) -
|
---|
130 | Gamma.logGamma(n / 2);
|
---|
131 | }
|
---|
132 |
|
---|
133 | /**
|
---|
134 | * Access the degrees of freedom.
|
---|
135 | *
|
---|
136 | * @return the degrees of freedom.
|
---|
137 | */
|
---|
138 | public double getDegreesOfFreedom() {
|
---|
139 | return degreesOfFreedom;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /** {@inheritDoc} */
|
---|
143 | public double density(double x) {
|
---|
144 | return FastMath.exp(logDensity(x));
|
---|
145 | }
|
---|
146 |
|
---|
147 | /** {@inheritDoc} */
|
---|
148 | @Override
|
---|
149 | public double logDensity(double x) {
|
---|
150 | final double n = degreesOfFreedom;
|
---|
151 | final double nPlus1Over2 = (n + 1) / 2;
|
---|
152 | return factor - nPlus1Over2 * FastMath.log(1 + x * x / n);
|
---|
153 | }
|
---|
154 |
|
---|
155 | /** {@inheritDoc} */
|
---|
156 | public double cumulativeProbability(double x) {
|
---|
157 | double ret;
|
---|
158 | if (x == 0) {
|
---|
159 | ret = 0.5;
|
---|
160 | } else {
|
---|
161 | double t =
|
---|
162 | Beta.regularizedBeta(
|
---|
163 | degreesOfFreedom / (degreesOfFreedom + (x * x)),
|
---|
164 | 0.5 * degreesOfFreedom,
|
---|
165 | 0.5);
|
---|
166 | if (x < 0.0) {
|
---|
167 | ret = 0.5 * t;
|
---|
168 | } else {
|
---|
169 | ret = 1.0 - 0.5 * t;
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | return ret;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /** {@inheritDoc} */
|
---|
177 | @Override
|
---|
178 | protected double getSolverAbsoluteAccuracy() {
|
---|
179 | return solverAbsoluteAccuracy;
|
---|
180 | }
|
---|
181 |
|
---|
182 | /**
|
---|
183 | * {@inheritDoc}
|
---|
184 | *
|
---|
185 | * For degrees of freedom parameter {@code df}, the mean is
|
---|
186 | * <ul>
|
---|
187 | * <li>if {@code df > 1} then {@code 0},</li>
|
---|
188 | * <li>else undefined ({@code Double.NaN}).</li>
|
---|
189 | * </ul>
|
---|
190 | */
|
---|
191 | public double getNumericalMean() {
|
---|
192 | final double df = getDegreesOfFreedom();
|
---|
193 |
|
---|
194 | if (df > 1) {
|
---|
195 | return 0;
|
---|
196 | }
|
---|
197 |
|
---|
198 | return Double.NaN;
|
---|
199 | }
|
---|
200 |
|
---|
201 | /**
|
---|
202 | * {@inheritDoc}
|
---|
203 | *
|
---|
204 | * For degrees of freedom parameter {@code df}, the variance is
|
---|
205 | * <ul>
|
---|
206 | * <li>if {@code df > 2} then {@code df / (df - 2)},</li>
|
---|
207 | * <li>if {@code 1 < df <= 2} then positive infinity
|
---|
208 | * ({@code Double.POSITIVE_INFINITY}),</li>
|
---|
209 | * <li>else undefined ({@code Double.NaN}).</li>
|
---|
210 | * </ul>
|
---|
211 | */
|
---|
212 | public double getNumericalVariance() {
|
---|
213 | final double df = getDegreesOfFreedom();
|
---|
214 |
|
---|
215 | if (df > 2) {
|
---|
216 | return df / (df - 2);
|
---|
217 | }
|
---|
218 |
|
---|
219 | if (df > 1 && df <= 2) {
|
---|
220 | return Double.POSITIVE_INFINITY;
|
---|
221 | }
|
---|
222 |
|
---|
223 | return Double.NaN;
|
---|
224 | }
|
---|
225 |
|
---|
226 | /**
|
---|
227 | * {@inheritDoc}
|
---|
228 | *
|
---|
229 | * The lower bound of the support is always negative infinity no matter the
|
---|
230 | * parameters.
|
---|
231 | *
|
---|
232 | * @return lower bound of the support (always
|
---|
233 | * {@code Double.NEGATIVE_INFINITY})
|
---|
234 | */
|
---|
235 | public double getSupportLowerBound() {
|
---|
236 | return Double.NEGATIVE_INFINITY;
|
---|
237 | }
|
---|
238 |
|
---|
239 | /**
|
---|
240 | * {@inheritDoc}
|
---|
241 | *
|
---|
242 | * The upper bound of the support is always positive infinity no matter the
|
---|
243 | * parameters.
|
---|
244 | *
|
---|
245 | * @return upper bound of the support (always
|
---|
246 | * {@code Double.POSITIVE_INFINITY})
|
---|
247 | */
|
---|
248 | public double getSupportUpperBound() {
|
---|
249 | return Double.POSITIVE_INFINITY;
|
---|
250 | }
|
---|
251 |
|
---|
252 | /** {@inheritDoc} */
|
---|
253 | public boolean isSupportLowerBoundInclusive() {
|
---|
254 | return false;
|
---|
255 | }
|
---|
256 |
|
---|
257 | /** {@inheritDoc} */
|
---|
258 | public boolean isSupportUpperBoundInclusive() {
|
---|
259 | return false;
|
---|
260 | }
|
---|
261 |
|
---|
262 | /**
|
---|
263 | * {@inheritDoc}
|
---|
264 | *
|
---|
265 | * The support of this distribution is connected.
|
---|
266 | *
|
---|
267 | * @return {@code true}
|
---|
268 | */
|
---|
269 | public boolean isSupportConnected() {
|
---|
270 | return true;
|
---|
271 | }
|
---|
272 | }
|
---|